Predictive Maintenance (PdM) Structure Using Internet of Things (IoT) for Mechanical Equipment Used into Hospitals in Rwanda
Abstract
:1. Introduction
- proposes the Predictive Maintenance (PdM) Structure using Internet of things (IoT) for mechanical equipment used into Rwandan hospitals; and,
- describes the whole process, from real data collector development, real data gathering, up to the fault detection sights from equipment’s components before they fail.
2. Predictive Maintenance Overview
3. Internet of Things in Predictive Maintenance
- estimate when the asset is probable to fail;
- classify the equipment’s part to cause the failure; and,
- provides suggestions on the most effective period of time to perform preventive actions.
- rake early and necessary corrective measures;
- intervene in effective manner, minimize unplanned outage, avoid unnecessary and improper works, and minimize premature replacement; and thus,
- save time and resources, reduce valuable figure of maintenance costs, increase reliability and productivity to businesses’ turnover, and extends the lifetime of aging assets.
4. PdM Structure Development Methodology
- highlighting the equipment in query and conducting its operational assessment;
- collecting its data from maintenance history to discover and describe what type of faults mostly make it traumatized, their impact to the system, and how they were identified; and,
- basing on acquired information, highlight the critical components and their physical parameters to be monitored as well as the needed materials.
4.1. Get Data
4.1.1. Equipment and Critical Parts Selection
4.1.2. Requirement for Data Collector Device Development
4.2. Data Visualization and Classification
4.3. Predictive Analytics
5. Proposed Predictive Maintenance (PdM) Structure Using Internet of Things (IoT)
5.1. Generating Data for Predictive Model Construction
5.1.1. Sensors
5.1.2. Microcontroller
- Ports for sensors and communication module are initialized and configured.
- Read voltage sensors‘ data corresponding to the thermistor resistance.
- Convert voltage into the temperature.
- Try to connect to the GSM network
- If the microcontroller is connected to the GSM network, the data are sent to a remote database. Otherwise, the microcontroller keeps trying to connect to the GSM network
5.1.3. Communication Module
5.1.4. Database
5.2. Proposed PdM Structure Using IoT
- Data acquisition, processing, and analytics.
- Results transmission.
- Application.
5.2.1. Data Acquisition, Processing and Analytics
- Ports for sensors and communication module are initialized and configured.
- Read the voltage corresponding to received data from sensors.
- Save received data locally.
- Saved data are fed to a predictive model for analysis and prediction.
- Try to connect to GSM network.
- If microcontroller is connected to GSM network, then the data are sent to remote the database. Otherwise, the microcontroller keeps trying connecting to GSM network.
- If the result shows an equipment’s component critical condition, then a SMS alert is sent to the user.
5.2.2. Results Transmission
5.3. The Application
6. Predictive Model Experimental Results
6.1. Data Preprocessing
6.2. Modelling Results
6.3. Discussion and Future Work
- Our models’ accuracy are 90% and 96% on predicting the component temperature.
- Our models do not overfit and the loss is less. We naively conclude that their prediction accuracy are good.
- We recommend LSTM model to be used as predictive model in proposed structure.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rusatira, J.C.; Tomaszewski, B.; Dusabejambo, V.; Ndayiragije, V.; Gonsalves, S.; Sawant, A.; Mumararungu, A.; Gasana, G.; Amendezo, E.; Haake, A.; et al. Enabling Access to Medical and Health Education in Rwanda Using Mobile Technology: Needs Assessment for the Development of Mobile Medical Educator Apps. JMIR Med. Educ. 2016, 2, e7. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Farhat, J.; Shamayleh, A.; Al-Nashash, H. Medical equipment efficient failure management in IoT environment. In Proceedings of the 2018 Advances in Science and Engineering Technology International Conferences (ASET), Abu Dhabi, UAE, 6 February–5 April 2018; pp. 1–5. [Google Scholar]
- Çoban, S.; Gökalp, M.O.; Gökalp, E.; Eren, P.E.; Koçyiğit, A. Predictive Maintenance in Healthcare Services with Big Data Technologies. In Proceedings of the 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA), Paris, France, 20–22 November 2018; pp. 93–98. [Google Scholar]
- Patil, R.B.; Patil, M.A.; Ravi, V.; Naik, S. Predictive modeling for corrective maintenance of imaging devices from machine logs. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 1676–1679. [Google Scholar]
- Wang, B.; Rui, T.; Balar, S. An estimate of patient incidents caused by medical equipment maintenance omissions. Biomed. Instrum. Technol. 2013, 47, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Iadanza, E.; Gonnelli, V.; Satta, F.; Gherardelli, M. Evidence-based medical equipment management: A convenient implementation. Med. Biol. Eng. Comput. 2019, 57, 2215–2230. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mobley, R.K. Impact of maintenance. In Maintenance Fundamentals; Linacre House: Oxford, UK, 2004; pp. 1–10. [Google Scholar]
- Ulloa, M.I.; Craamer, P.; Esposito, S. Business Models: Proactive Monitoring and Maintenance. In The MANTIS Book: Cyber Physical System Based Proactive Collaborative Maintenance; Albano, M., Jantunen, E., Papa, G., Zurutuza, U., Eds.; River Publishers: Alsbjergvej, Denmark, 2019; pp. 497–554. [Google Scholar]
- Rashmi Shetty, B. Predictive Maintenance in the IoT Era. In Prognostics and Health Management of Electronics; Michael Pecht, G., Myeongsu, K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 589–612. [Google Scholar]
- Rødseth, H.; Schjølberg, P.; Marhaug, A. Deep digital maintenance. Adv. Manuf. 2017, 5, 299–310. [Google Scholar] [CrossRef][Green Version]
- Li, Z.; Wang, K.; He, Y. Industry 4.0-Potentials for Predictive Maintenance. Adv. Econ. Bus. Manag. Res. 2016, 42–46. [Google Scholar] [CrossRef][Green Version]
- Franciosi, C.; Iung, B.; Miranda, S.; Riemma, S. Maintenance for Sustainability in the Industry 4.0 context: A Scoping Literature Review. IFAC Pap. OnLine 2018, 51, 903–908. [Google Scholar] [CrossRef]
- Dhillon, S.B. Introduction to Engineering Maintenance. In Maintainability, Maintenance, and Reliability for Engineers; CRC Press: Boca Raton, FL, USA, 2006; pp. 135–183. [Google Scholar]
- Balogh, Z.; Gatial, E.; Barbosa, J.; Leitão, P.; Matejka, T. Reference Architecture for a Collaborative Predictive Platform for Smart Maintenance in Manufacturing. In Proceedings of the 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), Las Palmas de Gran Canaria, Spain, 21–23 June 2018; pp. 299–304. [Google Scholar]
- Ren, S.; Zhao, X. A predictive maintenance method for products based on big data analysis. Meita 2015, 71, 385–390. [Google Scholar]
- Jasiulewicz-Kaczmarek, M.; Gola, A. Maintenance 4.0 Technologies for Sustainable Manufacturing—An Overview. IFAC Pap. OnLine 2019, 52, 9–96. [Google Scholar] [CrossRef]
- Kagermann, H.; Wahlster, W.; Helbig, J. The vision: Industrie 4.0 as part of a smart, networked world. In Securing the Future of German Manufacturing Industry: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0; Hellinger, A., Stumpf, V., Eds.; Acatech: Frankfurt, Germany, 2013; pp. 18–26. [Google Scholar]
- Brik, B.; Bettayeb, B.; Sahnoun, M.; Duval, F. Towards predicting system disruption in industry 4.0: Machine learning-based approach. Procedia Comput. Sci. 2019, 151, 667–674. [Google Scholar] [CrossRef]
- Sakib, N.; Wuest, T. Challenges and Opportunities of Condition-based Predictive Maintenance: A Review. Procedia CIRP 2018, 78, 267–272. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Krapež, A. A Complex View of Industry 4.0. 2016, Volume 6. Available online: https://journals.sagepub.com/doi/10.1177/2158244016653987 (accessed on 26 November 2020).
- Wee, D.; Kelly, R.; Cattel, J.; Breunig, M. Industry 4.0—How to Navigate Digitization of the Manufacturing Sector; McKinsey Co.: New York, NY, USA, 2015. [Google Scholar]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Saf. Environ. Prot. 2018, 117, 408–425. [Google Scholar] [CrossRef]
- Bahrin, M.A.K.; Othman, M.F.; Azli, N.H.N.; Talib, M.F. Industry 4.0: A review on industrial automation and robotic. J. Teknol. 2016, 78. [Google Scholar] [CrossRef][Green Version]
- Lu, Y.; Cecil, J. An Internet of Things (IoT)-based collaborative framework for advanced manufacturing. Int. J. Adv. Manuf. Technol. 2016, 84, 1141–1152. [Google Scholar] [CrossRef]
- Riahi, S.A.; Natalizio, E.; Challal, Y.; Chtourou, Z. A roadmap for security challenges in the Internet of Things. Digit. Commun. Netw. 2018, 4, 118–137. [Google Scholar] [CrossRef]
- Chae, B.K. The evolution of the Internet of Things (IoT): A computational text analysis. Telecommun. Policy 2019, 43, 101848. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef][Green Version]
- Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar]
- Ravidas, S.; Lekidis, A.; Paci, F.; Zannone, N. Access control in Internet-of-Things: A survey. J. Netw. Comput. Appl. 2019, 144, 79–101. [Google Scholar] [CrossRef]
- Ray, P.P. A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 291–319. [Google Scholar]
- Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Internet of Things applications: A systematic review. Comput. Netw. 2019, 148, 241–261. [Google Scholar] [CrossRef]
- Cachada, A.; Barbosa, J.; Leitão, P.; Alves, A.; Alves, L.; Teixeira, J.; Teixeira, C. Using internet of things technologies for an efficient data collection in maintenance 4.0. In Proceedings of the 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, 6–9 May 2019; pp. 113–118. [Google Scholar]
- Pang, C.K.; Zhou, J.; Yan, H. PDF and breakdown time prediction for unobservable wear using enhanced particle filters in precognitive maintenance. IEEE Trans. Instrum. Meas. 2015, 64, 649–659. [Google Scholar] [CrossRef]
- Dachyar, M.; Zagloel, T.Y.M.; Saragih, L.R. Knowledge growth and development: Internet of things (IoT) research, 2006–2018. Heliyon 2019, 5, e02264. [Google Scholar] [CrossRef][Green Version]
- Ranjbar, E.; Sedehi, R.G.; Rashidi, M.; Suratgar, A.A. Design of an IoT-Based System for Smart Maintenance of Medical Equipment. In Proceedings of the 2019 3rd International Conference on Internet of Things and Applications (IoT), Isfahan, Iran, 17–18 April 2019; pp. 1–12. [Google Scholar]
- Shamayleh, A.; Awad, M.; Farhat, J. IoT Based Predictive Maintenance Management of Medical Equipment. J. Med. Syst. 2020, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Maktoubian, J.; Ansari, K. An IoT architecture for preventive maintenance of medical devices in healthcare organizations. Health Technol. 2019, 9, 233–243. [Google Scholar] [CrossRef]
- Attia, A. Analysis of failure in power cables for preventing power outage in Alexandria electricity distribution company in Egypt. CIRED Open Access Proc. J. 2017, 2017, 20–24. [Google Scholar] [CrossRef][Green Version]
- Bagheri, M.; Zollanvari, A.; Nezhivenko, S. Transformer Fault Condition Prognosis Using Vibration Signals over Cloud Environment. IEEE Access 2018, 6, 9862–9874. [Google Scholar] [CrossRef]
- Ballal, M.S.; Jaiswal, G.C.; Tutkane, D.R.; Venikar, P.A.; Mishra, M.K.; Suryawanshi, H.M. Online condition monitoring system for substation and service transformers. IET Electr. Power Appl. 2017, 11, 1187–1195. [Google Scholar] [CrossRef]
- Yildirim, M.; Gebraeel, N.Z.; Sun, X.A. Integrated Predictive Analytics and Optimization for Opportunistic Maintenance and Operations in Wind Farms. IEEE Trans. Power Syst. 2017, 32, 4319–4328. [Google Scholar] [CrossRef]
- Fu, C.; Ye, L.; Liu, Y.; Yu, R.; Iung, B.; Cheng, Y.; Zeng, Y. Predictive maintenance in intelligent-control-maintenance-management system for hydroelectric generating unit. IEEE Trans. Energy Convers. 2004, 19, 179–186. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Fernandez, M.A.; Villan, A.F.; Carus, J.L. Temperature monitoring for electrical substations using infrared thermography: Architecture for industrial internet of things. IEEE Trans. Ind. Inform. 2018, 14, 5667–5677. [Google Scholar] [CrossRef]
- Que, Z.; Xu, Z. A Data-Driven Health Prognostics Approach for Steam Turbines Based on Xgboost and DTW. IEEE Access 2019, 7, 93131–93138. [Google Scholar] [CrossRef]
- Lin, C.; Hsieh, Y.; Cheng, F.; Huang, H.; Adnan, M. Time Series Prediction Algorithm for Intelligent Predictive Maintenance. IEEE Robot. Autom. Lett. 2019, 4, 2807–2814. [Google Scholar] [CrossRef]
- Gutschi, C.; Furian, N.; Suschnigg, J.; Neubacher, D.; Voessner, S.T. The title of the cited article. Procedia CIRP 2019, 79, 528–533. [Google Scholar] [CrossRef]
- Hsieh, Y.; Cheng, F.; Huang, H.; Wang, C.; Wang, S.; Yang, H. VM-Based Baseline Predictive Maintenance Scheme. IEEE Trans. Semicond. Manuf. 2019, 26, 132–144. [Google Scholar] [CrossRef]
- Huang, M.; Liu, Z.; Tao, Y. Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion. Simul. Model. Pract. 2020, 102, 101981. [Google Scholar] [CrossRef]
- Jin, X.; Que, Z.; Sun, Y.; Guo, Y.; Qiao, W. A Data-Driven Approach for Bearing Fault Prognostics. IEEE Trans. Ind. Appl. 2019, 55, 3394–3401. [Google Scholar] [CrossRef]
- Lamoureux, B.; Massé, J.; Mechbal, N. An approach to the health monitoring of the fuel system of a turbofan. In Proceedings of the 2012 IEEE Conference on Prognostics and Health Management, Denver, CO, USA, 18–21 June 2012; pp. 1–6. [Google Scholar]
- Shyamala, D.; Swathi, D.; Prasanna, J.L.; Ajitha, A. IoT platform for condition monitoring of industrial motors. In Proceedings of the 2017 2nd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 19–20 October 2017; pp. 260–265. [Google Scholar]
- Yaseen, M.; Swathi, D.; Kumar, T.A. IoT based condition monitoring of generators and predictive maintenance. In Proceedings of the 2017 2nd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 19–20 October 2017; pp. 725–729. [Google Scholar]
- Bayoumi, A.; McCaslin, R. Internet of Things—A Predictive Maintenance Tool for General Machinery, Petrochemicals and Water Treatment. In Advanced Technologies for Sustainable Systems; Lecture Notes in Networks and Systems; Bahei-El-Din, Y., Hassan, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 137–146. [Google Scholar]
- Perdon, K.; Scarpellini, M.; Magoni, S.; Cavalli, L. Modular online monitoring system to allow condition-based maintenance for medium voltage switchgear. JCIRED Open Access Proc. J. 2017, 2017, 346–349. [Google Scholar] [CrossRef][Green Version]
- Zhang, Z.; Wang, Y.; Wang, K. Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks. Int. J. Adv. Manuf. Technol. 2013, 68, 763–773. [Google Scholar] [CrossRef]
- Cachada, A.; Barbosa, J.; Leitño, P.; Gcraldcs, C.A.; Deusdado, L.; Costa, J.; Teixeira, C.; Teixeira, J.; Moreira, A.H.J.; Moreira, P.M. Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; pp. 139–146. [Google Scholar]
- Civerchia, F.; Bocchino, S.; Salvadori, C.; Rossi, E.; Maggiani, L.; Petracca, M. Industrial Internet of Things monitoring solution for advanced predictive maintenance applications. J. Ind. Inf. Integr. 2017, 7, 4–12. [Google Scholar] [CrossRef]
- Adeyeri, M.K.; Mpofu, K.; Kareem, B. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: A case study. J. Ind. Eng. Int. 2016, 12, 93–109. [Google Scholar] [CrossRef]
- Goundar, S.S.; Pillai, M.R.; Mamun, K.A.; Islam, F.R.; Deo, R. Real time condition monitoring system for industrial motors. In Proceedings of the 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 2–4 December 2015; pp. 1–9. [Google Scholar]
- Angel, L.; Viola, J.; Vega, M.; Restrepo, R. Sterilization process stages estimation for an autoclave using logistic regression models. In Proceedings of the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia, 31 August–2 September 2016; pp. 1–5. [Google Scholar]
- Badera, P.; Jain, S.K.; Parakh, A.; Sharma, T. Condition monitoring of pharmaceutical autoclave germs removal using Artificial Neural Network. In Proceedings of the 2016 11th International Conference on Industrial and Information Systems (ICIIS), Roorkee, India, 3–4 December 2016; pp. 683–687. [Google Scholar]
- Bill, W.E. Forsthoffe, Pump types and applications. In Forsthoffer’s Rotating Equipment Handbooks Volume 2: Pumps; Elsevier Science: Washington, DC, USA, 2005; pp. 7–27. [Google Scholar]
- Lawrence Berkeley National Laboratory. Pumping System Basics and Performance improvement opportunity roadmap. In Improving Pumping System Performance; U.S. Dep. Energy: Washington, DC, USA, 2006; pp. 3–10. [Google Scholar]
- Jin, X.; Zhao, M.; Chow, T.W.S.; Pecht, M. Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans. Ind. Electron. 2014, 61, 2441–2451. [Google Scholar] [CrossRef]
- Jin, X.; Fan, J.; Chow, T.W.S. Fault Detection for Rolling-Element Bearings Using Multivariate Statistical Process Control Methods. IEEE Trans. Instrum. Meas. 2018, 68, 3128–3136. [Google Scholar] [CrossRef]
- Jung, D.; Zhang, Z.; Winslett, M. Vibration analysis for iot enabled predictive maintenance. In Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; pp. 1271–1282. [Google Scholar]
- Fu, S.; Zhang, Y.; Song, H. Development of the remote monitoring and warning system for operation condition of the main drainage pump in mine. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–10 August 2011; pp. 2408–2412. [Google Scholar]
- Alabied, S.; Hamomd, O.; Daraz, A.; Gu, F.; Ball, A.D. Fault diagnosis of centrifugal pumps based on the intrinsic time-scale decomposition of motor current signals. In Proceedings of the 2017 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 1–6. [Google Scholar]
- Kiliç, R.; Kozan, R.; Karayel, D.; Özkan, S.S. Application of Predictive Maintenance System in Drinking Water Pumping Stations. Acta Phys. Pol. A 2017, 132, 1016–1021. [Google Scholar] [CrossRef]
- Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges. In Proceedings of the 2012 10th International Conference on Frontiers of Information Technology, Islamabad, India, 17–19 December 2012; pp. 257–260. [Google Scholar]
- Jung, J.; Lee, S.B.; Lim, C.; Cho, C.; Kim, K. Electrical Monitoring of Mechanical Looseness for Induction Motors With Sleeve Bearings. IEEE Trans. Energy Convers. 2016, 31, 1377–1386. [Google Scholar] [CrossRef]
- Khademi, A.; Raji, F.; Sadeghi, M. IoT Enabled Vibration Monitoring Toward Smart Maintenance. In Proceedings of the 2019 3rd International Conference on Internet of Things and Applications (IoT), Isfahan, Iran, 17–18 April 2019; pp. 1–6. [Google Scholar]
- Liulys, K. Machine Learning Application in Predictive Maintenance. In Proceedings of the 2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 25 April 2019; p. 14. [Google Scholar]
- Zhang, W.; Yang, D.; Wang, H. Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. IEEE Syst. J. 2019, 13, 2213–2227. [Google Scholar] [CrossRef]
- Susto, G.A.; Schirru, A.; Pampuri, S.; McLoone, S.; Beghi, A. Machine learning for predictive maintenance: A multiple classifier approach. IEEE Trans. Ind. Inform. 2015, 11, 812–820. [Google Scholar] [CrossRef][Green Version]
- March, S.T.; Scudder, G.D. Predictive maintenance: Strategic use of IT in manufacturing organizations. Inf. Syst. Front. 2019, 21, 327–341. [Google Scholar] [CrossRef]
- Zoll, M.; Jäck, D.; Vogt, M.W. Evaluation of Predictive-Maintenance-as-a-Service Business Models in the Internet of Things. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; pp. 1–9. [Google Scholar]
- Allcock, A. Manufacturing trends. Machinery 2008, 166, 76. [Google Scholar]
- Keith, R. Mobley, Benefits of predictive maintenance. In An Introduction to Predictive Maintenance; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 60–73. [Google Scholar]
- Microsoft, 2019 Manufacturing Trends Report. 2018. Available online: https://info.microsoft.com/rs/157-GQE-382/images/EN-US-CNTNT-Report-2019-Manufacturing-Trends.pdf (accessed on 10 October 2020).
- Para, J.; Del Ser, J.; Nebro, A.J.; Zurutuza, U.; Herrera, F. Analyze, Sense, Preprocess, Predict, Implement, and Deploy (ASPPID): An incremental methodology based on data analytics for cost-efficiently monitoring the industry 4.0. Eng. Appl. Artif. Intell. 2019, 82, 30–43. [Google Scholar] [CrossRef]
- Anthony Nash, A.; Robert Dalziel, G.; Ross Fitzgerald, J. Genaral Principles. In Mims’ Pathogenesis of Infectious Disease, 6th ed.; Academic Press: London, UK, 2015; pp. 1–7. [Google Scholar]
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infect. Dis. Clin. N. Am. 2016, 30, 609–637. [Google Scholar] [CrossRef]
- American National Standard. Design considerations. In ANSI/AAMI ST79:2017 Comprehensive Guide to Steam Sterilization and Sterility Assurance in Health Care Facilities; Association for the Advancement of Medical Instrumentation (AAMI): Arlington, VA, USA, 2017; pp. 12–24. [Google Scholar]
- Gonzalez-Palacio, M.; Moncada, S.V.; Luna-delRisco, M.; Gonzalez-Palacio, L.; Montealegre, J.J.Q.; Orozco, C.A.A.; Diaz-Forero, I.; Velasquez, J.P.; Marin, S.A. Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality. In Proceedings of the 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres, Spain, 13–16 June 2018; pp. 1–6. [Google Scholar]
- Iacono, F.; Ferretti, S.; Mezzadra, A.; Magni, L.; Toffanin, C. Industry 4.0: Mathematical model for monitoring sterilization processes. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 610–615. [Google Scholar]
- Thermistor, A. Make an Arduino Temperature Sensor: Thermistor Tutorial. 2018. Available online: https://www.circuitbasics.com/arduino-thermistor-temperature-sensor-tutorial/ (accessed on 10 October 2020).
- TDK. NTC Thermistors: General Technical Information. 2018. Available online: https://www.tdk-electronics.tdk.com/download/531116/19643b7ea798d7c4670141a88cd993f9/pdf-general-technical-information.pdf (accessed on 10 October 2020).
- Wavelength Electronics. Thermistor Basics. 2013. Available online: https://www.teamwavelength.com/thermistor-basics/ (accessed on 10 October 2020).
- Cheng, Y.; Li, S. Fuzzy Time Series Forecasting With a Probabilistic Smoothing Hidden Markov Model. IEEE Trans. Fuzzy Syst. 2012, 20, 291–304. [Google Scholar] [CrossRef]
- Gintaras, S.H.; Puskorius, V.; Lee Feldkamp, A. Kalman Filters and Parameter-Based Kalman Filter Training: Theory and Implementation. In Kalman Filtering and Neural Networks; Haykin, S., Ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. 1–67. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Graves, A. Generating Sequences With Recurrent Neural Networks. arXiv 2014, arXiv:1308.0850v5. [Google Scholar]
- Arduino Uno Board. Available online: https://https://www.arduino.cc (accessed on 5 November 2020).
- SIM900 GPRS/GSM Shield. Available online: https://randomnerdtutorials.com/sim900-gsm-gprs-shield-arduino/ (accessed on 5 November 2020).
- Keras API. Available online: https://https://keras.io/api/ (accessed on 5 November 2020).
Parameters | Optimal Model Values for Heaters Dataset | Optimal Model Values for Pump Dataset |
---|---|---|
Train dataset lot | 80% | 80% |
Test dataset lot | 20% | 20% |
Input layer | 1 | 1 |
LSTM Cells/Units per each | 2 cells/50 units per each | 1 cell / 100 units |
Activation | Rectified Linear Unit (ReLu) | |
Dropout wrapper | 0.2 | |
Dense Layer | 1 | 1 |
Optimizer | Adam | Adam |
Epoch | 20 | 20 |
Batch sizer | 70 | 70 |
Look back window | 30 | 30 |
Loss function | Mean Squared Error (MSE) | MSE |
Evaluation Factor | First Model for Heaters | Second Model for Pumps |
---|---|---|
Train Mean Absolute Error | 19.699 | 1.624 |
Train Root Mean Squared Error | 24.895 | 2.830 |
Test Mean Absolute Error | 17.968 | 1.598 |
Test Root Mean Squared Error | 22.894 | 2.900 |
Coefficient of determination (R) | 0.755 | 0.963 |
Total error loss | 0.096 | 0.04 |
Accuracy | 90.432% | 96.0% |
Component Health Status | Temperature Range for Pumps | Temperature Range for Heaters |
---|---|---|
Healthy | Below 40 C | Above 150 C |
Alerting | 41 to 70 C | 141 to 150 C |
Going to collapse | Above 70 C | Below 140 C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niyonambaza, I.; Zennaro, M.; Uwitonze, A. Predictive Maintenance (PdM) Structure Using Internet of Things (IoT) for Mechanical Equipment Used into Hospitals in Rwanda. Future Internet 2020, 12, 224. https://doi.org/10.3390/fi12120224
Niyonambaza I, Zennaro M, Uwitonze A. Predictive Maintenance (PdM) Structure Using Internet of Things (IoT) for Mechanical Equipment Used into Hospitals in Rwanda. Future Internet. 2020; 12(12):224. https://doi.org/10.3390/fi12120224
Chicago/Turabian StyleNiyonambaza, Irene, Marco Zennaro, and Alfred Uwitonze. 2020. "Predictive Maintenance (PdM) Structure Using Internet of Things (IoT) for Mechanical Equipment Used into Hospitals in Rwanda" Future Internet 12, no. 12: 224. https://doi.org/10.3390/fi12120224