Design, Synthesis, In Vitro and In Silico Biological Evaluation of New Pyridine-2,5-Dicarboxylates Esters Bearing Natural Source Fragments as Anti-Trypanosomatid Agents
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Synthesis
2.3. Biological Evaluation
2.3.1. In Vitro Trypanocidal Activity
2.3.2. In Vitro Leishmanicidal Activity
2.3.3. Cytotoxicity and Selectivity Index
2.4. ADMET In Silico Properties
3. Results
3.1. Chemistry
3.2. Biological Evaluation
3.2.1. Biological Evaluation Against T. cruzi and L. Mexicana
3.2.2. Cytotoxicity and SI Index Against Macrophage J774.2 Cell Line
3.3. ADMET In Silico Properties
4. Discussion
4.1. Chemical Synthesis of Pyridine-2,5-dicarboxylates
4.2. Biological Evaluation Against T. cruzi and L. mexicana
4.2.1. SAR Analysis Against T. cruzi Epimastigotes NINOA Strain
4.2.2. SAR Analysis Against T. cruzi Epimastigotes A1 Strain
4.2.3. Biological Activity Against L. mexicana
4.2.4. SAR Analysis Against L. mexicana M379 Strain
4.2.5. SAR Analysis Against L. mexicana FCQEPS Strain
4.2.6. Cytotoxicity and Selectivity Index
4.3. ADMET In Silico Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T. cruzi | Trypanosoma cruzi |
L. mexicana | Leishmania mexicana |
TLC | Thin Layer Chromatography |
IC50 | half-maximum inhibitory concentration |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
CC50 | Half-maximal cytotoxic concentration |
SI | Selectivity index |
ESI | Electrospray ionization |
ADMET | Administration Distribution Metabolism Excretion Toxicity |
EWG | Electron-withdrawing Group |
EDG | electron-donating group |
DMSO | Dimethyl sulfoxide |
FBS | Fetal Bovine Serum |
CO2 | Carbon dioxide |
References
- Kaufer, A.; Ellis, J.; Stark, D.; Barratt, J. The evolution of trypanosomatid taxonomy. Parasit Vectors. 2017, 10, 287. [Google Scholar] [CrossRef]
- Horn, D. A profile of research on the parasitic trypanosomatids and the diseases they cause. PLoS Negl. Trop. Dis. 2022, 16, e0010040. [Google Scholar] [CrossRef]
- De Fuentes-Vicente, J.A.; Vidal-López, D.G.; Flores-Villegas, A.L.; Moreno-Rodríguez, A.; De Alba-Alvarado, M.C.; Salazar-Schettino, P.M.; Rodríguez-López, M.H.; Gutiérrez-Cabrera, A.E. Trypanosoma cruzi: A review of biological and methodological factors in Mexican strains. Acta Trop. 2019, 195, 51–57. [Google Scholar] [CrossRef]
- De Fuentes-Vicente, J.A.; Santos-Hernández, N.G.; Ruiz-Castillejos, C.; Espinoza-Medinilla, E.E.; Flores-Villegas, A.L.; de Alba-Alvarado, M.; Cabrera-Bravo, M.; Moreno-Rodríguez, A.; Vidal-López, D.G. What Do You Need to Know before Studying Chagas Disease? A Beginner’s Guide. Trop. Med. Infect Dis. 2023, 8, 360. [Google Scholar] [CrossRef]
- World Health Organization. Chagas Disease (Also Known as American Trypanosomiasis). 2024. Available online: https://www.Who.Int/News-Room/Fact-Sheets/Detail/Chagas-Disease-(American-Trypanosomiasis) (accessed on 31 March 2025).
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Leishmaniasis. 2023. Available online: https://www.Who.Int/News-Room/Fact-Sheets/Detail/Leishmaniasis (accessed on 31 March 2025).
- World Health Organization. Control of the Leishmaniases: WHO TRS N°949. 2010. Available online: https://www.who.int/publications/i/item/WHO-TRS-949 (accessed on 31 March 2025).
- Böttcher, T.; Pitscheider, M.; Sieber, S.A. Natural products and their biological targets: Proteomic and metabolomic labeling strategies. Angew Chem. Int. Ed. Engl. 2010, 49, 2680–2698. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L. Natural products in drug discovery. Drug Discov. Today 2008, 13, 894–901. [Google Scholar] [CrossRef]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef]
- Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X20903555. [Google Scholar] [CrossRef]
- Martins, S.C.; Lazarin-Bidóia, D.; Desoti, V.C.; Falzirolli, H.; da Silva, C.C.; Ueda-Nakamura, T.; Silva, S.d.O.; Nakamura, C.V. 1,3,4-Thiadiazole derivatives of R-(+)-limonene benzaldehyde-thiosemicarbazones cause death in Trypanosoma cruzi through oxidative stress. Microbes Infect. 2016, 18, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Batista, S.A.; Vandresen, F.; Falzirolli, H.; Britta, E.; de Oliveira, D.N.; Catharino, R.R.; Gonçalves, M.A.; Ramalho, T.C.; La Porta, F.A.; Nakamura, C.V.; et al. Synthesis and comparison of antileishmanial and cytotoxic activities of S-(−)-limonene benzaldehyde thiosemicarbazones with their R-(+)-analogues. J. Mol. Struct. 2018, 1179, 252–262. [Google Scholar] [CrossRef]
- Sahu, D.; Sreekanth, P.S.R.; Behera, P.K.; Pradhan, M.K.; Patnaik, A.; Salunkhe, S.; Cep, R. Advances in synthesis, medicinal properties and biomedical applications of pyridine derivatives: A comprehensive review. Eur. J. Med. Chem. Rep. 2024, 12, 100210. [Google Scholar] [CrossRef]
- Cardoso, M.V.D.O.; Siqueira, L.R.P.; De Silva, E.B.; Da Costa, L.B.; Hernandes, M.Z.; Rabello, M.M.; Ferreira, R.S.; Da Cruz, L.F.; Magalhães-Moreira, D.R.; Pereira, V.R.A.; et al. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. Eur. J. Med. Chem. 2014, 86, 48–59. [Google Scholar] [CrossRef]
- Figarella, K.; Marsiccobetre, S.; Galindo-Castro, I.; Urdaneta, N.; Herrera, J.C.; Canudas, N.; Galarraga, E. Antileishmanial and Antitrypanosomal Activity of Synthesized Hydrazones, Pyrazoles, Pyrazolo[1,5-a]-Pyrimidines and Pyrazolo[3,4-b]-Pyridine. Curr. Bioact. Compd. 2017, 14, 234–239. [Google Scholar] [CrossRef]
- Döben, N.; Yan, H.; Kischkewitz, M.; Mao, J.; Studer, A. Intermolecular acetoxyaminoalkylation of α-diazo amides with (diacetoxyiodo)benzene and amines. Org. Lett. 2018, 20, 7933–7936. [Google Scholar] [CrossRef]
- De Angelis, L.; Zheng, H.; Perz, M.T.; Arman, H.; Doyle, M.P. Intermolecular [5 + 1]-Cycloaddition between Vinyl Diazo Compounds and tert-Butyl Nitrite to 1,2,3-Triazine 1-Oxides and Their Further Transformation to Isoxazoles. Org. Lett. 2021, 23, 6542–6546. [Google Scholar] [CrossRef]
- Padwa, A.; Kulkarni, S.Y.; Zhang, Z. Reaction of Carbonyl Compounds with Ethyl Lithiodiazoacetate. J. Org. Chem. 1990, 55, 4144–4153. [Google Scholar] [CrossRef]
- De Angelis, L.; Haug, G.C.; Rivera, G.; Biswas, S.; Al-Sayyed, A.; Arman, H.; Larionov, O.; Doyle, M.P. Site Reversal in Nucleophilic Addition to 1,2,3-Triazine 1-Oxides. J. Am. Chem. Soc. 2023, 145, 13059–13068. [Google Scholar] [CrossRef]
- Delgado-Maldonado, T.; Moreno-Rodriguez, A.; Gonzalez-Morales, L.D.; Florez-Villegas, A.L.; Rodriguez-Gonzalez, J.; Rodriguez-Paez, L.; Aguirre-Alvarado, C.; Sanchez-Palestino, L.M.; Ortíz-Pérez, E.; Rivera, G. Design, Synthesis, and In Vitro and In Silico Evaluation of 1,3,4-Oxadiazoles as Anti-Trypanosoma cruzi and Anti-Leishmania mexicana Agents. ChemMedChem 2024, 19, e202400241. [Google Scholar] [CrossRef] [PubMed]
- González-Morales, L.D.; Moreno-Rodríguez, A.; Vázquez-Jiménez, L.K.; Delgado-Maldonado, T.; Juárez-Saldivar, A.; Ortiz-Pérez, E.; Paz-Gonzalez, A.D.; Lara-Ramírez, E.E.; Yépez-Mulia, L.; Meza, P.; et al. Triose Phosphate Isomerase Structure-Based Virtual Screening and In Vitro Biological Activity of Natural Products as Leishmania mexicana Inhibitors. Pharmaceutics 2023, 15, 2046. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S. Improving Early Drug Discovery through ADME Modelling an Overview. Drugs R D 2007, 8, 349–362. [Google Scholar] [CrossRef]
- Vieites, M.; Smircich, P.; Parajón-Costa, B.; Rodríguez, J.; Galaz, V.; Olea-Azar, C.; Otero, L.; Aguirre, G.; Cerecetto, H.; González, M.; et al. Potent in vitro anti-Trypanosoma cruzi activity of pyridine-2-thiol N-oxide metal complexes having an inhibitory effect on parasite-specific fumarate reductase. J. Biol. Inorg. Chem. Publ. Soc. Biol. Inorg. Chem. 2008, 13, 723–735. [Google Scholar] [CrossRef]
- Lapier, M.; Zuniga-Lopez, M.C.; Aguilera-Venegas, B.; Adam, R.; Abarca, B.; Ballesteros, R.; Lopez-Munoz, R.; Maya, J.D.; Olea-Azar, C. Evaluation of the Novel Antichagasic Activity of [1,2,3]Triazolo[1,5-a]pyridine Derivatives. Curr. Top. Med. Chem. 2017, 17, 399–411. [Google Scholar] [CrossRef]
Compound | R1 | R2 | |||||
---|---|---|---|---|---|---|---|
Series a | Yield % | Series b | Yield % | Series c | Yield % | ||
3 | –H | 56 | –CH3 | 95 | –F | 68 | |
4 | –H | 72 | –CH3 | 63 | –F | 71 | |
5 | –H | 74 | –CH3 | 86 | –F | 68 | |
6 | –H | 71 | –CH3 | 71 | –F | 75 | |
7 | –H | 66 | –CH3 | 77 | –F | 75 | |
8 | –H | 80 | –CH3 | 75 | –F | 73 | |
9 | –H | 75 | –CH3 | 99 | –F | 81 | |
10 | –H | 75 | –CH3 | 72 | –F | 95 | |
11 | –H | 85 | –CH3 | 67 | –F | 70 | |
12 | –H | 89 | –CH3 | 77 | –F | 79 |
Compound | R1 | R2 | T. cruzi IC50 (µM ± SD) | L. mexicana IC50 (µM ± SD) | ||
---|---|---|---|---|---|---|
NINOA | A1 | M379 | FCQEPS | |||
3a | Et- | –H | 54.48 ± 2.36 | 26.65 ± 3.75 * | >200 | >200 |
4a | Benzyl- | –H | 42.44 ± 1.88 * | 28.53 ± 1.50 * | >200 | >200 |
5a | 4-methylbenzyl- | –H | 56.58 ± 1.26 | 21.31 ± 1.8 * | >200 | 94.95 ± 1.36 * |
6a | Piperonyl- | –H | 27.15 ± 0.84 * | >200 | >200 | >200 |
7a | Cinnamyl- | –H | 27.77 ± 1.66 * | >200 | >200 | >200 |
8b | (–)-Menthyl- | –H | >200 | >200 | 79.09 ± 0.01 * | 82.72 ± 0.03 * |
9a | (–)-Borneyl- | –H | 55.75 ± 2.50 | 25.03 ± 2.98 * | >200 | >200 |
10a | Adamantanyl- | –H | 105.44 ± 1.34 | 46.90. ± 1.96 | 82.19 ± 0.01 * | 161.53 ± 0.03 |
11a | Citronellyl- | –H | >200 | >200 | >200 | 73.04 ± 1.78 * |
12a | Geranyl- | –H | 106.30 ± 1.43 | 117.80 ± 0.94 | >200 | 75.34 ± 4.28 * |
3b | Et- | –Me | 59.40 ± 1.45 | 106.40 ± 1.163 | >200 | >200 |
4b | Benzyl- | –Me | 26.40 ± 1.66 * | 52.55 ± 1.87 | >200 | >200 |
5b | 4-methylbenzyl– | –Me | >200 | >200 | >200 | >200 |
6b | Piperonyl- | –Me | 53.96 ± 2.29 | 50.18 ± 2.31 | >200 | >200 |
7b | Cinnamyl- | –Me | 99.23 ± 0.76 | >200 | >200 | 116.71 ± 0.03 |
8b | (–)-Menthyl- | –Me | 106.85 ± 0.50 | 51.64 ± 1.60 | >200 | >200 |
9b | (–)-Borneyl- | –Me | 22.29 ± 1.60 * | 38.50 ± 2.20 | 39.96 ± 0.01 * | 79.87 ± 0.02 * |
10b | Adamantanyl- | –Me | 20.98 ± 0.15 * | 111.38 ± 1.14 | >200 | 92.93 ± 0.02 * |
11b | Citronellyl- | –Me | >200 | 51.61 ± 0.59 | >200 | >200 |
12b | Geranyl- | –Me | >200 | >200 | 55.18 ± 2.75 * | 57.03 ± 0.02 * |
3c | Et- | –F | 100.00 ± 1.86 | 91.73 ± 1.72 | >200 | 118.48 ± 2.08 |
4c | Benzyl- | –F | >200 | >200 | >200 | >200 |
5c | 4-methylbenzyl- | –F | >200 | 20.80 ± 0.10 * | >200 | >200 |
6c | Piperonyl- | –F | >200 | 25.43 ± 0.60 * | >200 | >200 |
7c | Cinnamyl- | –F | 63.09 ± 1.64 | 22.79 ± 0.69 * | >200 | >200 |
8c | (–)-Menthyl- | –F | 46.02 ± 3.33 | 21.64 ± 1.51 * | >200 | 90.85 ± 5.0 * |
9c | (–)-Borneyl- | –F | 26.23 ± 1.55 * | >200 | >200 | >200 |
10c | Adamantanyl- | –F | 50.56 ± 1.06 | 38.23 ± 2.86 | 54.80 ± 0.02 * | >200 |
11c | Citronellyl- | –F | 79.88 ± 2.60 | 24.88 ± 4.10 * | >200 | >200 |
12c | Geranyl- | –F | 49.10 ± 2.5 | 50.08 ± 1.0 | 85.98 ± 0.02 * | 113.75 ± 7.03 * |
Nfx | 7.09 ± 0.12 | 19.30 ± 0.08 | ||||
Bzn | 30.3 ± 0.03 | 39.08 ± 0.07 | ||||
Glc | 133.96 ± 4.32 | 125.23 ± 11.64 |
Compound | Macrophage J774.2 CC50 (µM ± SD) | Selectivity Index | |||
---|---|---|---|---|---|
T. cruzi | L. mexicana | ||||
NINOA | A1 | M379 | FCQEPS | ||
3a | >200 | >3.6 | >7.5 | >1 | >1 |
4a | >200 | >4.7 | >7.0 | >1 | >1 |
5a | >200 | >3.5 | >9.3 | >1 | >2.1 |
6a | >200 | >7.3 | >1 | >1 | >1 |
7a | >200 | >7.20 | >1 | >1 | >1 |
8a | >200 | >1 | >1 | >2.5 | >2.4 |
9a | >200 | >3.6 | >8.0 | >1 | >1 |
10a | >200 | >1.9 | >4.3 | >2.4 | >1.2 |
11a | 118.7 ± 7.3 | 0.5 | 0.6 | 0.6 | 1.6 |
12a | 25.0 ± 0.8 | 0.2 | 0.2 | 0.1 | 0.3 |
3b | >200 | >3.3 | >1.9 | >1 | >1 |
4b | >200 | >7.5 | >3.8 | >1 | >1 |
5b | >200 | >1 | >1 | >1 | >1 |
6b | >200 | >3.7 | >4.0 | >1 | >1 |
7b | >200 | >2.0 | >1 | >1 | >1.7 |
8b | >200 | >1.8 | >3.9 | >1 | >1 |
9b | >200 | >8.9 | >5.2 | >5.0 | >2.5 |
10b | >200 | >9.5 | >1.8 | >1 | >2.1 |
11b | 169.8 ± 1.3 | 0.8 | 3.3 | 0.8 | 0.8 |
12b | >200 | >1 | >1 | >3.6 | >3.5 |
3c | >200 | >1.9 | >2.2 | >1 | >1.7 |
4c | >200 | >1 | >1 | >1 | >1 |
5c | >200 | >1 | >9.6 | >1 | >1 |
6c | >200 | >1 | >7.9 | >1 | >1 |
7c | >200 | >3.1 | >8.8 | >1 | >1 |
8c | >200 | >4.3 | >9.2 | >1 | >2.2 |
9c | >200 | >7.6 | >1 | >1 | >1 |
10c | >200 | >4.0 | >5.2 | >3.6 | >1 |
11c | >200 | >2.5 | >8.0 | >1 | >1 |
12c | >200 | >4.1 | >4.0 | >2.3 | >1.7 |
Nfx | 164.2 | 23.2 | 8.5 | ||
Bzn | 133.9 | 4.4 | 3.4 | ||
Glc | 273.2 | 2.0 | 2.2 |
Compound | Physicochemical Properties | |||||||
---|---|---|---|---|---|---|---|---|
MW (g/mol) | HBA | HBD | RB | TPSA Å2 | Log P | RB | Log S | |
3a | 313.35 | 5 | 0 | 7 | 65.49 | 3.37 | 7 | Moderately soluble |
4a | 375.42 | 5 | 0 | 8 | 65.49 | 4.25 | 8 | Moderately soluble |
5a | 389.44 | 5 | 0 | 8 | 65.49 | 4.57 | 8 | Moderately soluble |
6a | 419.43 | 7 | 0 | 8 | 83.95 | 4.07 | 8 | Moderately soluble |
7a | 401.45 | 5 | 0 | 9 | 65.49 | 4.77 | 9 | Moderately soluble |
8a | 423.54 | 5 | 0 | 8 | 65.49 | 5.42 | 8 | Poorly soluble |
9a | 421.53 | 5 | 0 | 7 | 65.49 | 4.39 | 7 | Poorly soluble |
10a | 433.54 | 5 | 0 | 8 | 65.49 | 5.19 | 8 | Poorly soluble |
11a | 423.54 | 5 | 0 | 12 | 65.49 | 5.73 | 12 | Poorly soluble |
12a | 421.53 | 5 | 0 | 11 | 65.49 | 5.53 | 11 | Poorly soluble |
3b | 327.37 | 5 | 0 | 7 | 65.49 | 3.73 | 7 | Moderately soluble |
4b | 389.44 | 5 | 0 | 8 | 65.49 | 4.56 | 8 | Moderately soluble |
5b | 403.47 | 5 | 0 | 8 | 65.49 | 4.93 | 8 | Moderately soluble |
6b | 433.45 | 7 | 0 | 8 | 83.95 | 4.42 | 8 | Moderately soluble |
7b | 415.48 | 5 | 0 | 9 | 65.49 | 5.08 | 9 | Moderately soluble |
8b | 437.57 | 5 | 0 | 8 | 65.49 | 5.75 | 8 | Poorly soluble |
9b | 435.56 | 5 | 0 | 7 | 65.49 | 4.67 | 7 | Poorly soluble |
10b | 447.57 | 5 | 0 | 8 | 65.49 | 5.55 | 8 | Poorly soluble |
11b | 437.57 | 5 | 0 | 12 | 65.49 | 6.07 | 12 | Poorly soluble |
12b | 435.56 | 5 | 0 | 11 | 65.49 | 5.93 | 11 | Poorly soluble |
3c | 331.34 | 6 | 0 | 7 | 65.49 | 3.69 | 7 | Moderately soluble |
4c | 393.41 | 6 | 0 | 8 | 65.49 | 4.54 | 8 | Moderately soluble |
5c | 407.43 | 6 | 0 | 8 | 65.49 | 4.88 | 8 | Moderately soluble |
6c | 437.42 | 8 | 0 | 8 | 83.95 | 4.4 | 8 | Moderately soluble |
7c | 419.44 | 6 | 0 | 9 | 65.49 | 5.08 | 9 | Moderately soluble |
8c | 441.53 | 6 | 0 | 8 | 65.49 | 5.76 | 8 | Poorly soluble |
9c | 439.52 | 6 | 0 | 7 | 65.49 | 4.68 | 7 | Poorly soluble |
10c | 451.53 | 6 | 0 | 8 | 65.49 | 5.5 | 8 | Poorly soluble |
11c | 441.53 | 6 | 0 | 12 | 65.49 | 6.04 | 12 | Poorly soluble |
12c | 439.52 | 6 | 0 | 11 | 65.49 | 5.83 | 11 | Poorly soluble |
Nfx | 287.29 | 6 | 0 | 3 | 117.08 | 0.54 | 3 | Soluble |
Bzn | 260.25 | 4 | 1 | 6 | 92.74 | 0.49 | 6 | Soluble |
Glc | 365.98 | 9 | 7 | 6 | 167.55 | −2.9 | 6 | Highly soluble |
Compound | Pharmacokinetic Properties | |||||||
---|---|---|---|---|---|---|---|---|
GI Absorption | BBB Permeant | Pgp Substrate | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | |
3a | High | Yes | No | Yes | Yes | Yes | No | No |
4a | High | Yes | No | Yes | Yes | Yes | No | Yes |
5a | High | Yes | No | Yes | Yes | Yes | No | Yes |
6a | High | No | No | Yes | Yes | Yes | No | Yes |
7a | High | Yes | No | Yes | Yes | Yes | No | Yes |
8a | High | No | No | No | Yes | Yes | Yes | Yes |
9a | High | No | Yes | No | No | Yes | No | Yes |
10a | High | No | Yes | No | Yes | Yes | Yes | Yes |
11a | High | No | No | No | Yes | Yes | No | Yes |
12a | High | No | No | No | No | Yes | No | Yes |
3b | High | Yes | No | Yes | Yes | Yes | No | No |
4b | High | Yes | No | Yes | Yes | Yes | No | Yes |
5b | High | Yes | No | No | Yes | Yes | No | Yes |
6b | High | No | No | No | Yes | Yes | No | Yes |
7b | High | No | No | Yes | Yes | Yes | No | Yes |
8b | High | No | Yes | No | Yes | Yes | Yes | Yes |
9b | High | No | Yes | No | No | Yes | No | Yes |
10b | High | No | Yes | No | Yes | Yes | Yes | Yes |
11b | High | No | Yes | No | No | Yes | No | Yes |
12b | High | No | No | No | No | Yes | No | Yes |
3c | High | Yes | No | Yes | Yes | Yes | No | No |
4c | High | Yes | No | Yes | Yes | Yes | No | Yes |
5c | High | No | No | Yes | Yes | Yes | No | Yes |
6c | High | No | No | Yes | Yes | Yes | No | Yes |
7c | High | No | No | Yes | Yes | Yes | No | Yes |
8c | High | No | No | No | Yes | Yes | Yes | Yes |
9c | High | No | Yes | No | No | Yes | No | No |
10c | High | No | Yes | No | Yes | Yes | Yes | Yes |
11c | High | No | Yes | No | No | Yes | No | Yes |
12c | High | No | No | No | No | Yes | No | Yes |
Nfx | Low | No | No | No | No | No | No | No |
Bzn | High | No | No | No | No | No | No | No |
Glc | High | No | No | No | No | No | No | No |
Compound | Toxicity | |||
---|---|---|---|---|
Hepatoxicity | Carcinogenicity | Mutagenicity | Cytotoxicity | |
3a | Inactive | Inactive | Inactive | Inactive |
4a | Inactive | Inactive | Inactive | Inactive |
5a | Inactive | Inactive | Inactive | Inactive |
6a | Inactive | Inactive | Inactive | Inactive |
7a | Inactive | Inactive | Inactive | Inactive |
8a | Inactive | Inactive | Inactive | Inactive |
9a | Inactive | Inactive | Inactive | Inactive |
10a | Inactive | Inactive | Inactive | Inactive |
11a | Inactive | Active | Inactive | Inactive |
12a | Inactive | Active | Inactive | Inactive |
3b | Inactive | Inactive | Inactive | Inactive |
4b | Inactive | Inactive | Inactive | Inactive |
5b | Inactive | Inactive | Inactive | Inactive |
6b | Inactive | Inactive | Inactive | Inactive |
7b | Inactive | Inactive | Inactive | Inactive |
8b | Inactive | Inactive | Inactive | Inactive |
9b | Inactive | Inactive | Inactive | Inactive |
10b | Inactive | Inactive | Inactive | Inactive |
11b | Inactive | Active | Inactive | Inactive |
12b | Inactive | Active | Inactive | Inactive |
3c | Inactive | Inactive | Inactive | Inactive |
4c | Inactive | Inactive | Inactive | Inactive |
5c | Inactive | Inactive | Inactive | Inactive |
6c | Inactive | Inactive | Inactive | Inactive |
7c | Inactive | Inactive | Inactive | Inactive |
8c | Inactive | Inactive | Inactive | Inactive |
9c | Inactive | Inactive | Inactive | Inactive |
10c | Inactive | Inactive | Inactive | Inactive |
11c | Inactive | Inactive | Inactive | Inactive |
12c | Inactive | Inactive | Inactive | Inactive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Palestino, L.M.; Moreno-Rodríguez, A.; Navarrete-Carriola, D.V.; Martínez-Archundia, M.; López-Vargas, M.; Argueta-Figueroa, L.; Vázquez-Jiménez, L.K.; Paz-González, A.D.; Ortiz-Pérez, E.; Doyle, M.P.; et al. Design, Synthesis, In Vitro and In Silico Biological Evaluation of New Pyridine-2,5-Dicarboxylates Esters Bearing Natural Source Fragments as Anti-Trypanosomatid Agents. Pharmaceutics 2025, 17, 1271. https://doi.org/10.3390/pharmaceutics17101271
Sánchez-Palestino LM, Moreno-Rodríguez A, Navarrete-Carriola DV, Martínez-Archundia M, López-Vargas M, Argueta-Figueroa L, Vázquez-Jiménez LK, Paz-González AD, Ortiz-Pérez E, Doyle MP, et al. Design, Synthesis, In Vitro and In Silico Biological Evaluation of New Pyridine-2,5-Dicarboxylates Esters Bearing Natural Source Fragments as Anti-Trypanosomatid Agents. Pharmaceutics. 2025; 17(10):1271. https://doi.org/10.3390/pharmaceutics17101271
Chicago/Turabian StyleSánchez-Palestino, Luis M., Adriana Moreno-Rodríguez, Diana V. Navarrete-Carriola, Marlet Martínez-Archundia, Marhian López-Vargas, Liliana Argueta-Figueroa, Lenci K. Vázquez-Jiménez, Alma D. Paz-González, Eyra Ortiz-Pérez, Michael P. Doyle, and et al. 2025. "Design, Synthesis, In Vitro and In Silico Biological Evaluation of New Pyridine-2,5-Dicarboxylates Esters Bearing Natural Source Fragments as Anti-Trypanosomatid Agents" Pharmaceutics 17, no. 10: 1271. https://doi.org/10.3390/pharmaceutics17101271
APA StyleSánchez-Palestino, L. M., Moreno-Rodríguez, A., Navarrete-Carriola, D. V., Martínez-Archundia, M., López-Vargas, M., Argueta-Figueroa, L., Vázquez-Jiménez, L. K., Paz-González, A. D., Ortiz-Pérez, E., Doyle, M. P., & Rivera, G. (2025). Design, Synthesis, In Vitro and In Silico Biological Evaluation of New Pyridine-2,5-Dicarboxylates Esters Bearing Natural Source Fragments as Anti-Trypanosomatid Agents. Pharmaceutics, 17(10), 1271. https://doi.org/10.3390/pharmaceutics17101271