Lattice Boltzmann Method Study on Liquid Water Dynamic inside Gas Diffusion Layer with Porosity Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Domain and Boundary Conditions
2.2. Multiphase LBM Model
3. Results and Discussions
3.1. Effect on Water Dynamic
3.2. Effect on Water Saturation
3.3. Effect of GDL Hydrophobicity on HSw
4. Conclusions
- Porosity distribution influences the water transfer significantly, which has often been ignored in previous works. The area with the lowest porosity in the thickness direction in the real GDL will prevent the water penetration. Even at the same porosity, a small pore radius will reduce GDL water saturation, but narrow pores will also increase gas mass transfer resistance.
- High hydrophobicity is important in water management ability. However, a contact angle threshold is shown in the real GDL; a hydrophobicity higher than 118° shows no significant difference in water saturation.
Author Contributions
Funding
Conflicts of Interest
References
- Jiao, K.; Li, X. Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 2011, 37, 221–291. [Google Scholar] [CrossRef]
- Deng, H.; Hou, Y.; Jiao, K. Lattice Boltzmann simulation of liquid water transport inside and at interface of gas diffusion and micro-porous layers of PEM fuel cells. Int. J. Heat Mass Transf. 2019, 140, 1074–1090. [Google Scholar] [CrossRef]
- Li, Y.; Pei, P.; Wu, Z.; Ren, P.; Jia, X.; Chen, D.; Huang, S. Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells. Appl. Energy 2018, 224, 42–51. [Google Scholar] [CrossRef]
- Roy, S.K.; Orazem, M.E. Analysis of flooding as a stochastic process in polymer electrolyte membrane (PEM) fuel cells by impedance techniques. J. Power Sources 2008, 184, 212–219. [Google Scholar] [CrossRef]
- Xu, P.; Xu, S.; Liu, P.; Liu, X. A Lattice Boltzmann Simulation of Gas Purge in Flow Channel with Real GDL Surface Characteristics for Proton Exchange Membrane Fuel Cell. SAE Tech. Pap. Ser. 2019, 831–836. [Google Scholar] [CrossRef]
- Hou, Y.; Li, X.; Du, Q.; Jiao, K.; Zamel, N. Pore-Scale Investigation of the Effect of Micro-Porous Layer on Water Transport in Proton Exchange Membrane Fuel Cell. J. Electrochem. Soc. 2020, 167, 144504. [Google Scholar] [CrossRef]
- Yu, J.; Froning, D.; Reimer, U.; Lehnert, W. Polytetrafluorethylene effects on liquid water flowing through the gas diffusion layer of polymer electrolyte membrane fuel cells. J. Power Sources 2019, 438, 226975. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, Q.; Gu, S. Three-dimensional lattice-Boltzmann model for liquid water transport and oxygen diffusion in cathode of polymer electrolyte membrane fuel cell with electrochemical reaction. Electrochim. Acta 2018, 262, 282–296. [Google Scholar] [CrossRef]
- Kakaee, A.; Molaeimanesh, G.; Garmaroudi, M.E. Impact of PTFE distribution across the GDL on the water droplet removal from a PEM fuel cell electrode containing binder. Int. J. Hydrogen Energy 2018, 43, 15481–15491. [Google Scholar] [CrossRef]
- Jeon, D.H. The impact of rib structure on the water transport behavior in gas diffusion layer of polymer electrolyte membrane fuel cells. J. Energy Inst. 2019, 92, 755–767. [Google Scholar] [CrossRef]
- Kim, K.; Kang, J.H.; Lee, S.G.; Nam, J.H.; Kim, C.-J. Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells. J. Power Sources 2015, 278, 703–717. [Google Scholar] [CrossRef]
- Shakerinejad, E.; Kayhani, M.; Nazari, M.; Tamayol, A. Increasing the performance of gas diffusion layer by insertion of small hydrophilic layer in proton-exchange membrane fuel cells. Int. J. Hydrogen Energy 2018, 43, 2410–2428. [Google Scholar] [CrossRef]
- Jeon, D.H.; Kim, H. Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method. J. Power Sources 2015, 294, 393–405. [Google Scholar] [CrossRef]
- García-Salaberri, P.A.; Zenyuk, I.; Shum, A.D.; Hwang, G.; Vera, M.; Weber, A.Z.; Gostick, J.T. Analysis of representative elementary volume and through-plane regional characteristics of carbon-fiber papers: Diffusivity, permeability and electrical/thermal conductivity. Int. J. Heat Mass Transf. 2018, 127, 687–703. [Google Scholar] [CrossRef]
- Fishman, Z.; Hinebaugh, J.; Bazylak, A. Microscale Tomography Investigations of Heterogeneous Porosity Distributions of PEMFC GDLs. J. Electrochem. Soc. 2010, 157, B1643–B1650. [Google Scholar] [CrossRef]
- Zenyuk, I.V.; Parkinson, D.Y.; Connolly, L.G.; Weber, A.Z. Gas-diffusion-layer structural properties under compression via X-ray tomography. J. Power Sources 2016, 328, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Luo, K.; Kang, Q.; He, Y.; Chen, Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 2016, 52, 62–105. [Google Scholar] [CrossRef] [Green Version]
- Flückiger, R.; Marone, F.; Stampanoni, M.; Wokaun, A.; Büchi, F. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy. Electrochim. Acta 2011, 56, 2254–2262. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, F. Impact of PTFE content and distribution on liquid–gas flow in PEMFC carbon paper gas distribution layer: 3D lattice Boltzmann simulations. Int. J. Hydrogen Energy 2016, 41, 8550–8562. [Google Scholar] [CrossRef]
- Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815–1819. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Xu, S.; Gao, Y. Using Orthorhombic Lattice Boltzmann Model to Research the Liquid Transport in Gas Diffusion Layer with Different Micro Porous Layer Coated. Commun. Comput. Phys. 2018, 23, 1078–1093. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Du, A.; Liu, J.; Xu, S. Lattice Boltzmann Method Study on Liquid Water Dynamic inside Gas Diffusion Layer with Porosity Distribution. World Electr. Veh. J. 2021, 12, 133. https://doi.org/10.3390/wevj12030133
Yang M, Du A, Liu J, Xu S. Lattice Boltzmann Method Study on Liquid Water Dynamic inside Gas Diffusion Layer with Porosity Distribution. World Electric Vehicle Journal. 2021; 12(3):133. https://doi.org/10.3390/wevj12030133
Chicago/Turabian StyleYang, Mingyang, Aimin Du, Jinling Liu, and Sichuan Xu. 2021. "Lattice Boltzmann Method Study on Liquid Water Dynamic inside Gas Diffusion Layer with Porosity Distribution" World Electric Vehicle Journal 12, no. 3: 133. https://doi.org/10.3390/wevj12030133