Machine Learning Strategies for Reconfigurable Intelligent Surface-Assisted Communication Systems—A Review
Abstract
:1. Introduction
- We provide an updated list of the research frameworks that apply ML methods, DL architectures, and the underlying learning schemes for RIS-assisted communications.
- We present a list of data sources for training the ML algorithms that enhance the performance of the RIS-assisted communication system. We highlight research works that provide the source code for testing and replicability of the revised approaches.
- We present an overview of future challenges and opportunities in ML applications for RIS-assisted wireless communication systems, and we provide new directions on ML for designing RIS-assisted communication systems for engineers and researchers.
2. Foundations on RISs
2.1. RIS Hardware Architecture
2.2. RIS-Assisted Wireless Communication Systems
2.3. RIS-Assisted Communication System Model
- Active beamforming: requires additional active components or circuits to manipulate the amplitude and phase of the RIS-impinging signals. Although the signal adjustments are implemented in real time, the power consumption and system complexity increase.
- Passive beamforming: The system relies on exploiting the properties of RISs by software rather than adding additional electronic circuits. These systems are less complex than active beamforming and consume less power.
3. Basics of ML Algorithms
3.1. Types of ML Algorithms
3.2. Deep Learning (DL) Algorithms
3.3. Reinforcement Learning Algorithms
- Policy-based methods: To learn which action to take given a state, the policy is directly trained.
- Value-based methods: A value function is trained to learn the most valuable state, and this value is used to take the action that leads to it. This value function is denoted as (state value) or (action value).
3.4. Federated Learning (FL)
4. ML Applications for RIS-Assisted Communications
4.1. Resources for Generating Databases to Train ML on Wireless Communications
4.2. Estimation of CSI
4.3. Beamforming Applications
4.4. Federated Learning Applications
4.5. ML Applications for Signal Decoding
4.6. ML-Based Applications for RIS-Assisted Communications Modeling
5. Future Trends, Challenges, and Opportunities
- The extension or scalability of systems from MISO to MIMO;
- The use of multiple RISs;
- The use of larger datasets;
- Improvements in the ML-trained model to avoid overfitting;
- Hyperparameter tuning for DL and DRL approaches.
5.1. Database Shortage
5.2. Source Code Sharing
5.3. Model Deployment and Updating
5.4. Exploring Different Learning Approaches
- Carbon footprint and environmental sustainability: The computational cost of the training stage involves energy consumption. However, transfer learning allows researchers to enhance trained ML models to reduce training time and resource consumption.
- Ensure data efficiency: If the model has been trained on large datasets, it can be fine-tuned on smaller datasets. Here, the challenge is to acquire extensive labeled data.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RIS | Reconfigurable intelligent surface |
5G | Fifth-generation communications |
6G | Sixth-generation communications |
THz | Terahertz |
IoT | Internet of things |
MIMO | Multiple input, multiple output |
CSI | Channel state information |
ML | Machine learning |
AI | Artificial intelligence |
DL | Deep learning |
SL | Supervised learning |
UL | Unsupervised learning |
RL | Reinforcement learning |
FL | Federated learning |
DML | Distributed machine learning |
DRL | Deep reinforcement learning |
DQL | Deep Q-learning |
DQN | Deep Q-network |
NN | Neural network |
ANN | Artificial neural network |
DNN | Deep neural network |
CNN | Convolutional neural network |
GNN | Graph neural network |
ReLU | Rectifier linear unit |
tanh | Hyperbolic tangent |
SGD | Stochastic gradient descent |
MSE | Mean squared error |
MMSE | Minimum mean squared error |
LMSE | Least mean square error |
Adam | Adaptive moment estimation |
MDP | Markov decision process |
DDPG | Deep deterministic policy gradient |
SAC | Soft actor–critic |
TD | Temporal difference |
TD3 | Twin-delayed deep-deterministic policy gradient |
EML | Extreme machine learning |
EM | Electromagnetic |
PIN | Positive–intrinsic–negative |
DC | Direct current |
mmWave | Millimetric wave |
FPGA | Field-programmable gate array |
UE | User equipment |
BS | Base station |
AP | Access point |
Tx | Transmit antenna |
Rx | Receiver antenna |
QAM | Quadrature amplitude modulation |
QSM | Quadrature spatial modulation |
OFDM | Orthogonal frequency division multiplexing |
GPU | Graphical processing unit |
CPU | Central processing unit |
MU | Multiuser |
LOS | Line of sight |
UAV | Unnamed aerial vehicle |
TDD | Test-driven development |
BCD | Block coordinate descent |
MM | Maximization minimization |
SDR | Semidefinite relaxation |
AirCom | Aeronautical communications |
References
- Rost, P.; Mannweiler, C.; Michalopoulos, D.S.; Sartori, C.; Sciancalepore, V.; Sastry, N.; Holland, O.; Tayade, S.; Han, B.; Bega, D.; et al. Network slicing to enable scalability and flexibility in 5G mobile networks. IEEE Commun. Mag. 2017, 55, 72–79. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Gutierrez, C.A.; Caicedo, O.; Campos-Delgado, D.U. 5G and beyond: Past, present and future of the mobile communications. IEEE Lat. Am. Trans. 2021, 19, 1702–1736. [Google Scholar] [CrossRef]
- Wild, T.; Braun, V.; Viswanathan, H. Joint design of communication and sensing for beyond 5G and 6G systems. IEEE Access 2021, 9, 30845–30857. [Google Scholar] [CrossRef]
- Tan, D.K.P.; He, J.; Li, Y.; Bayesteh, A.; Chen, Y.; Zhu, P.; Tong, W. Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions. In Proceedings of the 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), Dresden, Germany, 23–24 February 2021; pp. 1–6. [Google Scholar]
- Subrt, L.; Pechac, P. Intelligent walls as autonomous parts of smart indoor environments. IET Commun. 2012, 6, 1004–1010. [Google Scholar] [CrossRef]
- Di Renzo, M.; Ntontin, K.; Song, J.; Danufane, F.H.; Qian, X.; Lazarakis, F.; De Rosny, J.; Phan-Huy, D.T.; Simeone, O.; Zhang, R.; et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 2020, 1, 798–807. [Google Scholar] [CrossRef]
- Guo, H.; Liang, Y.C.; Chen, J.; Larsson, E.G. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Khalid, W.; Yu, H.; Do, D.T.; Kaleem, Z.; Noh, S. RIS-aided physical layer security with full-duplex jamming in underlay D2D networks. IEEE Access 2021, 9, 99667–99679. [Google Scholar] [CrossRef]
- Tang, Z.; Hou, T.; Liu, Y.; Zhang, J.; Zhong, C. A novel design of RIS for enhancing the physical layer security for RIS-aided NOMA networks. IEEE Wirel. Commun. Lett. 2021, 10, 2398–2401. [Google Scholar] [CrossRef]
- Yang, L.; Meng, F.; Zhang, J.; Hasna, M.O.; Di Renzo, M. On the performance of RIS-assisted dual-hop UAV communication systems. IEEE Trans. Veh. Technol. 2020, 69, 10385–10390. [Google Scholar] [CrossRef]
- Rahmatov, N.; Baek, H. RIS-carried UAV communication: Current research, challenges, and future trends. ICT Express 2023, 9, 961–973. [Google Scholar] [CrossRef]
- Niu, H.; Lin, Z.; Chu, Z.; Zhu, Z.; Xiao, P.; Nguyen, H.X.; Lee, I.; Al-Dhahir, N. Joint beamforming design for secure RIS-assisted IoT networks. IEEE Internet Things J. 2022, 10, 1628–1641. [Google Scholar] [CrossRef]
- Kumaravelu, V.B.; Imoize, A.L.; Soria, F.R.C.; Velmurugan, P.G.S.; Thiruvengadam, S.J.; Do, D.T.; Murugadass, A. RIS-Assisted Fixed NOMA: Outage Probability Analysis and Transmit Power Optimization. Future Internet 2023, 15, 249. [Google Scholar] [CrossRef]
- Castillo-Soria, F.; Gutierrez, C.; Kumaravelu, V.; Garcıa-Barrientos, A. RIS-Assisted Non-orthogonal Multiple Access System Based on SSK. Wireless Pers Commun 2024, 134, 2391–2412. [Google Scholar] [CrossRef]
- Castillo-Soria, F.R.; Macias-Velasquez, S.; Kumaravelu, V.B.; Ramos, V.; Azurdia-Meza, C.A. Multiple Parallel RIS-Assisted MU-MIMO-DQSM System; Blind and Intelligent Approaches. Available online: http://www.cic-chinacommunications.cn/EN/10.23919/JCC.ja.2023-0695 (accessed on 13 May 2024).
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Tang, W.; Chen, M.Z.; Chen, X.; Dai, J.Y.; Han, Y.; Di Renzo, M.; Zeng, Y.; Jin, S.; Cheng, Q.; Cui, T.J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. IEEE Trans. Wirel. Commun. 2020, 20, 421–439. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Zhang, H.; Ren, Y.; Chen, K.C.; Hanzo, L. Thirty years of machine learning: The road to Pareto-optimal wireless networks. IEEE Commun. Surv. Tutor. 2020, 22, 1472–1514. [Google Scholar] [CrossRef]
- Hellström, H.; da Silva, J.M.B., Jr.; Amiri, M.M.; Chen, M.; Fodor, V.; Poor, H.V.; Fischione, C. Wireless for machine learning: A survey. Found. Trends® Signal Process. 2022, 15, 290–399. [Google Scholar] [CrossRef]
- Zappone, A.; Di Renzo, M.; Debbah, M. Wireless networks design in the era of deep learning: Model-based, AI-based, or both? IEEE Trans. Commun. 2019, 67, 7331–7376. [Google Scholar] [CrossRef]
- Wang, C.X.; Di Renzo, M.; Stanczak, S.; Wang, S.; Larsson, E.G. Artificial intelligence enabled wireless networking for 5G and beyond: Recent advances and future challenges. IEEE Wirel. Commun. 2020, 27, 16–23. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Rahman, M.H.; Shin, B.S.; Oh, J.H.; You, Y.H.; Song, H.K. Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors 2022, 22, 5405. [Google Scholar] [CrossRef] [PubMed]
- Faisal, K.; Choi, W. Machine learning approaches for reconfigurable intelligent surfaces: A survey. IEEE Access 2022, 10, 27343–27367. [Google Scholar] [CrossRef]
- Faisal, K.; Choi, W. A study on machine learning-based approaches for reconfigurable intelligent surface. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 227–232. [Google Scholar]
- Zhang, S.; Li, M.; Jian, M.; Zhao, Y.; Gao, F. AIRIS: Artificial intelligence enhanced signal processing in reconfigurable intelligent surface communications. China Commun. 2021, 18, 158–171. [Google Scholar] [CrossRef]
- Zhou, H.; Erol-Kantarci, M.; Liu, Y.; Poor, H.V. A Survey on Model-based, Heuristic, and Machine Learning Optimization Approaches in RIS-aided Wireless Networks. arXiv 2023, arXiv:2303.14320. [Google Scholar] [CrossRef]
- Wong, Y.H.; Chiong, C.W. Transceiver Design for Secure Wireless Communication Networks with IRS using Deep Learning: A Survey. In Proceedings of the 2023 International Conference on Digital Applications, Transformation & Economy (ICDATE), Miri, Malaysia, 14–16 July 2023; pp. 245–249. [Google Scholar]
- Elbir, A.M.; Mishra, K.V. A survey of deep learning architectures for intelligent reflecting surfaces. arXiv 2020, arXiv:2009.02540. [Google Scholar]
- ElMossallamy, M.A.; Zhang, H.; Song, L.; Seddik, K.G.; Han, Z.; Li, G.Y. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 990–1002. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef]
- Yang, H.; Chen, X.; Yang, F.; Xu, S.; Cao, X.; Li, M.; Gao, J. Design of resistor-loaded reflectarray elements for both amplitude and phase control. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1159–1162. [Google Scholar] [CrossRef]
- Björnson, E.; Özdogan, Ö.; Larsson, E.G. Reconfigurable intelligent surfaces: Three myths and two critical questions. IEEE Commun. Mag. 2020, 58, 90–96. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wirel. Commun. Lett. 2019, 9, 581–585. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Castillo-Soria, F.R.; Del Puerto-Flores, J.A.; Azurdia-Meza, C.A.; Babu Kumaravelu, V.; Simón, J.; Gutierrez, C.A. Precoding for RIS-Assisted Multi-User MIMO-DQSM Transmission Systems. Future Internet 2023, 15, 299. [Google Scholar] [CrossRef]
- Wei, X.; Shen, D.; Dai, L. Channel estimation for RIS assisted wireless communications—Part I: Fundamentals, solutions, and future opportunities. IEEE Commun. Lett. 2021, 25, 1398–1402. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces. IEEE Wirel. Commun. Lett. 2020, 10, 830–834. [Google Scholar] [CrossRef]
- Mishra, D.; Johansson, H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4659–4663. [Google Scholar]
- Alwazani, H.; Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.S. Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design. IEEE Open J. Commun. Soc. 2020, 1, 661–680. [Google Scholar]
- Lyu, J.; Zhang, R. Hybrid active/passive wireless network aided by intelligent reflecting surface: System modeling and performance analysis. IEEE Trans. Wirel. Commun. 2021, 20, 7196–7212. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Ketkar, N.; Ketkar, N. Stochastic gradient descent. In Deep Learning with Python: A Hands-on Introduction; Springer: Berlin/Heidelberg, Germany, 2017; pp. 113–132. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971. [Google Scholar]
- Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596. [Google Scholar]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1861–1870. [Google Scholar]
- Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of deep reinforcement learning in communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Aguera y Arcas, B. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Li, L.; Fan, Y.; Tse, M.; Lin, K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [Google Scholar] [CrossRef]
- Klautau, A.; Batista, P.; González-Prelcic, N.; Wang, Y.; Heath, R.W. 5G MIMO data for machine learning: Application to beam-selection using deep learning. In Proceedings of the 2018 Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 11–16 February 2018; pp. 1–9. [Google Scholar]
- Alkhateeb, A. DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications. arXiv 2019, arXiv:1902.06435. [Google Scholar]
- Remcom Wireless Insite. Available online: https://www.remcom.com/wireless-insite-em-propagation-software (accessed on 30 October 2023).
- Tewes, S.; Heinrichs, M.; Weinberger, K.; Kronberger, R.; Sezgin, A. A comprehensive dataset of RIS-based channel measurements in the 5GHz band. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–5. [Google Scholar]
- IEEEDataPort. Available online: https://ieee-dataport.org/ (accessed on 13 November 2023).
- GitHub. Available online: https://github.com (accessed on 20 October 2023).
- Rossanese, M.; Mursia, P.; Garcia-Saavedra, A.; Sciancalepore, V.; Asadi, A.; Costa-Perez, X. Open Experimental Measurements of Sub-6GHz Reconfigurable Intelligent Surfaces. IEEE Internet Comput. 2024, 28, 19–28. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, C.; Xu, J.; Luo, Y.; Zheng, F.C. Deep learning based automatic modulation recognition: Models, datasets, and challenges. Digit. Signal Process. 2022, 129, 103650. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. In Proceedings of the Engineering Applications of Neural Networks: 17th International Conference, EANN 2016, Aberdeen, UK, 2–5 September 2016; pp. 213–226. [Google Scholar]
- O’shea, T.J.; West, N. Radio machine learning dataset generation with gnu radio. In Proceedings of the GNU Radio Conference, Boulder, CO, USA, 12–16 September 2016; Volume 1. [Google Scholar]
- O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 2018, 12, 168–179. [Google Scholar] [CrossRef]
- Gu, J.; Salehi, B.; Roy, D.; Chowdhury, K.R. Multimodality in mmWave MIMO beam selection using deep learning: Datasets and challenges. IEEE Commun. Mag. 2022, 60, 36–41. [Google Scholar] [CrossRef]
- Salehi, B.; Belgiovine, M.; Sanchez, S.G.; Dy, J.; Ioannidis, S.; Chowdhury, K. Machine learning on camera images for fast mmwave beamforming. In Proceedings of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Delhi, India, 10–13 December 2020; pp. 338–346. [Google Scholar]
- Salehi, B.; Gu, J.; Roy, D.; Chowdhury, K. Flash: Federated learning for automated selection of high-band mmwave sectors. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, UK, 2–5 May 2022; pp. 1719–1728. [Google Scholar]
- Sun, R.; Wang, W.; Chen, L.; Wei, G.; Zhang, W. Diagnosis of intelligent reflecting surface in millimeter-wave communication systems. IEEE Trans. Wirel. Commun. 2021, 21, 3921–3934. [Google Scholar] [CrossRef]
- Demir, Ö.T.; Björnson, E. Is channel estimation necessary to select phase-shifts for RIS-assisted massive MIMO? IEEE Trans. Wirel. Commun. 2022, 21, 9537–9552. [Google Scholar] [CrossRef]
- Elbir, A.M.; Papazafeiropoulos, A.; Kourtessis, P.; Chatzinotas, S. Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems. IEEE Wirel. Commun. Lett. 2020, 9, 1447–1451. [Google Scholar] [CrossRef]
- Taha, A.; Alrabeiah, M.; Alkhateeb, A. Enabling large intelligent surfaces with compressive sensing and deep learning. IEEE Access 2021, 9, 44304–44321. [Google Scholar] [CrossRef]
- Khan, S.; Khan, K.S.; Haider, N.; Shin, S.Y. Deep-learning-aided detection for reconfigurable intelligent surfaces. arXiv 2019, arXiv:1910.09136. [Google Scholar]
- Liu, S.; Gao, Z.; Zhang, J.; Di Renzo, M.; Alouini, M.S. Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces. IEEE Trans. Veh. Technol. 2020, 69, 9223–9228. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Zhang, X.; Xiao, H.; Ai, B.; Ng, D.W.K. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks. IEEE Trans. Veh. Technol. 2021, 70, 11083–11088. [Google Scholar] [CrossRef]
- Kundu, N.K.; McKay, M.R. Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions. IEEE Open J. Commun. Soc. 2021, 2, 471–487. [Google Scholar] [CrossRef]
- Dai, L.; Wei, X. Distributed machine learning based downlink channel estimation for RIS assisted wireless communications. IEEE Trans. Commun. 2022, 70, 4900–4909. [Google Scholar] [CrossRef]
- He, J.; Wymeersch, H.; Di Renzo, M.; Juntti, M. Learning to estimate RIS-aided mmWave channels. IEEE Wirel. Commun. Lett. 2022, 11, 841–845. [Google Scholar] [CrossRef]
- Wu, M.; Gao, Z.; Huang, Y.; Xiao, Z.; Ng, D.W.K.; Zhang, Z. Deep learning-based rate-splitting multiple access for reconfigurable intelligent surface-aided tera-hertz massive MIMO. IEEE J. Sel. Areas Commun. 2023, 41, 1431–1451. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Y.C.; Cheng, H.V.; Yu, W. Channel estimation for reconfigurable intelligent surface aided multi-user mmWave MIMO systems. IEEE Trans. Wirel. Commun. 2023, 22, 6853–6869. [Google Scholar] [CrossRef]
- Wang, K. RIS-Codes-Collection: A Complete Collection Contains the Codes for RIS (IRS) Papers. 2022. Available online: https://github.com/ken0225/RIS-Codes-Collection#ris-codes-collection-a-complete-collection-contains-the-codes-for-risirs-papers (accessed on 13 May 2024).
- Di, B.; Zhang, H.; Song, L.; Li, Y.; Han, Z.; Poor, H.V. Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts. IEEE J. Sel. Areas Commun. 2020, 38, 1809–1822. [Google Scholar] [CrossRef]
- Huang, C.; Mo, R.; Yuen, C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning. IEEE J. Sel. Areas Commun. 2020, 38, 1839–1850. [Google Scholar] [CrossRef]
- Taha, A.; Alrabeiah, M.; Alkhateeb, A. Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Özdoğan, Ö.; Björnson, E. Deep learning-based phase reconfiguration for intelligent reflecting surfaces. In Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–4 November 2020; pp. 707–711. [Google Scholar]
- Gao, J.; Zhong, C.; Chen, X.; Lin, H.; Zhang, Z. Unsupervised learning for passive beamforming. IEEE Commun. Lett. 2020, 24, 1052–1056. [Google Scholar] [CrossRef]
- Jiang, T.; Cheng, H.V.; Yu, W. Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation. IEEE J. Sel. Areas Commun. 2021, 39, 1931–1945. [Google Scholar] [CrossRef]
- Jiang, H.; Dai, L.; Hao, M.; MacKenzie, R. End-to-end learning for ris-aided communication systems. IEEE Trans. Veh. Technol. 2022, 71, 6778–6783. [Google Scholar] [CrossRef]
- Peng, B.; Siegismund-Poschmann, F.; Jorswieck, E.A. RISnet: A Dedicated Scalable Neural Network Architecture for Optimization of Reconfigurable Intelligent Surfaces. In Proceedings of the WSA & SCC 2023; 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding, VDE, Braunschweig, Germany, 27 February 2023; pp. 1–6. [Google Scholar]
- Saglam, B.; Gurgunoglu, D.; Kozat, S.S. Deep Reinforcement Learning Based Joint Downlink Beamforming and RIS Configuration in RIS-aided MU-MISO Systems Under Hardware Impairments and Imperfect CSI. arXiv 2022, arXiv:2211.09702. [Google Scholar]
- Wang, W.; Zhang, W. Intelligent reflecting surface configurations for smart radio using deep reinforcement learning. IEEE J. Sel. Areas Commun. 2022, 40, 2335–2346. [Google Scholar] [CrossRef]
- Mei, H.; Yang, K.; Liu, Q.; Wang, K. 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning. IEEE Trans. Veh. Technol. 2022, 71, 3020–3029. [Google Scholar] [CrossRef]
- Peng, H.; Wang, L.C. Energy harvesting reconfigurable intelligent surface for UAV based on robust deep reinforcement learning. IEEE Trans. Wirel. Commun. 2023, 22, 6826–6838. [Google Scholar] [CrossRef]
- Tham, M.L.; Wong, Y.J.; Iqbal, A.; Ramli, N.B.; Zhu, Y.; Dagiuklas, T. Deep Reinforcement Learning for Secrecy Energy-Efficient UAV Communication with Reconfigurable Intelligent Surface. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 26–29 March 2023; pp. 1–6. [Google Scholar]
- Guo, H.; Liang, Y.C.; Chen, J.; Larsson, E.G. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans. Wirel. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef]
- Cao, Y.; Lv, T.; Ni, W. Intelligent reflecting surface aided multi-user mmWave communications for coverage enhancement. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August–3 September 2020; pp. 1–6. [Google Scholar]
- Abeywickrama, S.; Zhang, R.; Wu, Q.; Yuen, C. Intelligent reflecting surface: Practical phase shift model and beamforming optimization. IEEE Trans. Commun. 2020, 68, 5849–5863. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, J.; Zhou, Y.; Shi, Y.; Fu, L.; Chen, W.; Letaief, K.B. Federated learning via intelligent reflecting surface. IEEE Trans. Wirel. Commun. 2021, 21, 808–822. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Zhou, Y.; Shi, Y.; Jiang, C.; Letaief, K.B. Over-the-air computation: Foundations, technologies, and applications. arXiv 2022, arXiv:2210.10524. [Google Scholar]
- Zhao, Y.; Wu, Q.; Chen, W.; Wu, C.; Poor, H.V. Performance-oriented design for intelligent reflecting surface assisted federated learning. IEEE Trans. Commun. 2023, 71, 5228–5243. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, H.; Wang, J.; Chen, Y.; Chen, X.; Wang, Z. Computation–communication resource allocation for federated learning system with intelligent reflecting surfaces. Arab. J. Sci. Eng. 2022, 47, 10203–10209. [Google Scholar] [CrossRef]
- Zhang, T.; Mao, S. Energy-efficient federated learning with intelligent reflecting surface. IEEE Trans. Green Commun. Netw. 2021, 6, 845–858. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, X.; Zhang, Y.J.A. Reconfigurable intelligent surface enabled federated learning: A unified communication-learning design approach. IEEE Trans. Wirel. Commun. 2021, 20, 7595–7609. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Rahman, M.H.; Song, H.K. Demod-CNN: A Robust Deep Learning Approach for Intelligent Reflecting Surface-Assisted Multiuser MIMO Communication. Sensors 2022, 22, 5971. [Google Scholar] [CrossRef]
- Rahman, M.H.; Sejan, M.A.S.; Aziz, M.A.; Kim, D.S.; You, Y.H.; Song, H.K. Deep Convolutional and Recurrent Neural-Network-Based Optimal Decoding for RIS-Assisted MIMO Communication. Mathematics 2023, 11, 3397. [Google Scholar] [CrossRef]
- Basar, E.; Yildirim, I. SimRIS channel simulator for reconfigurable intelligent surface-empowered communication systems. In Proceedings of the 2020 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 18–20 November 2020; pp. 1–6. [Google Scholar]
- Liaskos, C.; Tsioliaridou, A.; Nie, S.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. An interpretable neural network for configuring programmable wireless environments. In Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5. [Google Scholar]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022. [Google Scholar]
- Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2021. [Google Scholar]
- Walters, W.P. Code sharing in the open science era. J. Chem. Inf. Model. 2020, 60, 4417–4420. [Google Scholar] [CrossRef] [PubMed]
- Lerner, J.; Tirole, J. The economics of technology sharing: Open source and beyond. J. Econ. Perspect. 2005, 19, 99–120. [Google Scholar] [CrossRef]
- Bardenet, R.; Brendel, M.; Kégl, B.; Sebag, M. Collaborative hyperparameter tuning. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 199–207. [Google Scholar]
- Pham, Q.V.; Huynh-The, T.; Alazab, M.; Zhao, J.; Hwang, W.J. Sum-rate maximization for UAV-assisted visible light communications using NOMA: Swarm intelligence meets machine learning. IEEE Internet Things J. 2020, 7, 10375–10387. [Google Scholar] [CrossRef]
- Biswas, S.; Vijayakumar, P. AP selection in cell-free massive MIMO system using machine learning algorithm. In Proceedings of the 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 25–27 March 2021; pp. 158–161. [Google Scholar]
- Asad, M.; Moustafa, A.; Ito, T. Federated learning versus classical machine learning: A convergence comparison. arXiv 2021, arXiv:2107.10976. [Google Scholar]
- Chen, C.; Xu, S.; Zhang, J.; Zhang, J. A Distributed Machine Learning-Based Approach for IRS-Enhanced Cell-Free MIMO Networks. arXiv 2023, arXiv:2301.08077. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990. [Google Scholar]
- Wang, Y.; Gao, Z.; Zheng, D.; Chen, S.; Gündüz, D.; Poor, H.V. Transformer-empowered 6G intelligent networks: From massive MIMO processing to semantic communication. IEEE Wirel. Commun. 2022, 30, 127–135. [Google Scholar] [CrossRef]
- Han, X.; Zhiqin, W.; Dexin, L.; Wenqiang, T.; Xiaofeng, L.; Wendong, L.; Shi, J.; Jia, S.; Zhi, Z.; Ning, Y. AI enlightens wireless communication: A transformer backbone for CSI feedback. China Commun. 2024, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Shi, L.; Wang, Z.; Jin, S.; Chen, W.; Poor, H.V. Decision Transformer for Wireless Communications: A New Paradigm of Resource Management. arXiv 2024, arXiv:2404.05199. [Google Scholar]
- Liu, H.; Wei, Z.; Zhang, H.; Li, B.; Zhao, C. Tiny machine learning (tiny-ml) for efficient channel estimation and signal detection. IEEE Trans. Veh. Technol. 2022, 71, 6795–6800. [Google Scholar] [CrossRef]
- Kopparapu, K.; Lin, E.; Breslin, J.G.; Sudharsan, B. Tinyfedtl: Federated transfer learning on ubiquitous tiny iot devices. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; pp. 79–81. [Google Scholar]
- Pham, Q.V.; Nguyen, D.C.; Mirjalili, S.; Hoang, D.T.; Nguyen, D.N.; Pathirana, P.N.; Hwang, W.J. Swarm intelligence for next-generation networks: Recent advances and applications. J. Netw. Comput. Appl. 2021, 191, 103141. [Google Scholar] [CrossRef]
Reference | Type of Datasource | Description | Publicly Available? |
---|---|---|---|
[55] | Synthetic | Vehicle traffic and ray-tracing simulator to generate 5G-based datasets | No |
[56] | Synthetic | Dataset generator tailored to ML algorithms based on the Remcom ray-tracing application | Yes |
[58] | Physical | Dataset of channel measurements for different geometric antenna arrangements and RISs | Yes |
[61] | Physical | Dataset of measurements on RIS in the 6 GHz band and OFDM transceivers | Yes |
Reference | Contributions | Remarks |
---|---|---|
[71] | DL twin CNN-based architecture for the estimation of CSI | The model does not need to be re-trained when the user location is changed up to 4 degrees |
[72] | Combined DL and compressive sensing to estimate the CSI using only the active reflective elements of the RIS | The DL scheme does not need any knowledge of the RIS array geometry, but a large dataset is needed |
[73] | DL approach for the estimation of CSI and symbol detection in RIS wireless systems | The proposed model estimates the CSI and phase angles from the received signals |
[74] | DL-based estimation of channels from UE to RIS which works at different SNR levels and number of multipaths | The model can reach a high NMSE performance with a few elements activated during the training stage |
[75] | Proposal of two DL architectures for CSI estimation exploiting the low-rank sparsity of channels | The proposal can increase its performance when increasing the density of sensing devices |
[76] | Proposed the channel estimation as an image denoising problem using a CNN-based architecture | Numerical results show that the proposed model performance is close when the system has perfect channel knowledge |
[77] | DML-based scheme for CSI estimation where the BS and the users perform training collaboratively | The proposal can achieve higher estimation accuracy when the pilot overhead is reduced to 1/8 |
[78] | Proposed a deep unfolding network for the estimation of the downlink channel of an RIS wireless system | The proposal outperforms the least-squares estimator and has lower complexity using a smaller training overhead |
[79] | DL-based estimation of CSI for RIS-aided and massive-MIMO systems which extracts the correlation features of subcarriers | The proposal outperforms in terms of spectral efficiency with a lower signaling overhead |
Reference | ML Algorithm | Architecture and ML Methods | Database Used | Available Source Code? |
---|---|---|---|---|
[71] | DL | 2 CNNs of 9 layers, dropout, SGD optimizer, minibatch | Synthetic | Yes, MATLAB R2018b |
[72] | DL | Adapted NN with variable number of layers, ReLU activation function | DeepMIMO [56] | Yes, MATLAB R2018b |
[73] | DL | Adapted NN with a variable number of layers, tanh activation function, Adam optimizer | Synthetic | No |
[74] | DL | CNN of 15 convolutional layers, 64 filters of size , ReLU activation function, Adam optimizer | Synthetic | Yes, MATLAB R2018b and Python |
[75] | DL | CNN-based EDSR, MDSR architectures, ReLU activation | Synthetic | Yes, Python |
[76] | DL | CNN-based FFDNet, filters of and conv2D layers, ReLU activation, batch normalization | Synthetic | Yes, Python |
[77] | DL | CNN-based network, 32 filters, ReLU activation | DeepMIMO [56] | Yes |
[78] | DL | NN-based network, ReLU activation, NMSE loss function, ReLU activation | Synthetic | Yes, Python |
[79] | DL | ANN with linear layers, sigmoid activation, Adam optimizer | Synthetic | Yes, Python |
Reference | Contributions | Remarks |
---|---|---|
[84] | DL-based approach where the RIS learns the optimal interaction with the incident signal; only channels at the active elements are given | The proposal can achieve nearly optimal data rates without any knowledge of the RIS array geometry |
[85] | DL-based approach for phase reconfiguration at the RIS that uses the local propagation environment | The model outperforms the classical least-squares estimator with low training overhead |
[86] | Unsupervised DL-based approach for phase-shift prediction of RIS reflecting elements | The model is able to perform shift configuration in real time while mantaining a reasonable rate |
[87] | Optimization of both beamformers at the BS and reflective coefficients at the RIS based on a DL scheme | With a few number of pilots the proposal can learn to maximize a rate or minimize an objective |
[88] | DL-based solution for optimizing the active beamforming from the BS to users and passive beamforming for the RIS | The proposed solution can achieve better BER performance than a conventional RIS system |
[89] | ML approach to maximize the weighted sum-rate designed according to the property of product in RIS-aided systems | The proposal outperforms the block coordinate descent algorithm (BCD) solution |
[83] | Joint design solution with beamforming at the access point and phase vector at RIS elements based on the BCD algorithm | The proposal achieves significant performance gain compared to benchmarks that use 100 RIS elements |
[90] | DRL approach for the joint design of transmit beamforming and phase shifts at the RIS in an MU-MISO environment | The proposal overcomes hardware impairments for RIS-aided wireless systems |
[91] | DRL solution for the real-time control of the phase at the RIS, which is independent of CSI | The proposal outperforms the model-free RIS control without sub-channel CSI |
[92] | DRL approach for the joint design of the phase shift at the RIS and the control of trajectories of UAVs | The proposal improves the energy-efficiency performance of an RIS-assisted UAV system |
[93] | DRL-based solution for the energy harvesting and phase shift control of an RIS-assisted UAV system | The proposal outperforms in terms of trade-off efficiency and practicality |
[94] | DRL approach for the joint optimization of a UAV trajectory and the active/passive beamforming of the RIS | The proposal achieves greater performance in terms of energy savings and sum-rate |
Reference | ML Algorithm | Architecture and ML Methods | Database Used | Available Source Code? |
---|---|---|---|---|
[84] | DL | Perceptron with variable fully connected layers, RELU activation, MSE loss | Deep MIMO [56] | No |
[85] | DL | 2 NNs with fully connected layers, ReLU activation, Adam optimizer | Synthetic | No |
[86] | DL | 5 fully connected layers ANN with variable number of neurons, ReLU activation, Adam optimizer | Synthetic | No |
[87] | DL | DNN to parametrize pilots GNN to capture interactions among users, Adam optimizer, ReLU activation function | Synthetic | Yes, MATLAB R2018b and Python |
[88] | DL | 2 DNN (BS and UE) fully connected networks, ReLU and sigmoid activation functions, cross-entropy loss function, Adam optimizer | Synthetic | Yes, MATLAB R2018b and Python |
[89] | DL | NN-based architecture, ReLU activation, Adam optimizer | Synthetic | Yes, Python |
[83] | RL | DDPG algorithm with both actor and critic networks, tanh activation function | n/a | Yes, Python (reproduction work) |
[90] | RL | SAC algorithm with 3 MLPs, Adam and Xavier optimization, tanh activation function | n/a | Yes, Python |
[91] | RL | Q-learning-based scheme with DQN agent with 4 layers, 128 units, MSE loss function, Adam optimizer | n/a | Yes, Python |
[92] | RL | DQN and DDPG algorithms, 2-layer networks with 30 units, ReLU activation, Adam optimizer | n/a | Yes, Python |
[93] | RL | SD3 algorithm for dual-domain energy harvesting and joint optimization of phase shifts and transmit power | n/a | Yes, Python |
[94] | RL | 2 agents based on TD3 algorithm with 3 networks each, MLP architecture | n/a | Yes, Python |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarra-Hernández, R.F.; Castillo-Soria, F.R.; Gutiérrez, C.A.; García-Barrientos, A.; Vásquez-Toledo, L.A.; Del-Puerto-Flores, J.A. Machine Learning Strategies for Reconfigurable Intelligent Surface-Assisted Communication Systems—A Review. Future Internet 2024, 16, 173. https://doi.org/10.3390/fi16050173
Ibarra-Hernández RF, Castillo-Soria FR, Gutiérrez CA, García-Barrientos A, Vásquez-Toledo LA, Del-Puerto-Flores JA. Machine Learning Strategies for Reconfigurable Intelligent Surface-Assisted Communication Systems—A Review. Future Internet. 2024; 16(5):173. https://doi.org/10.3390/fi16050173
Chicago/Turabian StyleIbarra-Hernández, Roilhi F., Francisco R. Castillo-Soria, Carlos A. Gutiérrez, Abel García-Barrientos, Luis Alberto Vásquez-Toledo, and J. Alberto Del-Puerto-Flores. 2024. "Machine Learning Strategies for Reconfigurable Intelligent Surface-Assisted Communication Systems—A Review" Future Internet 16, no. 5: 173. https://doi.org/10.3390/fi16050173
APA StyleIbarra-Hernández, R. F., Castillo-Soria, F. R., Gutiérrez, C. A., García-Barrientos, A., Vásquez-Toledo, L. A., & Del-Puerto-Flores, J. A. (2024). Machine Learning Strategies for Reconfigurable Intelligent Surface-Assisted Communication Systems—A Review. Future Internet, 16(5), 173. https://doi.org/10.3390/fi16050173