Chemical Composition and Bioactivity Dataset Integration to Identify Antiproliferative Compounds in Phyllanthus Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Plant Samples
2.3. Ethanolic Extracts Preparation
2.4. Antiproliferative Assay
2.5. Chemical Characterization of Test Extracts
2.5.1. Total Phenolic and Flavonoid Contents
2.5.2. Antioxidant Capacity
2.5.3. High-Performance Liquid Chromatography Coupled with Mass Spectrometry
2.6. LC-MS-Derived Metabolite Profile Pre-Processing
2.7. Integration of Bioactivity and Chemical Composition Datasets
2.8. Purification and Elucidation of Antiproliferative Candidates 1–7
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization: Total Flavonoid and Phenolics Content and Antioxidant Capacity
3.2. Characterization of Phyllanthus Aerial Part-Derived Extracts Based on LC-ESI-MS Data
3.3. Antiproliferative Activity of Phyllanthus Aerial Part-Derived Extracts
3.4. Recognition of Antiproliferative Candidates from Phyllanthus Plants Using Chemical Composition and Bioactivity Dataset Integration
3.5. Isolation and Identification of Antiproliferative Candidates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiran, K.R.; Swathy, P.S.; Paul, B.; Shama Prasada, K.; Radhakrishna Rao, M.; Joshi, M.B.; Rai, P.S.; Satyamoorthy, K.; Muthusamy, A. Untargeted Metabolomics and DNA Barcoding for Discrimination of Phyllanthus Species. J. Ethnopharmacol. 2021, 273, 113928. [Google Scholar] [CrossRef] [PubMed]
- Calixto, J.B.; Santos, A.R.S.; Filho, V.C.; Yunes, R.A. A Review of the Plants of the Genus Phyllanthus: Their Chemistry, Pharmacology, and Therapeutic Potential. Med. Res. Rev. 1998, 18, 225–258. [Google Scholar] [CrossRef]
- Nisar, M.F.; He, J.; Ahmed, A.; Yang, Y.; Li, M.; Wan, C. Chemical Components and Biological Activities of the Genus Phyllanthus: A Review of the Recent Literature. Molecules 2018, 23, 2567. [Google Scholar] [CrossRef]
- Bagalkotkar, G.; Sagineedu, S.R.; Saad, M.S.; Stanslas, J. Phytochemicals from Phyllanthus niruri Linn. and Their Pharmacological Properties: A Review. J. Pharm. Pharmacol. 2006, 58, 1559–1570. [Google Scholar] [CrossRef]
- Seyed, M.A. A Comprehensive Review on Phyllanthus Derived Natural Products as Potential Chemotherapeutic and Immunomodulators for a Wide Range of Human Diseases. Biocatal. Agric. Biotechnol. 2019, 17, 529–537. [Google Scholar] [CrossRef]
- Díaz-Herrera, T.H.; Caldas Martínez, M.L.; Coy-Barrera, E. Phyllanthus-Derived Naturally-Occurring Products: An Overview of Their Effects against Viruses in Cell Models. Curr. Bioact. Compd. 2024, 20, 1–26. [Google Scholar] [CrossRef]
- Nawfetrias, W.; Devy, L.; Esyanti, R.R.; Faizal, A. Phyllanthus Lignans: A Review of Biological Activity and Elicitation. Horticulturae 2024, 10, 195. [Google Scholar] [CrossRef]
- Álvarez-Caballero, J.M.; Coy-Barrera, E. Lignans. In Antioxidants Effects in Health—The Bright and the Dark Side; Nabavi, S.M., Silva, A.T.S., Eds.; Elsevier: London, UK, 2022; pp. 387–416. ISBN 978-0-12-819096-8. [Google Scholar]
- Zálešák, F.; Bon, D.J.-Y.D.; Pospíšil, J. Lignans and Neolignans: Plant Secondary Metabolites as a Reservoir of Biologically Active Substances. Pharmacol. Res. 2019, 146, 104284. [Google Scholar] [CrossRef]
- Shimaa, M.I.A.; Ibrahim, J.; Mohd, N.A.; Mohamed, S.A.; Kok, C.M. Lignans and Polyphenols of Phyllanthus amarus Schumach and Thonn Induce Apoptosis in HCT116 Human Colon Cancer Cells through Caspases-Dependent Pathway. Curr. Pharm. Biotechnol. 2021, 22, 262–273. [Google Scholar]
- Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Phyllanthus amarus: Ethnomedicinal Uses, Phytochemistry and Pharmacology: A Review. J. Ethnopharmacol. 2011, 138, 286–313. [Google Scholar] [CrossRef]
- Solyomváry, A.; Beni, S.; Boldizsar, I. Dibenzylbutyrolactone Lignans—A Review of Their Structural Diversity, Biosynthesis, Occurrence, Identification and Importance. Mini-Rev. Med. Chem. 2017, 17, 1053–1074. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Tong, Y.; Luo, Y.; Huang, L.; Gao, W. Biosynthesis, Total Synthesis, and Pharmacological Activities of Aryltetralin-Type Lignan Podophyllotoxin and Its Derivatives. Nat. Prod. Rep. 2022, 39, 1856–1875. [Google Scholar] [CrossRef] [PubMed]
- Motyka, S.; Jafernik, K.; Ekiert, H.; Sharifi-Rad, J.; Calina, D.; Al-Omari, B.; Szopa, A.; Cho, W.C. Podophyllotoxin and Its Derivatives: Potential Anticancer Agents of Natural Origin in Cancer Chemotherapy. Biomed. Pharmacother. 2023, 158, 114145. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hu, Y.; Kong, W.; Yang, M. Evaluation and Structure-Activity Relationship Analysis of a New Series of Arylnaphthalene Lignans as Potential Anti-Tumor Agents. PLoS ONE 2014, 9, e93516. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Shin, D. Arylnaphthalene Lactones: Structures and Pharmacological Potentials. Phytochem. Rev. 2021, 20, 1033–1054. [Google Scholar] [CrossRef]
- Trajanoska, K.; Bhérer, C.; Taliun, D.; Zhou, S.; Richards, J.B.; Mooser, V. From Target Discovery to Clinical Drug Development with Human Genetics. Nature 2023, 620, 737–745. [Google Scholar] [CrossRef]
- Ye, J.; Wu, J.; Liu, B. Therapeutic Strategies of Dual-Target Small Molecules to Overcome Drug Resistance in Cancer Therapy. Biochim. Biophys. Acta-Rev. Cancer 2023, 1878, 188866. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Gielecińska, A.; Kciuk, M.; Mujwar, S.; Celik, I.; Kołat, D.; Kałuzińska-Kołat, Ż.; Kontek, R. Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells 2023, 12, 986. [Google Scholar] [CrossRef]
- Balachandran, C.; Duraipandiyan, V.; Arun, Y.; Sangeetha, B.; Emi, N.; Al-Dhabi, N.A.; Ignacimuthu, S.; Inaguma, Y.; Okamoto, A.; Perumal, P.T. Isolation and Characterization of 2-Hydroxy-9,10-Anthraquinone from Streptomyces olivochromogenes (ERINLG-261) with Antimicrobial and Antiproliferative Properties. Rev. Bras. Farmacogn. 2016, 26, 285–295. [Google Scholar] [CrossRef]
- Buitrago, D.; Buitrago-Villanueva, I.; Barbosa-Cornelio, R.; Coy-Barrera, E. Comparative Examination of Antioxidant Capacity and Fingerprinting of Unfractionated Extracts from Different Plant Parts of Quinoa (Chenopodium quinoa) Grown under Greenhouse Conditions. Antioxidants 2019, 8, 238. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-H.; Kang, Y.-P.; Wang, N.-H.; Jou, H.-J.; Wang, T.-A. Sesame Ingestion Affects Sex Hormones, Antioxidant Status, and Blood Lipids in Postmenopausal Women. J. Nutr. 2006, 136, 1270–1275. [Google Scholar] [CrossRef] [PubMed]
- Tuchinda, P.; Kornsakulkarn, J.; Pohmakotr, M.; Kongsaeree, P.; Prabpai, S.; Yoosook, C.; Kasisit, J.; Napaswad, C.; Sophasan, S.; Reutrakul, V. Dichapetalin-Type Triterpenoids and Lignans from the Aerial Parts of Phyllanthus acutissima. J. Nat. Prod. 2008, 71, 655–663. [Google Scholar] [CrossRef]
- Desai, D.C.; Jacob, J.; Almeida, A.; Kshirsagar, R.; Manju, S.L. Isolation, Structural Elucidation and Anti-Inflammatory Activity of Astragalin, (−)-Hinokinin, Aristolactam I and Aristolochic Acids (I & II) from Aristolochia indica. Nat. Prod. Res. 2014, 28, 1413–1417. [Google Scholar] [CrossRef]
- Fukamiya, N.; Lee, K.-H. Antitumor Agents, 81. Justicidin-A and Diphyllin, Two Cytotoxic Principles from Justicia procumbens. J. Nat. Prod. 1986, 49, 348–350. [Google Scholar] [CrossRef]
- Wang, C.L.J.; Ripka, W.C. Total Synthesis of (±)-Justicidin P. A New Lignan Lactone from Justicia extensa. J. Org. Chem. 1983, 48, 2555–2557. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Murtijaya, J. Antioxidant Properties of Phyllanthus amarus Extracts as Affected by Different Drying Methods. LWT-Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Liu, X.; Cui, C.; Zhao, M.; Wang, J.; Luo, W.; Yang, B.; Jiang, Y. Identification of Phenolics in the Fruit of Emblica (Phyllanthus emblica L.) and Their Antioxidant Activities. Food Chem. 2008, 109, 909–915. [Google Scholar] [CrossRef]
- Bansal, V.; Sharma, A.; Ghanshyam, C.; Singla, M.L. Rapid HPLC Method Development for Determination of Vitamin C, Phenolic Acids, Hydroxycinnamic Acid and Flavonoids in Emblica officinalis Juice. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 619–624. [Google Scholar] [CrossRef]
- Bansal, V.; Sharma, A.; Ghanshyam, C.; Singla, M.L. Coupling of Chromatographic Analyses with Pretreatment for the Determination of Bioactive Compounds in Emblica officinalis Juice. Anal. Methods 2014, 6, 410–418. [Google Scholar] [CrossRef]
- Fang, S.; Koteswara Rao, Y.; Tzeng, Y. Anti-Oxidant and Inflammatory Mediator’s Growth Inhibitory Effects of Compounds Isolated from Phyllanthus Urinaria. J. Ethnopharmacol. 2008, 116, 333–340. [Google Scholar] [CrossRef]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabolomics 2013, 1, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-S.; Lin, Z.-J.; Xiao, M.-L.; Niu, H.-J.; Zhang, B. The Spectrum-Effect Relationship—A Rational Approach to Screening Effective Compounds, Reflecting the Internal Quality of Chinese Herbal Medicine. Chin. J. Nat. Med. 2016, 14, 177–184. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, R.C.; Zhang, S.; Preacher, K.J.; Rucker, D.D. On the Practice of Dichotomization of Quantitative Variables. Psychol. Methods 2002, 7, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Royston, P. The Cost of Dichotomising Continuous Variables. BMJ 2006, 332, 1080. [Google Scholar] [CrossRef]
- Caesar, L.K.; Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Opportunities and Limitations for Untargeted Mass Spectrometry Metabolomics to Identify Biologically Active Constituents in Complex Natural Product Mixtures. J. Nat. Prod. 2019, 82, 469–484. [Google Scholar] [CrossRef]
- Britton, E.R.; Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis Canadensis (Goldenseal). J. Nat. Prod. 2018, 81, 484–493. [Google Scholar] [CrossRef]
- Liu, G.; Wu, J.; Si, J.; Wang, J.; Yang, M. Complete Assignments of 1H and 13C NMR Data for Three New Arylnaphthalene Lignan from Justicia procumbens. Magn. Reson. Chem. 2008, 46, 283–286. [Google Scholar] [CrossRef]
- da Silva, R.; Maia Ruas, M.; Marcos Donate, P. Complete Assignments of 1H and 13C NMR Spectral Data for Arylnaphthalene Lignan Lactones. Magn. Reson. Chem. 2007, 45, 902–904. [Google Scholar] [CrossRef]
- Marcotullio, M.C.; Pelosi, A.; Curini, M. Hinokinin, an Emerging Bioactive Lignan. Molecules 2014, 19, 14862–14878. [Google Scholar] [CrossRef] [PubMed]
- Cunha, N.L.; Teixeira, G.M.; Martins, T.D.; Souza, A.R.; Oliveira, P.F.; Símaro, G.V.; Rezende, K.C.S.; Gonçalves, N.D.S.; Souza, D.G.; Tavares, D.C.; et al. (−)-Hinokinin Induces G2/M Arrest and Contributes to the Antiproliferative Effects of Doxorubicin in Breast Cancer Cells. Planta Medica 2016, 82, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Zhou, S.; Wu, S.; Hong, Z.; Zhang, Y.; Wang, M.; Yang, Y.; Wu, H. Justicidin B Inhibits PDGF-BB-Induced Proliferation and ECM Accumulation in Mesangial Cells via Nrf2/HO-1 and Akt/MTOR Signaling Pathway. Nat. Prod. Commun. 2020, 15, 1934578X20923821. [Google Scholar] [CrossRef]
- Tajuddeen, N.; Muyisa, S.; Maneenet, J.; Nguyen, H.H.; Naidoo-Maharaj, D.; Maharaj, V.; Awale, S.; Bringmann, G. Justicidin B and Related Lignans from Two South African Monsonia Species with Potent Activity against HeLa Cervical Cancer Cells. Phytochem. Lett. 2024, 60, 234–238. [Google Scholar] [CrossRef]
- Ren, Y.; Yuan, C.; Deng, Y.; Kanagasabai, R.; Ninh, T.N.; Tu, V.T.; Chai, H.-B.; Soejarto, D.D.; Fuchs, J.R.; Yalowich, J.C.; et al. Cytotoxic and Natural Killer Cell Stimulatory Constituents of Phyllanthus songboiensis. Phytochemistry 2015, 111, 132–140. [Google Scholar] [CrossRef]
Extract | TPC (mg GAE/g DE) | TFC (mg QE/g DE) | Antioxidant Capacity | ||
---|---|---|---|---|---|
FRAP (TE µM/mg DE) | DPPH (IC50 µg/mL) | ABTS (IC50 µg/mL) | |||
P. urinaria | 173.1 ± 20.6 b | 14.2 ± 0.2 c | 34.8 ± 0.9 b | 19.9 ± 1.7 ab | 8.5 ± 1.1 ab |
P. caribaeus | 215.5 ± 5.9 a | 13.3 ± 0.7 c | 28.4 ± 0.2 c | 17.6 ± 1.6 a | 7.3 ± 0.7 a |
P. salviifolius | 228.2 ± 5.4 a | 17.3 ± 0.1 a | 38.3 ± 2.7 b | 21.9 ± 4.6 ab | 7.6 ± 0.9 a |
P. caroliniensis | 139.8 ± 6.2 c | 15.9 ± 0.3 b | 27.1 ± 0.5 c | 24.3 ± 1.7 b | 10.5 ± 0.8 b |
P. lathyroides | 142.6 ± 5.6 c | 9.2 ± 0.4 d | 24.2 ± 0.7 d | 24.9 ± 1.5 b | 11.2 ± 0.7 b |
P. madeirensis | 215.2 ± 6.1 a | 9.8 ± 0.5 d | 45.7 ± 1.1 a | 25.3 ± 1.2 b | 6.9 ± 0.6 a |
PC-3 b | SiHa b | A549 b | L929 c | |||||
---|---|---|---|---|---|---|---|---|
Samples a | IC50 c | CI d | IC50 c | CI d | IC50 c | CI d | IC50 c | CI d |
P. urinaria | 77.2 | 72.3–80.5 | 101 | 96.3–107 | 96.3 | 91.3–102 | >250 | - |
P. caribaeus | 112 | 107–117 | 49.8 | 45.7–52.8 | 188 | 179–196 | 235 | 227–244 |
P. salviifolius | 95.3 | 90.7–101 | 131 | 126–135 | 133 | 122–139 | 207 | 201–213 |
P. caroliniensis | 127 | 121–133 | 67.5 | 64.3–69.2 | >250 | - | >250 | - |
P. lathyroides | 89.6 | 83.3–92.6 | 22.1 | 20.2–24.6 | 105 | 97.3–111 | 225 | 219–232 |
P. madeirensis | 235 | 230–241 | >250 | - | >250 | - | >250 | - |
PC-3 b | SiHa b | A549 b | L929 c | |||||
---|---|---|---|---|---|---|---|---|
Compounds a | IC50 c | CI d | IC50 c | CI d | IC50 c | CI d | IC50 c | CI d |
1 | 18.3 | 17.3–19.2 | 2.55 | 2.46–2.67 | 62.5 | 60.2–64.1 | >100 | - |
2 | 6.55 | 6.05–6.98 | 56.8 | 55.9–57.7 | 78.6 | 75.9–80.6 | >100 | - |
3 | 16.3 | 15.5–17.3 | 8.61 | 8.21–8.77 | 93.2 | 90.6–96.1 | 92.3 | 90.0–94.4 |
4 | 4.55 | 4.38–4.66 | 61.2 | 58.9–63.5 | 12.3 | 11.5–13.0 | 76.3 | 74.9–77.2 |
5 | 17.6 | 16.8–18.2 | 6.53 | 6.01–6.89 | 50.3 | 47.8–52.6 | >100 | - |
6 | 15.3 | 14.9–16.9 | 3.62 | 3.48–3.71 | 26.5 | 25.1–27.9 | 86.3 | 85.0–88.2 |
7 | 15.2 | 14.6–15.9 | 5.23 | 4.98–5.36 | 45.3 | 44.6–46.4 | >100 | - |
ppt e | 2.22 | 2.03–2.37 | 1.85 | 1.78–1.96 | 4.82 | 4.62–5.13 | 2.53 | 2.44–2.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz, L.; Díaz-Herrera, T.H.; Coy-Barrera, E. Chemical Composition and Bioactivity Dataset Integration to Identify Antiproliferative Compounds in Phyllanthus Plants. Pharmaceutics 2024, 16, 1381. https://doi.org/10.3390/pharmaceutics16111381
Diaz L, Díaz-Herrera TH, Coy-Barrera E. Chemical Composition and Bioactivity Dataset Integration to Identify Antiproliferative Compounds in Phyllanthus Plants. Pharmaceutics. 2024; 16(11):1381. https://doi.org/10.3390/pharmaceutics16111381
Chicago/Turabian StyleDiaz, Luis, Taylor H. Díaz-Herrera, and Ericsson Coy-Barrera. 2024. "Chemical Composition and Bioactivity Dataset Integration to Identify Antiproliferative Compounds in Phyllanthus Plants" Pharmaceutics 16, no. 11: 1381. https://doi.org/10.3390/pharmaceutics16111381
APA StyleDiaz, L., Díaz-Herrera, T. H., & Coy-Barrera, E. (2024). Chemical Composition and Bioactivity Dataset Integration to Identify Antiproliferative Compounds in Phyllanthus Plants. Pharmaceutics, 16(11), 1381. https://doi.org/10.3390/pharmaceutics16111381