Influence of Calcination Temperature on the Structure and Antimicrobial Properties of Arthrospira platensis-Mediated Zinc Oxide Nanoparticles
Abstract
1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction of A. platensis
2.2.2. Determination of Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and DPPH Radical Scavenging Activity
2.2.3. HPLC Analysis
2.2.4. Synthesis of A. platensis-ZnO NPs
2.2.5. Physicochemical Characterization of A. platensis-ZnO NPs
2.2.6. Antimicrobial Activity Assessment
2.2.7. Statistical Analysis
3. Results
3.1. Determination of Total Flavonoid Content (TFC), Total Phenolic Content (TPC), and DPPH Radical Scavenging Activity
3.2. Phenolic Profile of A. platensis Extract
3.3. Characterization of ZnO NPs
3.4. Antimicrobial Activity Results
4. Discussion
4.1. Determination of Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and DPPH Radical Scavenging Activity
4.2. HPLC Analysis of Phenolics
4.3. Structural and Morphological Characterization
4.4. Antimicrobial Activity
4.4.1. MIC and MBC/MFC Results
4.4.2. Agar Well Diffusion Method Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Butler, M.S.; Henderson, I.R.; Capon, R.J.; Blaskovich, M.A.T. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 2023, 76, 431–473. [Google Scholar] [CrossRef]
- Smith, R.A.; Mikanatha, N.M.; Read, A.F. Antibiotic resistance: A primer and call to action. Health Commun. 2015, 30, 309–314. [Google Scholar] [CrossRef]
- Mousa, S.A.; Wissa, D.A.; Hassan, H.H.; Ebnalwaled, A.A.; Khairy, S.A. Enhanced photocatalytic activity of green synthesized zinc oxide nanoparticles using low-cost plant extracts. Sci. Rep. 2024, 14, 16713. [Google Scholar] [CrossRef] [PubMed]
- Lebaka, V.R.; Ravi, P.; Reddy, M.C.; Thummala, C.; Mandal, T.K. Zinc oxide nanoparticles in modern science and technology: Multifunctional roles in healthcare, environmental remediation, and industry. Nanomaterials 2025, 15, 754. [Google Scholar] [CrossRef] [PubMed]
- El-belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green synthesis of zinc oxide nanoparticles using Arthrospira platensis and evaluation of their biomedical activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef]
- Zahra, S.; Qaisa, S.; Sheikh, A.; Bukhari, H.; Amin, C.A. Effect of calcination temperature on the structure and morphology of zinc oxide nanoparticles synthesized by base-catalyzed aqueous sol-gel process. Eur. J. Chem. 2022, 13, 162–167. [Google Scholar] [CrossRef]
- Abo-Shanab, W.A.; Elsilk, S.E.; Afifi, S.S.; El-Shenody, R.A. Ecofriendly biosynthesis of zinc oxide nanoparticles from Arthrospira platensis and their assessment for antimicrobial, antibiofilm, anticancer potency and alleviation of copper stress in Vicia faba L. J. Soil Sci. Plant Nutr. 2025, 25, 2742–2762. [Google Scholar] [CrossRef]
- Galedari, S.; Teimouri, M. Study of the physicochemical properties and anti-biofilm effects of synthesized zinc oxide nanoparticles using Artemisia plant. Int. J. Basic Sci. Med. 2020, 5, 101–107. [Google Scholar] [CrossRef]
- Banoee, M.; Seif, S.; Nazari, Z.E.; Jafari-Fesharaki, P.; Shahverdi, H.R.; Moballegh, A.; Shahverdi, A.R. ZnO Nanoparticles Enhanced Antibacterial Activity of Ciprofloxacin against Staphylococcus aureus and Escherichia coli. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 557–561. [Google Scholar] [CrossRef]
- Gentscheva, G.; Angelov, G.; Dobreva, D. Application of Arthrospira platensis for medicinal purposes and the food industry: A review of the literature. Life 2023, 13, 845. [Google Scholar] [CrossRef]
- Al-Wathnani, H. Antibacterial activities of the extracts of cyanobacteria and green algae isolated from desert soil in Riyadh, Kingdom of Saudi Arabia. Afr. J. Biotechnol. 2012, 11, 5897. [Google Scholar] [CrossRef]
- Kelebek, H.; Uzlasir, T.; Kubra, H. Bioactive compounds and health benefits of Arthrospira platensis and Chlorella vulgaris: A comprehensive review. Food Nutr. 2025, 1, 100033. [Google Scholar] [CrossRef]
- Lafarga, T.; Fernández-Sevilla, J.M.; González-López, C.; Acién-Fernández, F.G. Spirulina for the food and functional food industries. Food Res. Int. 2020, 137, 109356. [Google Scholar] [CrossRef]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles–an eco-friendly approach. Resour. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Othman, A.S. Green fabrication of ZnO nanoparticles via Spirulina platensis and its efficiency against biofilm-forming pathogens. Microb. Cell Fact. 2024, 23, 92. [Google Scholar] [CrossRef]
- Kaewsaenee, J.; Singhaset, M.T.; Roongraung, K.; Kemacheevakul, P.; Chuangchote, S. Polymer-Assisted Coprecipitation Synthesized Zinc Oxide Nanoparticles and Their Uses for Green Chemical Synthesis via Photocatalytic Glucose Conversions. ACS Omega 2023, 8, 43664–43673. [Google Scholar] [CrossRef]
- Mornani, E.G.; Mosayebian, P.; Dorranian, D.; Behzad, K. Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles. J. Ovonic Res. 2016, 12, 75–80. [Google Scholar]
- Setiadji, S.; Aprilia, V. Effect of calcination temperature and heating rate on zinc oxide synthesis toward antibacterial properties. J. Kim. Sains Apl. 2025, 28, 82–87. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ceyhan, O.S.; Erkmen, S. Identification of phenolic compounds and changes in their content during processes of white wines. Carpathian J. Food Sci. Technol. 2023, 15, 216–225. [Google Scholar] [CrossRef]
- Fakhari, S.; Jamzad, M.; Kabiri Fard, H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. Lett. Rev. 2019, 12, 19–24. [Google Scholar] [CrossRef]
- Schofield, C.B. Updating antimicrobial susceptibility testing methods. Clin. Lab. Sci. J. 2012, 25, 233–239. [Google Scholar] [CrossRef]
- Emami-Karvani, P.C. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res. 2021, 5, 1368–1373. [Google Scholar] [CrossRef]
- Macwan, D.; Verma, D.; Patel, H.V. Antioxidant capacities of crude extract and protein glycation inhibitory activities of bioactive fractions of Arthrospira platensis Gomont. Ann. Phytomed. 2022, 11, 484–493. [Google Scholar] [CrossRef]
- Tong Liang, S.X.; Djearamane, S.; Tanislaus Antony Dhanapal, A.C.; Wong, L.S. Impact of silver nanoparticles on the nutritional properties of Arthrospira platensis. PeerJ 2022, 10, e13972. [Google Scholar] [CrossRef]
- Sari, L.M.; Rilda, Y. Biosynthesis of ZnO nanoparticles using Spirulina platensis based on calcination temperature changes and its antioxidant activity. Chem. Sci. Int. J. 2023, 32, 1–8. [Google Scholar] [CrossRef]
- Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018, 413, 11–22. [Google Scholar] [CrossRef]
- Cock, I.E.; Cheesman, M.J. A review of the antimicrobial properties of cyanobacterial natural products. Molecules 2023, 28, 7127. [Google Scholar] [CrossRef]
- Alwash, A. Impact of calcination temperature on the structural and photocatalytic properties of ZnO synthesized from gum arabic for methylene blue dye removal. J. Hazard. Mater. Adv. 2025, 17, 100625. [Google Scholar] [CrossRef]
- Dey, S.; Mohanty, D.L.; Divya, N.; Bakshi, V.; Mohanty, A.; Rath, D.; Das, S.; Mondal, A.; Roy, S.; Sabui, R. A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications. Intell. Pharm. 2025, 3, 53–70. [Google Scholar] [CrossRef]
- Sánchez-Pérez, D.M.; Flores-Loyola, E.; Márquez-Guerrero, S.Y.; Galindo-Guzman, M.; Marszalek, J.E. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Larrea tridentata Extract and Their Impact on the In-Vitro Germination and Seedling Growth of Capsicum annuum. Sustainability 2023, 15, 3080. [Google Scholar] [CrossRef]
- Albarakaty, F.M.; Alzaban, M.I.; Alharbi, N.K.; Bagrwan, F.S.; Abd El-Aziz, A.R.M.; Mahmoud, M.A. Zinc oxide nanoparticles, biosynthesis, characterization and their potent photocatalytic degradation, and antioxidant activities. J. King Saud Univ. Sci. 2023, 35, 102434. [Google Scholar] [CrossRef]
- Jayachandran, A.T.R.; Nair, A.S. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem. Biophys. Rep. 2021, 26, 100995. [Google Scholar] [CrossRef]
- Giri, P.K.; Bhattacharyya, S.; Singh, D.K.; Kesavamoorthy, R.; Panigrahi, B.K.; Nair, K.G.M. Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J. Appl. Phys. 2007, 102, 093515. [Google Scholar] [CrossRef]
- Selim, Y.A.; Azb, M.A.; Ragab, I.; Abd El-Azim, M.H.M. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 2020, 10, 3445. [Google Scholar] [CrossRef]
- Muhammad, W.; Ullah, N.; Haroon, M.; Abbasi, B.H. Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv. 2019, 9, 29541–29548. [Google Scholar] [CrossRef]
- Alallam, B.; Doolaanea, A.A.; Alfatama, M.; Lim, V. Phytofabrication and characterisation of zinc oxide nanoparticles using pure curcumin. Pharmaceuticals 2023, 16, 269. [Google Scholar] [CrossRef]
- Dousti, B.; Habibi, A.; Nabipor, F. Biosynthesis of zinc oxide nanoparticles using Fumaria parviflora extract and evaluation of their antibacterial and antioxidant activities. Biotechnologia 2021, 102, 65–73. [Google Scholar] [CrossRef]
- Jaishi, D.R.; Ojha, I.; Bhattarai, G.; Baraili, R.; Pathak, I.; Ojha, D.R.; Shrestha, D.K.; Sharma, K.R. Plant-mediated synthesis of zinc oxide (ZnO) nanoparticles using Alnus nepalensis D. Don for biological applications. Heliyon 2024, 10, e39255. [Google Scholar] [PubMed]
- Farag, M.; El-Dafrawy, S.M.; Hassan, S.M. ZnO and C/ZnO catalysts synthesized via plant mediated extracts for photodegradation of crystal violet and methyl orange dyes. J. Inorg. Organomet. Polym. Mater. 2024, 34, 930–943. [Google Scholar] [CrossRef]
- Droepenu, E.K.; Amenyogbe, E.; Boatemaa, M.A.; Opoku, E. Study of the antimicrobial activity of zinc oxide nanostructures mediated by two morphological structures of leaf extracts of Eucalyptus radiata. Heliyon 2024, 10, e25590. [Google Scholar] [CrossRef] [PubMed]
- Jalal, M.; Abdelmohsen, U.R.; El-Helow, A.; El-Sheekh, M.M. Anticandidal activity of bioinspired ZnO nanoparticles. J. Mycol. Fungal Biol. 2018, 3, 1439837. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef]
- Krishnaveni, P.; Anjali, P.; Renuka, S.; Deivakumari, M.; Saranya, V.P.; Namasivayam, S.K.R.; Samrat, K.; Nachiyar, C.V. Sustainable formulation of PEGylated zinc oxide nanoparticles to enhance plant growth and combat bacterial pathogens. Discov. Biotechnol. 2025, 2, 19. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Saleemi, F.; Batool, I. Effect of calcination temperature on the properties of ZnO nanoparticles. Appl. Phys. A 2015, 119, 713–720. [Google Scholar] [CrossRef]
- Patil, M.P.; Kim, J.; Seo, Y.B.; Kang, M.; Kim, G. Biogenic synthesis of metallic nanoparticles and their antibacterial applications. J. Life Sci. 2021, 31, 862–872. [Google Scholar]
- Elshafie, H.S.; Osman, A.; El-Saber, M.M.; Camele, I.; Abbas, E. Antifungal activity of green and chemically synthesized ZnO nanoparticles against Alternaria citri, the causal agent citrus black rot. Plant Pathol. J. 2023, 39, 265–274. [Google Scholar] [CrossRef]
- Çelekli, A.; Akhras, N.; Bozkurt, H. Improving antimicrobial activity of brown propolis with incorporation of Arthrospira platensis. Food Humanit. 2024, 2, 100191. [Google Scholar] [CrossRef]
- Sharbatdaran, M.; Janbazi, M. Effect of temperature on the structure, catalyst and magnetic properties of undoped zinc oxide nanoparticles: Experimental and DFT calculation. RSC Adv. 2024, 14, 31153–31164. [Google Scholar] [CrossRef] [PubMed]
- Venu Gopal, V.R.; Kamila, S. Effect of temperature on the morphology of ZnO nanoparticles: A comparative study. Appl. Nanosci. 2017, 7, 75–82. [Google Scholar] [CrossRef]





| Parameter | Unit | A. platensis Extract | A. platensis-ZnO NPs (80 °C Synthesis) | A. platensis-ZnO NPs (400 °C Synthesis) |
|---|---|---|---|---|
| Total Flavonoid Content | mg QE/g | 0.85 ± 0.02 a | 0.75 ± 0.03 b | 0.68 ± 0.05 b |
| Total Phenolic Content | mg GAE/g | 1.80 ± 0.03 a | 1.65 ± 0.04 b | 1.45 ± 0.06 b |
| DPPH Scavenging Activity | μg/mL | 12.0 ± 0.55 a | 13.0 ± 0.60 b | 14.0 ± 0.70 b |
| Phenolic Compounds | RET. Time | Quantity (ppm) |
|---|---|---|
| Chlorogenic acid | 25.04 | 33.27 ± 1.66 |
| caffeic acid | 12.62 | 38.10 ± 1.90 |
| Apigenin | 0.57 | 62.41 ± 3.12 |
| Galangin | 213.40 | 78.62 ± 3.93 |
| Trans-Ferullic acid | 57.32 | 62.27 ± 3.11 |
| Kaempferol | 35.63 | 75.47 ± 3.77 |
| 2.4 dimethoxy cinnamic acid | 119.56 | 5.00 ± 0.25 |
| Pinocembrin | 32.57 | 78.15 ± 3.91 |
| Gallic acid | 58.79 | 6.16 ± 0.31 |
| procyanidin B2 | 68.46 | 2.96 ± 0.15 |
| Quercitin | 74.96 | 75.82 ± 3.79 |
| Catchin | 0.15 | 41.27 ± 2.06 |
| Microorganism | Agent | MIC (µg/mL) | MBC/MFC (µg/mL) |
|---|---|---|---|
| S. aureus | A. platensis-ZnO NPs (80 °C) | 16.00 ± 0.00 b | 16.00 ± 0.00 b |
| A. platensis-ZnO NPs (400 °C) | 8.00 ± 0.00 b | 16.00 ± 0.00 b | |
| Pure ZnO NPs (80 °C) | 32.00 ± 0.00 a | 32.00 ± 0.00 a | |
| Pure ZnO NPs (400 °C) | 16.00 ± 0.00 b | 16.00 ± 0.00 b | |
| A. platensis extract | 128.00 ± 0.00 c | 128.00 ± 0.00 c | |
| E. coli | A. platensis-ZnO NPs (80 °C) | 32.00 ± 0.00 b | 64.00 ± 0.00 b |
| A. platensis-ZnO NPs (400 °C) | 16.00 ± 0.00 b | 16.00 ± 0.00 b | |
| Pure ZnO NPs (80 °C) | 64.00 ± 0.00 b | 128.00 ± 0.00 b | |
| Pure ZnO NPs (400 °C) | 32.00 ± 0.00 b | 32.00 ± 0.00 b | |
| A. platensis extract | 256.00 ± 0.00 c | 265.00 ± 0.00 c | |
| C. albicans | A. platensis-ZnO NPs (80 °C) | 64.00 ± 0.00 b | 128.00 ± 0.00 b |
| A. platensis-ZnO NPs (400 °C) | 32.00 ± 0.00 b | 32.00 ± 0.00 b | |
| Pure ZnO NPs (80 °C) | 128.00 ± 0.00 a | 128.00 ± 0.00 a | |
| Pure ZnO NPs (400 °C) | 128.00 ± 0.00 a b | 128.00 ± 0.00 a b | |
| A. platensis extract | 256.00 ± 0.00 c | 256.00 ± 0.00 c |
| Microorganism | Pure ZnO NPs | A. platensis Extract | A. platensis-ZnO NPs (80 °C) | A. platensis-ZnO NPs (400 °C) | Positive Control |
|---|---|---|---|---|---|
| E. coli | 10.5 ± 0.4 c | 15.2 ± 2.8 b | 17.8 ± 2.3 b | 19.5 ± 2.1 a | 22.0 ± 3.1 a (Tetracycline) |
| C. albicans | 11.0 ± 0.6 c | 14.0 ± 1.9 b | 18.2 ± 2.5 b | 20.0 ± 3.0 a | 26.0 ± 3.5 a (Fluconazole) |
| S. aureus | 13.0 ± 1.1 c | 20.0 ± 4.2 b | 23.5 ± 3.5 b | 26.0 ± 4.1 a | 30.5 ± 4.0 a (Tetracycline) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhras, N.; Çelekli, A.; Bozkurt, H. Influence of Calcination Temperature on the Structure and Antimicrobial Properties of Arthrospira platensis-Mediated Zinc Oxide Nanoparticles. Pharmaceutics 2025, 17, 1367. https://doi.org/10.3390/pharmaceutics17111367
Akhras N, Çelekli A, Bozkurt H. Influence of Calcination Temperature on the Structure and Antimicrobial Properties of Arthrospira platensis-Mediated Zinc Oxide Nanoparticles. Pharmaceutics. 2025; 17(11):1367. https://doi.org/10.3390/pharmaceutics17111367
Chicago/Turabian StyleAkhras, Noor, Abuzer Çelekli, and Hüseyin Bozkurt. 2025. "Influence of Calcination Temperature on the Structure and Antimicrobial Properties of Arthrospira platensis-Mediated Zinc Oxide Nanoparticles" Pharmaceutics 17, no. 11: 1367. https://doi.org/10.3390/pharmaceutics17111367
APA StyleAkhras, N., Çelekli, A., & Bozkurt, H. (2025). Influence of Calcination Temperature on the Structure and Antimicrobial Properties of Arthrospira platensis-Mediated Zinc Oxide Nanoparticles. Pharmaceutics, 17(11), 1367. https://doi.org/10.3390/pharmaceutics17111367

