# Research on the Anti-Disturbance Control Method of Brake-by-Wire Unit for Electric Vehicles

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Structure and Model of the DDEHB

#### 2.1. Structure and Principle of the DDEHB

#### 2.2. Model of the DDEHB

## 3. Control Method of the DDEHB

#### 3.1. State Observer

#### 3.2. Anti-Disturbance Controller

#### 3.2.1. Outer Controller

#### 3.2.2. Inner Controller

## 4. Simulation and Experimental Test

#### 4.1. Simulation and Experimental Test of the DDEHB

#### 4.2. Simulation of Vehicle Performance

^{2}, and the other parameters of the vehicle are listed in Table 4.

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- He, Y.; Lu, C.; Shen, J.; Yuan, C. Design and analysis of output feedback constraint control for antilock braking system with time-varying slip ratio. Math. Probl. Eng.
**2019**, 2019, 1–11. [Google Scholar] [CrossRef] - Radac, M.-B.; Precup, R.-E. Data-driven model-free slip control of anti-lock braking systems using reinforcement q-learning. Neurocomputing
**2018**, 275, 317–329. [Google Scholar] [CrossRef] - Sardarmehni, T.; Heydari, A. Sub-optimal switching in anti-lock brake systems using approximate dynamic programming. IET Control Theory Appl.
**2019**, 13, 1413–1424. [Google Scholar] [CrossRef] - Ma, B.; Lin, M.; Chen, Y.; Wang, L.-X. Investigation of energy efficiency for electro-hydraulic composite braking system which is based on the regenerated energy. Adv. Mechan. Eng.
**2016**, 8, 1687814016666449. [Google Scholar] [CrossRef] - Yong, J.; Gao, F.; Ding, N.; He, Y. Design and validation of an electro-hydraulic brake system using hardware-in-the-loop real-time simulation. Int. J. Automot. Technol.
**2017**, 18, 603–612. [Google Scholar] [CrossRef] - Park, G.; Choi, S.; Hyun, D. Clamping force estimation based on hysteresis modeling for electro-mechanical brakes. Int. J. Automot. Technol.
**2017**, 18, 883–890. [Google Scholar] [CrossRef] - Jo, C.H.; Lee, S.M.; Song, H.L.; Cho, Y.S.; Kim, I.; Hyun, D.Y.; Kim, H.S. Design and control of an upper-wedge-type electronic brake. Proc. Inst. Mechan. Eng. Part D
**2010**, 224, 1393–1405. [Google Scholar] [CrossRef] - Hui, L.; Weida, W.; Jiao, H.; Changle, X. Modeling and simulation of the regenerative braking system in a hev based on fuzzy control. Automot. Eng.
**2012**, 34, 51–56. [Google Scholar] - Benine-Neto, A.; Moreau, X.; Lanusse, P. Robust control for an electro-mechanical anti-lock braking system: The crone approach. IFAC-PapersOnLine
**2017**, 50, 12575–12581. [Google Scholar] [CrossRef] - Peng, X.; Jia, M.; He, L.; Yu, X.; Lv, Y. Fuzzy sliding mode control based on longitudinal force estimation for electro-mechanical braking systems using bldc motor. CES Trans. Electr. Mach. Syst.
**2018**, 2, 142–151. [Google Scholar] - Han, K.; Kim, M.; Huh, K. Modeling and control of an electronic wedge brake. Proc. Inst. Mechan. Eng. Part C
**2012**, 226, 2440–2455. [Google Scholar] [CrossRef] - Lee, C.F.; Manzie, C. Active brake judder attenuation using an electromechanical brake-by-wire system. IEEE/ASME Trans. Mechatron.
**2016**, 21, 2964–2976. [Google Scholar] [CrossRef] - Todeschini, F.; Formentin, S.; Panzani, G.; Corno, M.; Savaresi, S.M.; Zaccarian, L. Nonlinear pressure control for bbw systems via dead-zone and antiwindup compensation. IEEE Trans. Control Syst. Technol.
**2016**, 24, 1419–1431. [Google Scholar] [CrossRef] - Shin, D.-H.; Lee, S.; Jeong, C.-P.; Kwon, O.-S.; Park, T.-S.; Jin, S.-H.; Ban, D.H.; Yang, S.-H. Analytic approaches for keeping high braking efficiency and clamping efficiency of electro wedge brakes. Int. J. Prec. Eng. Manuf.
**2015**, 16, 1609–1615. [Google Scholar] [CrossRef] - Lindvai-Soos, D.; Horn, M. Modelling, Control & Implementation of an Electro-Mechanic Braking Force Actuator for HEV and EV; IFAC Proceedings Volumes Series; Elsevier: Amsterdam, The Netherlands, 2013; pp. 620–625. [Google Scholar]
- Wang, C.; Zhao, W.; Li, W. Braking sense consistency strategy of electro-hydraulic composite braking system. Mechan. Syst. Signal Process.
**2018**, 109, 196–219. [Google Scholar] [CrossRef] - Li, J.; Ding, M.; Yong, W.; Li, C. Evaluation and optimization of the nonlinear flow controllability of switch valve in vehicle electro-hydraulic brake system. IEEE Access
**2018**, 6, 31281–31293. [Google Scholar] [CrossRef] - Xiaoxiang, G.; Siqing, C.; Lichen, J.; Xiaopan, L. Research on regenerative brake technology of electric vehicle based on direct-drive electric-hydraulic brake system. Int. J. Veh. Design
**2016**, 70, 1–28. [Google Scholar] - Cheon, J.S. Brake by Wire System Configuration and Functions Using Front EWB (Electric Wedge Brake) and Rear EMB (Electro-Mechanical Brake) Actuators; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Gong, X.; Chang, S.; Jiang, L.; Li, X. Braking method of electric vehicle based on direct drive electro- hydraulic brake unit. Open Mechan. Eng. J.
**2015**, 9, 351–360. [Google Scholar] [CrossRef] - Zhiyuan, L.; Zhaodu, L.; Haifeng, C.; Renguang, W. Experimental study on change rate model of brake pressure of abs wheel cylinder. Trans. Chin Soc. Agric. Mach.
**2007**, 38, 6–9. [Google Scholar] - Jingqing, H. Auto disturbances rejection control technique. Front. Sci.
**2007**, 1, 24–31. [Google Scholar] - Zeng-Qiang, C.; Ming-Wei, S.; Rui-Guang, Y. On the stability of linear active disturbance rejection control. Acta Autom. Sin.
**2013**, 39, 574–580. [Google Scholar] - Tan, S. Research on actuator of electromechanical brake and hardware in-the-loop test bench for light vehicle. Ph.D. Thesis, Jilin University, Changchun, China, 2008. [Google Scholar]
- Zhuoping, Y.; Jianling, Z.; Hui, C. Tire-road friction coefficient estimation with four wheel in-wheel-motor drive vehicle. Automot. Eng.
**2007**, 29, 141–145. [Google Scholar]

**Figure 7.**Step response of the DDEHB. PID: Proportion Integration Differentiation, ADC: anti-disturbance controller.

Parameter | ${\mathit{a}}_{0}$ | ${\mathit{a}}_{1}$ | ${\mathit{a}}_{2}$ | ${\mathit{\delta}}_{\mathit{o}}$ | ${\mathit{k}}_{0}$ | ${\mathit{k}}_{1}$ | ${\mathit{k}}_{2}$ |
---|---|---|---|---|---|---|---|

Value | −0.73 | 0.69 | 3.74 | 3${h}_{e}$ | 6.3 | 3.4 | 0.04 |

Parameter | Value |
---|---|

EMLA diameter/mm | 60 |

EMLA length/mm | 70 |

EMLA voltage/V | 24 |

Coil resistance/Ω | 0.7615 |

Coil inductance/μH | 279.8 |

Peak current/A | 25 |

Parameter | Value |
---|---|

Piston diameter/mm | 38 |

Plunger diameter/mm | 6 |

Max pressure/mPa | 10 |

Max braking force/N | 10,343 (μ = 0.38) |

Max piston pressure/N | 27219 |

Electromagnetic force/N | 339 |

Parameter | Symbol/Unit | Value |
---|---|---|

Vehicle mass | M/kg | 1367 |

Center of gravity | Hg/mm | 375 |

Axle base | l/mm | 2400 |

Front axle base | l_{f}/mm | 1056 |

Rear axle base | l_{r}/mm | 1344 |

Brake System | Brake Distance/m | Brake Time/s |
---|---|---|

Conventional ABS | 123.85 | 8.56 |

DDEHB | 108.75 | 7.23 |

Performance improvement | 12.19% | 15.54% |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gong, X.; Qian, L.; Ge, W.; Wang, L.
Research on the Anti-Disturbance Control Method of Brake-by-Wire Unit for Electric Vehicles. *World Electr. Veh. J.* **2019**, *10*, 44.
https://doi.org/10.3390/wevj10020044

**AMA Style**

Gong X, Qian L, Ge W, Wang L.
Research on the Anti-Disturbance Control Method of Brake-by-Wire Unit for Electric Vehicles. *World Electric Vehicle Journal*. 2019; 10(2):44.
https://doi.org/10.3390/wevj10020044

**Chicago/Turabian Style**

Gong, Xiaoxiang, Lixia Qian, Weiguo Ge, and Lifeng Wang.
2019. "Research on the Anti-Disturbance Control Method of Brake-by-Wire Unit for Electric Vehicles" *World Electric Vehicle Journal* 10, no. 2: 44.
https://doi.org/10.3390/wevj10020044