The Association Between Genetic Polymorphisms of UGT1A1, ABCG2, and NR1I2 and Dolutegravir Pharmacokinetic Parameters in Thai People Living with HIV
Abstract
1. Introduction
2. Materials and Methods
2.1. Determination of Dolutegravir Plasma Concentration
2.2. Pharmacokinetics
2.3. Genotyping Assay
2.4. Statistical Analyses
3. Results
Relationship Between DTG Pharmacokinetic Parameters and Genetic Polymorphisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DTG | Dolutegravir |
| INSTI | Integrase strand inhibitor |
| PLWH | People living with HIV |
| TAF | Tenofovir alafenamide |
| TDF | Tenofovir disoproxil fumarate |
| 3TC | Lamivudine |
| FTC | Emtricitabine |
| IC90 | in vitro protein-adjusted 90% inhibitory concentration |
| Ctrough | Trough concentration |
| NP-AEs | Neuropsychiatric adverse events |
| %CV | Percent coefficient of variation |
| UGT1A1 | Uridine diphosphate glucuronosyltransferase family 1 member A1 |
| CYP | Cytochrome P450 |
| BCRP | Breast cancer resistance protein |
| ABCG2 | ATP binding cassette subfamily G member 2 |
| PXR | Pregnane X receptor |
| NR1I2 | Nuclear receptor subfamily 1 group I member 2 |
| Cmax | Maximum concentration |
| AUC0–24 | Area under the concentration–time curve from 0–24 h post-dose |
| HIV-NAT | The HIV Netherland Australia Thailand collaboration |
| LTBI | Latent tuberculosis infection |
| Tmax | Time to reach the maximum concentration |
| ln | Natural logarithm |
| IQR | Interquartile range |
| Min | Minimum value |
| Max | Maximum value |
| Kg | Kilogram |
| ALT | Alanine aminotransferase |
| BMI | Body mass index |
| N | Number of participants |
| No. | Number of participants |
| CI | Confidence interval |
References
- World Health Organization. Update of Recommendation on First- and Second-Line Antiretroviral Regimens; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Thailand National Guidelines on Human Immunodeficiency Virus Infection and Acquired Immune Deficiency Syndrome (HIV/AIDS) Diagnosis, Treatment and Prevention 2021/2022 [Internet]. Bureau of AIDS, TB and STIs Department of Disease Control, Ministry of Public Health. 2021. Available online: https://www.thaiaidssociety.org/wp-content/uploads/2022/02/Thailand-National-Guidelines-on-HIV-AIDS-Diagnosis-Treatment-and-Prevention-2020-2021.pdf (accessed on 26 April 2025).
- Cottrell, M.L.; Hadzic, T.; Kashuba, A.D.M. Clinical Pharmacokinetic, Pharmacodynamic and Drug-Interaction Profile of the Integrase Inhibitor Dolutegravir. Clin. Pharmacokinet. 2013, 52, 981–994. [Google Scholar] [CrossRef]
- van Lunzen, J.; Maggiolo, F.; Arribas, J.R.; Rakhmanova, A.; Yeni, P.; Young, B.; Rockstroh, J.K.; Almond, S.; Song, I.; Brothers, C.; et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: Planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect. Dis. 2012, 12, 111–118. [Google Scholar] [CrossRef]
- Rolle, C.-P.; Arribas, J.R.; Ortiz, R.; Underwood, M.; Parry, C.M.; Grove, R.; DiMondi, V.P.; Jones, B.; Kisare, M. Efficacy and Safety Outcomes in Adults Initiating Dolutegravir/Lamivudine with High Viral Load in the GEMINI-1/-2 and STAT Trials. Open Forum Infect. Dis. 2025, 12, ofaf135. [Google Scholar] [CrossRef] [PubMed]
- Menard, A.; Montagnac, C.; Solas, C.; Meddeb, L.; Dhiver, C.; Tomei, C.; Ravaux, I.; Tissot-Dupont, H.; Mokhtari, S.; Colson, P.; et al. Neuropsychiatric adverse effects on dolutegravir: An emerging concern in Europe. AIDS 2017, 31, 1201–1203. [Google Scholar] [CrossRef] [PubMed]
- Povar-Echeverría, M.; Comet-Bernad, M.; Gasso-Sánchez, A.; Ger-Buil, A.; Navarro-Aznarez, H.; Martínez-Álvarez, R.; Arazo-Garcés, P. Neuropsychiatric adverse effects of dolutegravir in real-life clinical practice. Enfermedades Infecc. Microbiol. Clínica Engl. Ed. 2021, 39, 78–82. [Google Scholar] [CrossRef]
- Francois, P.; Patrick, M.; Florence, B.; Marie-Claude, G. Dolutegravir-Related Neurological Adverse Events: A Case Report of Successful Management with Therapeutic Drug Monitoring. Curr. Drug Saf. 2018, 13, 69–71. [Google Scholar] [CrossRef]
- Solas, C.; Bregigeon, S.; Faucher-zaegel, O.; Laraoche, H.; Obry-roguet, V.; Quaranta, S.; Tamalet, C.; Canet, B.; Lacarelle, B.; Poizot-martin, I. Higher dolutegravir plasma trough concentration (Ctrough) in patients presenting side effects: Interest of therapeutic drug monitoring? In Proceedings of the International Workshop on Clinical Pharmacology of Antiviral Therapy, Chicago, IL, USA, 14–17 June 2017. [Google Scholar]
- Elliot, E.R.; Neary, M.; Else, L.; Khoo, S.; Moyle, G.; Carr, D.F.; Wang, X.; McClure, M.; Boffito, M.; Owen, A. Genetic influence of ABCG2, UGT1A1 and NR1I2 on dolutegravir plasma pharmacokinetics. J. Antimicrob. Chemother. 2020, 75, 1259–1266. [Google Scholar] [CrossRef]
- Zhang, J.; Hayes, S.; Sadler, B.M.; Minto, I.; Brandt, J.; Piscitelli, S.; Min, S.; Song, I.H. Population pharmacokinetics of dolutegravir in HIV-infected treatment-naive patients. Br. J. Clin. Pharmacol. 2015, 80, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Barcelo, C.; Aouri, M.; Courlet, P.; Guidi, M.; Braun, D.L.; Günthard, H.F.; Piso, R.J.; Cavassini, M.; Buclin, T.; Decosterd, L.A.; et al. Population pharmacokinetics of dolutegravir: Influence of drug–drug interactions in a real-life setting. J. Antimicrob. Chemother. 2019, 74, 2690–2697. [Google Scholar] [CrossRef]
- Bevers, L.A.H.; Jensen, R.L.; Andrew, O.; Owen, A.; Colbers, D.; Carr, D.F.; Burger, D.M. Genetic variation on dolutegravir pharmacokinetics and relation to safety and efficacy outcomes: A systematic review. Pharmacogenomics 2024, 25, 623–635. [Google Scholar] [CrossRef]
- Kawuma Aida, N.; Wasmann Roeland, E.; Dooley Kelly, E.; Boffito, M.; Maartens, G.; Denti, P. Population Pharmacokinetic Model and Alternative Dosing Regimens for Dolutegravir Coadministered with Rifampicin. Antimicrob. Agents Chemother. 2022, 66, e0021522. [Google Scholar] [CrossRef]
- Parant, F.; Miailhes, P.; Brunel, F.; Gagnieu, M.-C. Dolutegravir Population Pharmacokinetics in a Real-Life Cohort of People Living With HIV Infection: A Covariate Analysis. Ther. Drug Monit. 2019, 41, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Punyawudho, B.; Chanruang, A.; Ueaphongsukkit, T.; Gatechompol, S.; Ubolyam, S.; Cho, Y.S.; Shin, J.G.; Avihingsanon, A. The population pharmacokinetics of dolutegravir co-administered with rifampicin in Thai people living with HIV: Assessment of alternative dosing regimens. CPT Pharmacomet. Syst. Pharmacol. 2025, 14, 95–104. [Google Scholar] [CrossRef]
- Cindi, Z.; Kawuma, A.N.; Maartens, G.; Bradford, Y.; Venter, F.; Sokhela, S.; Chandiwana, N.; Wasmann, R.E.; Denti, P.; Wiesner, L.; et al. Pharmacogenetics of Dolutegravir Plasma Exposure Among Southern Africans With Human Immunodeficiency Virus. J. Infect. Dis. 2022, 226, 1616–1625. [Google Scholar] [CrossRef]
- Reese, M.J.; Savina, P.M.; Generaux, G.T.; Tracey, H.; Humphreys, J.E.; Kanaoka, E.; Webster, L.O.; Harmon, K.A.; Clarke, J.D.; Polli, J.W. In Vitro Investigations into the Roles of Drug Transporters and Metabolizing Enzymes in the Disposition and Drug Interactions of Dolutegravir, a HIV Integrase Inhibitor. Drug Metab. Dispos. 2013, 41, 353–361. [Google Scholar] [CrossRef]
- Gammal, R.S.; Court, M.H.; Haidar, C.E.; Iwuchukwu, O.F.; Gaur, A.H.; Alvarellos, M.; Guillemette, C.; Lennox, J.L.; Whirl-Carrillo, M.; Brummel, S.S.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin. Pharmacol. Ther. 2016, 99, 363–369. [Google Scholar] [CrossRef]
- Patel, P.; Xue, Z.; King, K.S.; Parham, L.; Ford, S.; Lou, Y.; Bakshi, K.K.; Sutton, K.; Margolis, D.; Hughes, A.R.; et al. Evaluation of the effect of UGT1A1 polymorphisms on the pharmacokinetics of oral and long-acting injectable cabotegravir. J. Antimicrob. Chemother. 2020, 75, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Wenning, L.A.; Petry, A.S.; Kost, J.T.; Jin, B.; Breidinger, S.A.; DeLepeleire, I.; Carlini, E.J.; Young, S.; Rushmore, T.; Wagner, F.; et al. Pharmacokinetics of Raltegravir in Individuals With UGT1A1 Polymorphisms. Clin. Pharmacol. Ther. 2009, 85, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Yagura, H.; Watanabe, D.; Ashida, M.; Kushida, H.; Hirota, K.; Ikuma, M.; Ogawa, Y.; Yajima, K.; Kasai, D.; Nishida, Y.; et al. Correlation between UGT1A1 polymorphisms and raltegravir plasma trough concentrations in Japanese HIV-1-infected patients. J. Infect. Chemother. 2015, 21, 713–717. [Google Scholar] [CrossRef]
- Yagura, H.; Watanabe, D.; Kushida, H.; Tomishima, K.; Togami, H.; Hirano, A.; Takahashi, M.; Hirota, K.; Ikuma, M.; Kasai, D.; et al. Impact of UGT1A1 gene polymorphisms on plasma dolutegravir trough concentrations and neuropsychiatric adverse events in Japanese individuals infected with HIV-1. BMC Infect. Dis. 2017, 17, 622. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Hayashida, T.; Hamada, A.; Oki, S.; Oka, S.; Gatanaga, H. High plasma concentrations of dolutegravir in patients with ABCG2 genetic variants. Pharmacogenet. Genom. 2017, 27, 416–419. [Google Scholar] [CrossRef]
- Hoffmann, C.; Llibre, J.M. Neuropsychiatric Adverse Events with Dolutegravir and Other Integrase Strand Transfer Inhibitors. AIDS Rev. 2019, 21, 4–10. [Google Scholar] [CrossRef]
- Patel, D.A.; Snedecor, S.J.; Tang, W.Y.; Sudharshan, L.; Lim, J.W.; Cuffe, R.; Pulgar, S.; Gilchrist, K.A.; Camejo, R.R.; Stephens, J.; et al. 48-Week Efficacy and Safety of Dolutegravir Relative to Commonly Used Third Agents in Treatment-Naive HIV-1–Infected Patients: A Systematic Review and Network Meta-Analysis. PLoS ONE 2014, 9, e105653. [Google Scholar] [CrossRef] [PubMed]
- Bonfanti, P.; Madeddu, G.; Gulminetti, R.; Squillace, N.; Orofino, G.; Vitiello, P.; Rusconi, S.; Celesia, B.M.; Maggi, P.; Ricci, E.; et al. Discontinuation of treatment and adverse events in an Italian cohort of patients on dolutegravir. AIDS 2017, 31, 455–457. [Google Scholar] [CrossRef]
- Chen, S.; Pamela, S.J.; Julie, B.; Ivy, S.; Yeo, A.J.; Piscitelli, S.; Rubio, J.P. Evaluation of the Effect of UGT1A1 Polymorphisms on Dolutegravir Pharmacokinetics. Pharmacogenomics 2014, 15, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Atasilp, C.; Kanjanapipak, J.; Vichayaprasertkul, J.; Jinda, P.; Tiyasirichokchai, R.; Srisawasdi, P.; Prempunpong, C.; Chamnanphon, M.; Puangpetch, A.; Vanwong, N.; et al. Associations between UGT1A1 and SLCO1B1 polymorphisms and susceptibility to neonatal hyperbilirubinemia in Thai population. BMC Pediatr. 2022, 22, 243. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, F.; Grimsley, C.; Das, S.; Ramírez, J.; Cheng, C.; Kuttab-Boulos, H.; Ratain, M.J.; Di Rienzo, A. Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics Genom. 2002, 12, 725–733. [Google Scholar] [CrossRef]
- Arora, P.; Liu, H.; Ling, J.; Hindman, J.T.; Marathe, D.D. Clinical Evaluation of Drug–Drug Interactions Between Bictegravir and Strong Inhibitors/Inducers of the CYP3A4, UGT1A1, or P-gp Pathways. J. Clin. Pharmacol. 2025, 65, 1420–1432. [Google Scholar] [CrossRef]
- Spector, S.A.; Brummel, S.S.; Chang, A.; Wiznia, A.; Ruel, T.D.; Acosta, E.P.; for IMPAACT P1093 Team. Impact of Genetic Variants in ABCG2, NR1I2, and UGT1A1 on the Pharmacokinetics of Dolutegravir in Children. JAIDS J. Acquir. Immune Defic. Syndr. 2024, 95, 297–303. [Google Scholar] [CrossRef]
- Zhu, J.; Tian, X.; Shehu, A.I.; McMahon, D.K.; Ma, X. ABCG2 Deficiency Does Not Alter Dolutegravir Metabolism and Pharmacokinetics. J. Pharmacol. Exp. Ther. 2020, 374, 38–43. [Google Scholar] [CrossRef]
| Characteristic | Value |
|---|---|
| Sex, frequency (%) | |
| Male | 53 (51.0) |
| Female | 51 (49.0) |
| Body weight (kg), median ± IQR (min–max) | 62.3 ± 17.3 (41.3–115.1) |
| Age (years), median ± IQR (min–max) | 30.5 ± 27.0 (18.0–68.0) |
| Serum creatinine (mg/dL), median ± IQR (min–max) | 0.8 ± 0.3 (0.5–1.5) |
| ALT (U/L), median ± IQR (min–max) | 31.0 ± 17.0 (13.0–76.0) |
| Height (m), median ± IQR (min–max) | 1.6 ± 0.1 (1.5–1.9) |
| BMI (kg/m2), median ± IQR (min–max) | 22.9 ± 5.6 (19.0–36.0) |
| Genetic Polymorphisms | Genotype | Allele | |||
|---|---|---|---|---|---|
| Genotype | No. of PLWH | % of PLWH | Allele | Frequency (%) | |
| ABCG2 421C>A (rs2231142) | CC | 57 | 54.8 | C | 72.6 |
| CA | 37 | 35.6 | A | 27.4 | |
| AA | 10 | 9.6 | |||
| NR1I2 63396C>T (rs2472677) | CC | 15 | 14.4 | C | 38.0 |
| CT | 49 | 47.1 | T | 62.0 | |
| TT | 40 | 38.5 | |||
| UGT1A1*6 221G>A (rs4148323) | GG | 89 | 85.6 | G | 92.8 |
| GA | 15 | 14.4 | A | 7.2 | |
| AA | 0 | 0 | |||
| UGT1A1 (TA)n repeats | TA6/TA6 | 66 | 63.5 | TA6 | 78.8 |
| TA6/TA7 | 32 | 30.8 | TA7 | 20.7 | |
| TA7/TA7 | 5 | 4.8 | TA8 | 0.5 | |
| TA7/TA8 | 1 | 0.9 | |||
| UGT1A1 Phenotypes | Genotype | No. of PLWH (%) |
|---|---|---|
| Extensive metabolizer | An individual carrying two reference function (*1) and/or increased function alleles (*36) | 55 (52.9) |
| Intermediate metabolizer | An individual carrying one reference (*1) and one decreased function allele (*6, *28, *37) | 39 (37.5) |
| Poor metabolizer | An individual carrying two decreased functions alleles (*6, *28, *37) | 10 (9.6) |
| Genetic Polymorphism | Pharmacokinetic Parameter | Genotype | Geometric Mean a | %CV | p-Value # | Post Hoc Analysis | p-Value & |
|---|---|---|---|---|---|---|---|
| ABCG2 421 C>A (rs2231142) | Tmax (hour) | CC | 2.05 | 1.1 | 0.503 | ||
| CA | 1.87 | 1.3 | |||||
| AA | 2.35 | 1.3 | |||||
| Cmax (mg/L) | CC | 4.55 | 59.4 | 0.558 | |||
| CA | 4.29 | 27.3 | |||||
| AA | 4.26 | 19.1 | |||||
| AUC0–24 (mg×hour/L) | CC | 59.39 | 34.6 | 0.598 | |||
| CA | 55.42 | 31.6 | |||||
| AA | 57.17 | 27.4 | |||||
| Ctrough (mg/L) | CC | 1.38 | 0.6 | 0.651 | |||
| CA | 1.28 | 0.6 | |||||
| AA | 1.28 | 0.5 | |||||
| NR1I2 63396 C>T (rs2472677) | Tmax (hour) | CC | 2.67 | 1.3 | 0.009 * | CC-CT | 0.014 ** |
| CT | 1.68 | 0.9 | CC-TT | 0.508 | |||
| TT | 2.18 | 1.4 | CT-TT | 0.132 | |||
| Cmax (mg/L) | CC | 4.40 | 36.0 | 0.399 | |||
| CT | 4.41 | 27.5 | |||||
| TT | 4.44 | 28.1 | |||||
| AUC0–24 (mg×hour/L) | CC | 56.89 | 46.3 | 0.939 | |||
| CT | 57.41 | 29.6 | |||||
| TT | 58.45 | 31.8 | |||||
| Ctrough (mg/L) | CC | 1.27 | 0.7 | 0.844 | |||
| CT | 1.32 | 0.5 | |||||
| TT | 1.37 | 0.6 | |||||
| UGT1A1 phenotypes | Tmax (hour) | Extensive metabolizer | 2.10 | 1.2 | 0.732 | ||
| Intermediate metabolizer | 1.90 | 1.2 | |||||
| Poor metabolizer | 2.03 | 1.2 | |||||
| Cmax (mg/L) | Extensive metabolizer | 4.24 | 27.4 | 0.008 * | Extensive-Intermediate | 1.000 | |
| Intermediate metabolizer | 4.40 | 28.4 | Extensive-poor | 0.006 ** | |||
| Poor metabolizer | 5.70 | 25.6 | Intermediate-poor | 0.025 | |||
| AUC0–24 (mg×hour/L) | Extensive metabolizer | 55.98 | 30.8 | 0.020 * | Extensive-Intermediate | 1.000 | |
| Intermediate metabolizer | 56.28 | 33.3 | Extensive-poor | 0.019 | |||
| Poor metabolizer | 75.55 | 31.1 | Intermediate-poor | 0.030 | |||
| Ctrough (mg/L) | Extensive metabolizer | 1.25 | 0.5 | 0.043 * | Extensive-Intermediate | 1.000 | |
| Intermediate metabolizer | 1.34 | 0.6 | Extensive-poor | 0.037 | |||
| Poor metabolizer | 1.74 | 0.7 | Intermediate-poor | 0.138 |
| Univariable Analysis | Multivariable Analysis b | |||||
|---|---|---|---|---|---|---|
| Factor | Coefficient | 95% CI | p-Value a | Coefficient | 95% CI | p-Value a |
| ln AUC0–24 (mg×hour/L) | ||||||
| Female | 0.073 | −0.052 to 0.198 | 0.250 | |||
| Age (year) | −0.002 | −0.006 to 0.002 | 0.335 | |||
| Body weight (kg) | −0.010 | −0.013 to −0.005 | <0.001 * | −0.009 | −0.014 to −0.005 | <0.001 ** |
| Serum creatinine (mg/dL) | 0.036 | −0.290 to 0.362 | 0.826 | |||
| ALT (U/L) | −0.005 | −0.011 to 0.001 | 0.125 | |||
| UGT1A1 phenotypes | ||||||
| Extensive metabolizer | Reference | Reference | ||||
| Intermediate metabolizer | 0.008 | −0.122 to 0.138 | 0.901 | |||
| Poor metabolizer | 0.299 | 0.086 to 0.513 | 0.006 * | 0.240 | 0.041 to 0.438 | 0.018 ** |
| ABCG2 421 C>A | ||||||
| CC | Reference | |||||
| CA | −0.069 | −0.205 to 0.066 | 0.314 | |||
| AA | −0.038 | −0.258 to 0.182 | 0.734 | |||
| NR1I2 63396 C>T | ||||||
| CC | Reference | |||||
| CT | 0.012 | −0.178 to 0.203 | 0.897 | |||
| TT | 0.031 | −0.164 to 0.226 | 0.752 | |||
| Ctrough (mg/L) | ||||||
| Female | 0.026 | −0.198 to 0.250 | 0.816 | |||
| Age (year) | −0.0001 | −0.008 to 0.008 | 0.980 | |||
| Body weight (kg) | −0.013 | −0.021 to −0.005 | 0.002 * | −0.012 | −0.020 to −0.004 | 0.005 ** |
| Serum creatinine (mg/dL) | 0.311 | −0.267 to 0.888 | 0.288 | |||
| ALT (U/L) | −0.006 | −0.017 to 0.005 | 0.259 | |||
| UGT1A1 phenotypes | ||||||
| Extensive metabolizer | Reference | Reference | ||||
| Intermediate metabolizer | 0.090 | −0.143 to 0.323 | 0.444 | |||
| Poor metabolizer | 0.492 | 0.109 to 0.874 | 0.012 * | 0.418 | 0.045 to 0.790 | 0.028 ** |
| ABCG2 421 C>A | ||||||
| CC | Reference | |||||
| CA | −0.106 | −0.347 to 0.136 | 0.387 | |||
| AA | −0.105 | −0.497 to 0.287 | 0.597 | |||
| NR1I2 63396 C>T | ||||||
| CC | Reference | |||||
| CT | 0.047 | −0.291 to 0.386 | 0.781 | |||
| TT | 0.096 | −0.251 to 0.443 | 0.584 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanruang, A.; Birnbaum, A.K.; Sirilun, S.; Chupradit, S.; Ubolyam, S.; Hiranburana, N.; Cho, Y.S.; Shin, J.G.; Avihingsanon, A.; Punyawudho, B. The Association Between Genetic Polymorphisms of UGT1A1, ABCG2, and NR1I2 and Dolutegravir Pharmacokinetic Parameters in Thai People Living with HIV. Pharmaceutics 2025, 17, 1499. https://doi.org/10.3390/pharmaceutics17111499
Chanruang A, Birnbaum AK, Sirilun S, Chupradit S, Ubolyam S, Hiranburana N, Cho YS, Shin JG, Avihingsanon A, Punyawudho B. The Association Between Genetic Polymorphisms of UGT1A1, ABCG2, and NR1I2 and Dolutegravir Pharmacokinetic Parameters in Thai People Living with HIV. Pharmaceutics. 2025; 17(11):1499. https://doi.org/10.3390/pharmaceutics17111499
Chicago/Turabian StyleChanruang, Anan, Angela K. Birnbaum, Sasithorn Sirilun, Suthunya Chupradit, Sasiwimol Ubolyam, Napon Hiranburana, Yong Soon Cho, Jae Gook Shin, Anchalee Avihingsanon, and Baralee Punyawudho. 2025. "The Association Between Genetic Polymorphisms of UGT1A1, ABCG2, and NR1I2 and Dolutegravir Pharmacokinetic Parameters in Thai People Living with HIV" Pharmaceutics 17, no. 11: 1499. https://doi.org/10.3390/pharmaceutics17111499
APA StyleChanruang, A., Birnbaum, A. K., Sirilun, S., Chupradit, S., Ubolyam, S., Hiranburana, N., Cho, Y. S., Shin, J. G., Avihingsanon, A., & Punyawudho, B. (2025). The Association Between Genetic Polymorphisms of UGT1A1, ABCG2, and NR1I2 and Dolutegravir Pharmacokinetic Parameters in Thai People Living with HIV. Pharmaceutics, 17(11), 1499. https://doi.org/10.3390/pharmaceutics17111499

