Decentralizing Private Blockchain-IoT Network with OLSR
Abstract
:1. Introduction
2. Related Work
3. Background
3.1. Ad Hoc Network and OLSR
- HELLO_INTERVAL or determines the time interval of HELLO message emission for each node. This parameter is included in a HELLO message. is set to 2 s by default.
- REFRESH_INTERVAL: Each known neighbor node has to be mentioned at least once during a REFRESH_INTERVAL to keep track of the latest connectivity changes. is equal to by default.
- NEIGHB_HOLD_TIME or specifies until when the information provided in the latest HELLO message is considered to be valid. The by default.
- Validity Time determines the time when the messages (including HELLO messages) will expire from reception.
3.2. Ethereum
4. Decentralization of IoT Blockchain System
4.1. Motivation
4.2. Decentralizing Underlying Blockchain Network
5. Evaluation
5.1. Experiment Setup
5.2. Recovery Time
5.3. Latency Performance
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Technical Report; Manubot: Seocho-gu, Seoul, Korea, 2019. [Google Scholar]
- Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32. [Google Scholar]
- Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-less medical data sharing among cloud service providers via blockchain. IEEE Access 2017, 5, 14757–14767. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Zhang, Y. A blockchain-based framework for data sharing with fine-grained access control in decentralized storage systems. IEEE Access 2018, 6, 38437–38450. [Google Scholar] [CrossRef]
- Gao, F.; Zhu, L.; Shen, M.; Sharif, K.; Wan, Z.; Ren, K. A blockchain-based privacy-preserving payment mechanism for vehicle-to-grid networks. IEEE Netw. 2018, 32, 184–192. [Google Scholar] [CrossRef]
- Kshetri, N. Can blockchain strengthen the internet of things? IT Prof. 2017, 19, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Lo, S.K.; Liu, Y.; Chia, S.Y.; Xu, X.; Lu, Q.; Zhu, L.; Ning, H. Analysis of blockchain solutions for IoT: A systematic literature review. IEEE Access 2019, 7, 58822–58835. [Google Scholar] [CrossRef]
- Mingxiao, D.; Xiaofeng, M.; Zhe, Z.; Xiangwei, W.; Qijun, C. A review on consensus algorithm of blockchain. In Proceedings of the International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2567–2572. [Google Scholar]
- Xu, Q.; He, Z.; Li, Z.; Xiao, M. Building an ethereum-based decentralized smart home system. In Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2017; pp. 1004–1009. [Google Scholar]
- Wright, K.L.; Martinez, M.; Chadha, U.; Krishnamachari, B. SmartEdge: A smart contract for edge computing. In Proceedings of the International Conference on Internet of Things (iThings), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1685–1690. [Google Scholar]
- Chen, X.; Nguyen, K.; Sekiya, H. Characterizing Latency Performance in Private Blockchain Network. In International Conference on Mobile Networks and Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 238–255. [Google Scholar]
- Alrubei, S.M.; Ball, E.A.; Rigelsford, J.M.; Willis, C.A. Latency and Performance Analyses of Real-World Wireless IoT-Blockchain Application. IEEE Sens. J. 2020, 20, 7372–7383. [Google Scholar] [CrossRef]
- Ozyilmaz, K.R.; Yurdakul, A. Designing a Blockchain-Based IoT With Ethereum, Swarm, and LoRa: The Software Solution to Create High Availability With Minimal Security Risks. IEEE Consum. Electron. Mag. 2019, 8, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Modarresi, A.; Sterbenz, J.P. Towards a model and graph representation for smart homes in the IoT. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–5. [Google Scholar]
- Anastasi, G.; Borgia, E.; Conti, M.; Gregori, E. IEEE 802.11 b ad hoc networks: Performance measurements. Clust. Comput. 2005, 8, 135–145. [Google Scholar] [CrossRef]
- Clausen, T.; Jacquet, P. RFC3626: Optimized Link State Routing Protocol (OLSR). 2003. Available online: https://datatracker.ietf.org/doc/html/rfc3626 (accessed on 23 June 2021).
- Khoury, D.; Kfoury, E.F.; Kassem, A.; Harb, H. Decentralized voting platform based on ethereum blockchain. In Proceedings of the International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, Lebanon, 14–16 November 2018; pp. 1–6. [Google Scholar]
- Jiang, T.; Fang, H.; Wang, H. Blockchain-based internet of vehicles: Distributed network architecture and performance analysis. IEEE Internet Things J. 2018, 6, 4640–4649. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zheng, S.; Li, Y. Electric vehicle power trading mechanism based on blockchain and smart contract in V2G network. IEEE Access 2019, 7, 160546–160558. [Google Scholar] [CrossRef]
- Hasselgren, A.; Kralevska, K.; Gligoroski, D.; Pedersen, S.A.; Faxvaag, A. Blockchain in healthcare and health sciences—A scoping review. Int. J. Med Inform. 2020, 134, 104040. [Google Scholar] [CrossRef]
- Razdan, S.; Sharma, S. Internet of Medical Things (IoMT): Overview, Emerging Technologies, and Case Studies. IETE Tech. Rev. 2021, 1–14. [Google Scholar] [CrossRef]
- Khatoon, A. A blockchain-based smart contract system for healthcare management. Electronics 2020, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Abdellatif, A.A.; Al-Marridi, A.Z.; Mohamed, A.; Erbad, A.; Chiasserini, C.F.; Refaey, A. ssHealth: Toward secure, blockchain-enabled healthcare systems. IEEE Netw. 2020, 34, 312–319. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. Blockchain for IoT security and privacy: The case study of a smart home. In Proceedings of the International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 618–623. [Google Scholar]
- Derr, K.; Manic, M. Wireless sensor network configuration—Part I: Mesh simplification for centralized algorithms. IEEE Trans. Ind. Inform. 2013, 9, 1717–1727. [Google Scholar] [CrossRef]
- Derr, K.; Manic, M. Wireless sensor network configuration—Part II: Adaptive coverage for decentralized algorithms. IEEE Trans. Ind. Inform. 2013, 9, 1728–1738. [Google Scholar] [CrossRef]
- Leiding, B.; Memarmoshrefi, P.; Hogrefe, D. Self-managed and blockchain-based vehicular ad-hoc networks. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; pp. 137–140. [Google Scholar]
- Li, X.; Wang, Y.; Vijayakumar, P.; He, D.; Kumar, N.; Ma, J. Blockchain-based mutual-healing group key distribution scheme in unmanned aerial vehicles ad-hoc network. IEEE Trans. Veh. Technol. 2019, 68, 11309–11322. [Google Scholar] [CrossRef]
- Ramezan, G.; Leung, C. A blockchain-based contractual routing protocol for the internet of things using smart contracts. Wirel. Commun. Mob. Comput. 2018, 2018, 4029591. [Google Scholar] [CrossRef]
- Kadadha, M.; Otrok, H. A blockchain-enabled relay selection for QoS-OLSR in urban VANET: A Stackelberg game model. Ad Hoc Networks 2021, 117, 102502. [Google Scholar] [CrossRef]
- Lwin, M.T.; Ko, Y.B.; Kim, D. When Blockchain Takes Care of the OLSR Network. In Proceedings of the International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–2. [Google Scholar]
- Lwin, M.T.; Yim, J.; Ko, Y.B. Blockchain-based lightweight trust management in mobile ad-hoc networks. Sensors 2020, 20, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laube, A.; Martin, S.; Al Agha, K. A solution to the split & merge problem for blockchain-based applications in ad hoc networks. In Proceedings of the 2019 8th International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN), Paris, France, 26–28 November 2019; pp. 1–6. [Google Scholar]
- Crow, B.P.; Widjaja, I.; Kim, J.G.; Sakai, P.T. IEEE 802.11 wireless local area networks. IEEE Commun. Mag. 1997, 35, 116–126. [Google Scholar] [CrossRef]
- Nguyen, D.; Minet, P. Analysis of MPR Selection in the OLSR Protocol. In Proceedings of the International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21–23 May 2007; Volume 2, pp. 887–892. [Google Scholar]
- Wang, T.; Zhao, C.; Yang, Q.; Zhang, S.; Liew, S.C. Ethna: Analyzing the Underlying Peer-to-Peer Network of Ethereum Blockchain. IEEE Trans. Netw. Sci. Eng. 2021. [Google Scholar] [CrossRef]
- Schäffer, M.; Di Angelo, M.; Salzer, G. Performance and scalability of private Ethereum blockchains. In International Conference on Business Process Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–118. [Google Scholar]
- Chen, X.; Nguyen, K.; Sekiya, H. Investigating Dynamic Mining Time of Private Ethereum Blockchain on IoT Devices. In Proceedings of the IEICE General Conference, Online, 9–12 March 2021. [Google Scholar]
- Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study. IEEE Internet Things J. 2018, 5, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Nguyen, K.; Sekiya, H. An experimental study on performance of private blockchain in IoT applications. Peer-to-Peer Netw. Appl. 2021, 1–17. [Google Scholar] [CrossRef]
Topics | Method | Feature | References | |
---|---|---|---|---|
General blockchain applications | Decentralized voting | Implementation on Ethereum | Transparent and immutable voting | [17] |
Internet of Vehicles | Simulation | Transparent storage | [18] | |
Simulation | Power trading on blockchain | [19] | ||
Distributed healthcare | Implementation on Ethereum | Distributed data sharing | [22] | |
Simulation | Blockchain integrate with edge computing | [23] | ||
Blockchain-IoT applications | Smart home | Simulation | Decentralized large-scale smart home | [24] |
Implementation on Ethereum | Environment monitor with RPi3 | [9] | ||
Flood monitoring | Implementation on Ethereum | Blockchain on 3G and Wi-Fi networks | [12] | |
Blockchain enhanced ad hoc network | Vehicle ad hoc network | Simulation | Decentralized IoV with blockchain | [27] |
Simulation | Blockchain manage vehicles group keys | [28] | ||
Simulation | Blockchain-based reputation verification | [30] | ||
Routing protocol | Simulation | Blockchain-based routing protocol | [29] | |
Mesh network | Simulation | Centralized and distributed sensor networks | [25,26] | |
Ad hoc improved blockchain network | Sensor networks | Simulation | Blockchain-base trust management | [31,32] |
Blockchain over ad hoc network | Simulation | Analysis of split and merge problems | [33] | |
Implementation on Ethereum | Recovery from node failure with OLSR | This work |
Parameter | Definition | Explanation |
---|---|---|
HELLO_INTERVAL | ||
REFRESH_INTERVAL | equal to | |
NEIGHB_HOLD_TIME | three times of | |
Validity time | ||
L_SYM_time | Timer for symmetric links | equal to |
L_ASYM_time | Timer for asymmetric links | equal to |
L_LOST_LINK_time | Timer for lost links | equal to |
CPU | Quad core [email protected] GHz |
RAM | 4 GB |
Wireless chip | BCM4345/6 |
OS | Ubuntu Mate 20.04 LTS |
PM sensor | Nova PM Sensor SDS011 |
Ethereum | Geth 1.9.25 |
OLSR | olsrd-0.9.0.3 |
Ping (ms) | Lost Rate (%) | Throughput (Mbit/s) | |
---|---|---|---|
Link 1 | 1.991 | 0.009 | 22.4 |
Link 2 | 2.165 | 0.01 | 21.8 |
Link 3 | 10.643 | 1.76 | 2.49 |
Link 4 | 9.975 | 1.82 | 2.13 |
Path 1 | 13.599 | 1.79 | 2.09 |
Path 2 | 13.370 | 1.85 | 1.93 |
Path 2 in infrastructure mode | 11.834 | 0.93 | 1.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Tian, S.; Nguyen, K.; Sekiya, H. Decentralizing Private Blockchain-IoT Network with OLSR. Future Internet 2021, 13, 168. https://doi.org/10.3390/fi13070168
Chen X, Tian S, Nguyen K, Sekiya H. Decentralizing Private Blockchain-IoT Network with OLSR. Future Internet. 2021; 13(7):168. https://doi.org/10.3390/fi13070168
Chicago/Turabian StyleChen, Xuan, Shujuan Tian, Kien Nguyen, and Hiroo Sekiya. 2021. "Decentralizing Private Blockchain-IoT Network with OLSR" Future Internet 13, no. 7: 168. https://doi.org/10.3390/fi13070168
APA StyleChen, X., Tian, S., Nguyen, K., & Sekiya, H. (2021). Decentralizing Private Blockchain-IoT Network with OLSR. Future Internet, 13(7), 168. https://doi.org/10.3390/fi13070168