# Integrated Charger-Inverter for High-Performance Electric Motorcycles

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Integrated Charger-Inverter

#### 2.1. Topology

#### 2.2. Control Algorithm

## 3. Component Sizing

#### 3.1. Inductors

#### 3.2. Capacitors

#### 3.3. Specific Power Comparison

## 4. Simulation Results

#### 4.1. Charge Simulations

#### 4.2. Electromagnetic Torque

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Drobnic, K.; Grandi, G.; Hammami, M.; Mandrioli, R.; Ricco, M.; Viatkin, A.; Vujacic, M. An Output Ripple-Free Fast Charger for Electric Vehicles Based on Grid-Tied Modular Three-Phase Interleaved Converters. IEEE Trans. Ind. Appl.
**2019**, 55, 6102–6114. [Google Scholar] [CrossRef] - Patil, D.; Agarwal, V. Compact Onboard Single-Phase EV Battery Charger with Novel Low-Frequency Ripple Compensator and Optimum Filter Design. IEEE Trans. Ind. Appl.
**2016**, 65, 1948–1956. [Google Scholar] [CrossRef] - Shi, C.; Tang, Y.; Khaligh, A. A Three-Phase Integrated Onboard Charger for Plug-In Electric Vehicles. IEEE Trans. Power Electron.
**2018**, 33, 4716–4725. [Google Scholar] [CrossRef] - Hatti, N.; Nuilers, S.; Chayopitak, N.; Somsiri, P. An integrated battery charger configuration for SRM drive in electric motorcycles. IEEJ Trans. Electr. Electron. Eng.
**2018**, 13, 295–302. [Google Scholar] [CrossRef] - Subotic, I.; Bodo, N.; Levi, E. Single-Phase On-Board Integrated Battery Chargers for EVs Based on Multiphase Machines. IEEE Trans. Power Electron.
**2016**, 31, 6511–6523. [Google Scholar] [CrossRef] [Green Version] - Shi, C.; Tang, Y.; Khaligh, A. A Single-Phase Integrated Onboard Battery Charger Using Propulsion System for Plug-in Electric Vehicles. IEEE Trans. Veh. Technol.
**2017**, 66, 10899–10910. [Google Scholar] [CrossRef] - Cheng, H.; Wang, Z.; Yang, S.; Huang, J.; Ge, X. An Integrated SRM Powertrain Topology for Plug-In Hybrid Electric Vehicles with Multiple Driving and Onboard Charging Capabilities. IEEE Trans. Transp. Electrif.
**2020**, 6, 578–591. [Google Scholar] [CrossRef] - Bodo, N.; Levi, E.; Subotic, I.; Espina, J.; Empringham, L.; Johnson, C.M. Efficiency Evaluation of Fully Integrated On-Board EV Battery Chargers with Nine-Phase Machines. IEEE Trans. Energy Convers.
**2017**, 32, 257–266. [Google Scholar] [CrossRef] - Metwly, M.Y.; Abdel-Majeed, M.S.; Abdel-Khalik, A.S.; Hamdy, R.A.; Hamad, M.S.; Ahmed, S. A Review of Integrated On-Board EV Battery Chargers: Advanced Topologies, Recent Developments and Optimal Selection of FSCW Slot/Pole Combination. IEEE Access
**2020**, 8, 85216–85242. [Google Scholar] [CrossRef] - Kataoka, R.; Shichi, A.; Yamada, H.; Iwafune, Y.; Ogimoto, K. Comparison of the Economic and Environmental Performance of V2H and Residential Stationary Battery: Development of a Multi-Objective Optimization Method for Homes of EV Owners. World Electr. Veh. J.
**2019**, 10, 78. [Google Scholar] [CrossRef] [Green Version] - Subotic, I.; Jones, M.; Levi, E. A fast on-board integrated battery charger for four-motor EVs. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 2066–2072. [Google Scholar]
- Thimmesch, D. An SCR inverter with an integral battery charger for electric vehicles. IEEE Trans. Ind. Appl.
**1985**, IA-21, 1023–1029. [Google Scholar] [CrossRef] - Tang, L.; Su, G.-J. Control scheme optimization for a low-cost, digitally-controlled charger for plug-in hybrid electric vehicles. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 3604–3610. [Google Scholar]
- Matsuhashi, D.; Matsuo, K.; Okitsu, T.; Ashikaga, T.; Mizuno, T. Comparison study of various motors for EVs and the potentiality of a ferrite magnet motor. IEEJ J. Ind. Appl.
**2015**, 4, 173–179. [Google Scholar] [CrossRef] [Green Version] - Tuan, V.T.; Kreuawan, S.; Somsiri, P.; Tungpimolrut, K.; Huy, P.N. Switched Reluctance Motor and Induction Machine for E-Scooter Based on Driving Cycles Design Comparisons. IEEJ Trans. Electr. Electron. Eng.
**2020**, 15, 931–938. [Google Scholar] [CrossRef] - Vosswinkel, M.; Lohner, A.; Platte, V.; Hirche, T. Design, Production, and Verification of a Switched-Reluctance Wheel Hub Drive Train for Battery Electric Vehicles. World Electr. Veh. J.
**2019**, 10, 82. [Google Scholar] [CrossRef] [Green Version] - Na, T.; Zhang, Q.; Tang, J.; Wang, J. Active power filter for single-phase Quasi-Z-source integrated on-board charger. CPSS Trans. Power Electron. Appl.
**2018**, 3, 197–201. [Google Scholar] [CrossRef] - Xiao, Y.; Liu, C.; Yu, F. An Effective Charging-Torque Elimination Method for Six-Phase Integrated On-Board EV Chargers. IEEE Trans. Power Electron.
**2020**, 35, 2776–2786. [Google Scholar] [CrossRef] - Gavagsaz-Ghoachani, R.; Saublet, L.; Phattanasak, M.; Martin, J.; Nahid-mobarakeh, B.; Pierfederici, S. Active stabilisation design of DC–DC converters with constant power load using a sampled discrete-time model: Stability analysis and experimental verification. IET Power Electron.
**2018**, 11, 1519–1528. [Google Scholar] [CrossRef] - Gavagsaz-Ghoachani, R.; Phattanasak, M.; Martin, J.; Nahid-Mobarakeh, B.; Pierfederici, S. A Fixed-Frequency Optimization of PWM Current Controller—Modeling and Design of Control Parameters. IEEE Trans. Transp. Electrif.
**2018**, 4, 671–683. [Google Scholar] [CrossRef] - Das, P.; Pahlevaninezhad, M.; Moschopoulos, G. Analysis and Design of a New AC–DC Single-Stage Full-Bridge PWM Converter with Two Controllers. IEEE Trans. Ind. Electron.
**2013**, 60, 4930–4946. [Google Scholar] [CrossRef] - Ferrieux, J.P.; Forest, F. Alimentations à Découpage Convertisseurs à Résonance, 3rd ed.; Dunod: Malakoff, France, 2006. [Google Scholar]
- Nussbaumer, T.; Raggl, K.; Kolar, J.W. Design Guidelines for Interleaved Single-Phase Boost PFC Circuits. IEEE Trans. Ind. Electron.
**2009**, 56, 2559–2573. [Google Scholar] [CrossRef] - Shenai, K. WBG Power Converters for Hybrid & EV Applications. Auto Tech. Rev.
**2016**, 5, 42–47. [Google Scholar] - Robert, E.; Dragan, M.; Khurram, A.; David, J.; Daniel, F.; Hyeokjin, K.; Usama, A.; Jianglin, Z.; Kraig, O.; Brandon, P.; et al. A Disruptive Approach to Electric Vehicle Power Electronics Final Report; Univ. of Colorado: Boulder, CO, USA, 2017. [Google Scholar]

**Figure 5.**DC link voltage without active filter for ${\mathrm{P}}_{\mathrm{Bat}}=7\text{}\mathrm{kW}$.

**Figure 8.**Battery current waveform for ${\mathrm{P}}_{\mathrm{Bat}}=1.5\text{}\mathrm{kW}\to 7\text{}\mathrm{kW}$.

**Figure 9.**DC link voltage without an active filter ${\mathrm{P}}_{\mathrm{Bat}}=1.5\text{}\mathrm{kW}\to 7\text{}\mathrm{kW}$.

**Figure 10.**Input current waveform for ${\mathrm{P}}_{\mathrm{Bat}}=1.5\text{}\mathrm{kW}\to 7\text{}\mathrm{kW}$.

Manufacturer/Reference | Specific Power (kW/kg) | Power Density (kW/L) | Cost Per kW (USD/kW) |
---|---|---|---|

2012 Nissan Leaf 6.6 kW OBC [24] | 0.41 | 0.66 | N/A |

Tier one OBC 3.3 kW [24] | N/A | N/A | 83 |

Eton ^{(1)} | N/A | 2 | N/A |

Ovartech 6.6 kW Water-cool ^{(2)} | 1.1 | 0.61 | N/A |

Manufacturer/Reference | Weight (kg) | Volume (L) | Cost (USD) |
---|---|---|---|

S2 (40 A, 450 V DC contactor) ^{(3)} | 0.15 | 0.11 | 30 |

S3 (10 A, 250 Vac 3-pole relay) ^{(4)} | 0.03 | 0.02 | 10 |

L_{b} (estimated) | 1 | 0.5 | 30 |

C_{o} (3 uF, 450 V) ^{(5)} | 0.0085 | 0.0074 | 5 |

Total | 1.19 | 0.64 | 75 |

Manufacturer/Reference | Specific Power (kW/kg) | Power Density (kW/L) | Cost Per kW (USD/kW) |
---|---|---|---|

Proposed ICI 7.7 kW | 5.88 | 10.93 | 10.71 |

ICI 6.6 kW from [25] | 4 | N/A | N/A |

Parameters (Unit) | |
---|---|

Grid voltage, ${\mathrm{V}}_{\mathrm{g}}$ | $230$ Vrms |

Grid frequency, ${\mathrm{f}}_{\mathrm{grid}}$ | 50 Hz |

Switching frequency, ${\mathrm{f}}_{\mathrm{s}}$ | 20 kHz |

Output voltage, ${\mathrm{V}}_{\mathrm{Bus}}$ | 400 V |

Maximum battery power, ${\mathrm{p}}_{\mathrm{Bat}}$ | 7 kW |

PFC inductor ${\mathrm{L}}_{\mathrm{a}},{\mathrm{r}}_{\mathrm{a}}$ (phase a winding) | 1.3 mH, 0.015 Ω |

Charger inductor ${\mathrm{L}}_{\mathrm{b}},{\mathrm{r}}_{\mathrm{b}}$ (additional inductor) | 10 mH, 0.015 Ω |

Capacitor, ${\mathrm{C}}_{\mathrm{Bus}}$ | 640 μF |

Capacitor, ${\mathrm{C}}_{\mathrm{o}}$ | 2.2 μF |

Battery full voltage of 48 cells | 201.6 V |

Parameters (Unit) | |
---|---|

PFC | |

- ${\mathrm{K}}_{\mathrm{P}}$, ${\mathrm{T}}_{\mathrm{i}}$ | 0.11, 0.5 ms |

- $\mathsf{\xi},{\mathsf{\omega}}_{\mathrm{n}}$ | 0.707, $150$ rad/s |

- ${\mathrm{K}}_{1}$, ${\text{}\mathrm{K}}_{2}$ | 212.10, 22,500 |

Charger | |

- $\mathsf{\lambda}={\mathrm{K}}_{\mathrm{i}}$ | $2{\mathsf{\pi}\mathrm{f}}_{\mathrm{s}}/10$ rad/s |

- ${\mathrm{K}}_{\mathrm{P}}$, ${\mathrm{T}}_{\mathrm{i}}$ | 0.01, 0.1 s |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tuan, V.T.; Phattanasak, M.; Kreuawan, S.
Integrated Charger-Inverter for High-Performance Electric Motorcycles. *World Electr. Veh. J.* **2021**, *12*, 19.
https://doi.org/10.3390/wevj12010019

**AMA Style**

Tuan VT, Phattanasak M, Kreuawan S.
Integrated Charger-Inverter for High-Performance Electric Motorcycles. *World Electric Vehicle Journal*. 2021; 12(1):19.
https://doi.org/10.3390/wevj12010019

**Chicago/Turabian Style**

Tuan, Vu Tran, Matheepot Phattanasak, and Sangkla Kreuawan.
2021. "Integrated Charger-Inverter for High-Performance Electric Motorcycles" *World Electric Vehicle Journal* 12, no. 1: 19.
https://doi.org/10.3390/wevj12010019