Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022
Abstract
:1. Introduction
2. Malaria Scenario Worldwide: A Short Update
3. Methodology for Literature Selection and Previous Literature
4. Omics-Based Strategies for Targeted Isolation of Natural Products and Discovery of New Potential Drugs
5. Novel Antimalarials Derived from Plant Extracts and Isolated Natural Products
6. Alkaloids: Potential Antimalarial Activity
7. Terpenoids: Potential Antimalarial Activity
8. Polyphenols: Potential Antimalarial Activity
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rovira-Vallbona, E.; Van Hong, N.; Kattenberg, J.H.; Huan, R.M.; Hien, N.T.T.; Ngoc, N.T.H.; Guetens, P.; Hieu, N.L.; Mai, T.T.; Duong, N.T.T.; et al. Efficacy of Dihydroartemisinin/Piperaquine and Artesunate Monotherapy for the Treatment of Uncomplicated Plasmodium falciparum Malaria in Central Vietnam. J. Antimicrob. Chemother. 2020, 75, 2272–2281. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, S.; Kubota, R.; Nishi, T.; Kamchonwongpaisan, S.; Srichairatanakool, S.; Shinzawa, N.; Syafruddin, D.; Yuda, M.; Uthaipibull, C. Genome-Wide Functional Screening of Drug-Resistance Genes in Plasmodium falciparum. Nat. Commun. 2022, 13, 6163. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2022; World Health Organization: Geneva, Switzerland, 2022.
- Datoo, M.S.; Natama, H.M.; Somé, A.; Bellamy, D.; Traoré, O.; Rouamba, T.; Tahita, M.C.; Ido, N.F.A.; Yameogo, P.; Valia, D.; et al. Efficacy and Immunogenicity of R21/Matrix-M Vaccine against Clinical Malaria after 2 Years’ Follow-up in Children in Burkina Faso: A Phase 1/2b Randomised Controlled Trial. Lancet Infect. Dis. 2022, 22, 1728–1736. [Google Scholar] [CrossRef] [PubMed]
- Kassegne, K.; Komi Koukoura, K.; Shen, H.M.; Chen, S.B.; Fu, H.T.; Chen, Y.Q.; Zhou, X.N.; Chen, J.H.; Cheng, Y. Genome-Wide Analysis of the Malaria Parasite Plasmodium falciparum Isolates From Togo Reveals Selective Signals in Immune Selection-Related Antigen Genes. Front. Immunol. 2020, 11, 552698. [Google Scholar] [CrossRef] [PubMed]
- Mulenga, M.C.; Sitali, L.; Ciubotariu, I.I.; Hawela, M.B.; Hamainza, B.; Chipeta, J.; Mharakurwa, S. Decreased Prevalence of the Plasmodium falciparum Pfcrt K76T and Pfmdr1 and N86Y Mutations Post-Chloroquine Treatment Withdrawal in Katete District, Eastern Zambia. Malar. J. 2021, 20, 329. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; L’Episcopia, M.; Menegon, M.; Souza, S.S.; Dongho, B.G.D.; Vullo, V.; Lucchi, N.W.; Severini, C. Dihydroartemisinin–Piperaquine Treatment Failure in Uncomplicated Plasmodium falciparum Malaria Case Imported from Ethiopia. Infection 2018, 46, 867–870. [Google Scholar] [CrossRef]
- Hassen, J.; Alemayehu, G.S.; Dinka, H.; Golassa, L. High Prevalence of Pfcrt 76T and Pfmdr1 N86 Genotypes in Malaria Infected Patients Attending Health Facilities in East Shewa Zone, Oromia Regional State, Ethiopia. Malar. J. 2022, 21, 286. [Google Scholar] [CrossRef]
- Froeschl, G.; Saathoff, E.; Kroidl, I.; Berens-Riha, N.; Clowes, P.; Maboko, L.; Assisya, W.; Mwalongo, W.; Gerhardt, M.; Ntinginya, E.N.; et al. Reduction of Malaria Prevalence after Introduction of Artemisinin-Combination-Therapy in Mbeya Region, Tanzania: Results from a Cohort Study with 6773 Participants. Malar. J. 2018, 17, 245. [Google Scholar] [CrossRef]
- Villena, F.E.; Sanchez, J.F.; Nolasco, O.; Braga, G.; Ricopa, L.; Barazorda, K.; Salas, C.J.; Lucas, C.; Lizewski, S.E.; Joya, C.A.; et al. Drug Resistance and Population Structure of Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon. Sci. Rep. 2022, 12, 16474. [Google Scholar] [CrossRef]
- Su, X.-Z.; Miller, L.H. The Discovery of Artemisinin and the Nobel Prize in Physiology or Medicine. Sci. China Life Sci. 2015, 58, 1175–1179. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.V.; Thuy-Nhien, N.; Tuyen, N.T.K.; Tong, N.T.; Nha-Ca, N.T.; Dong, L.T.; Quang, H.H.; Farrar, J.; Thwaites, G.; White, N.J.; et al. Rapid Decline in the Susceptibility of Plasmodium falciparum to Dihydroartemisinin–Piperaquine in the South of Vietnam. Malar. J. 2017, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Pernicová, E.; Krsek, M. Current Trends in the Epidemiology of Malaria. Epidemiol. Mikrobiol. Imunol. 2022, 71, 175–178. [Google Scholar] [PubMed]
- Moxon, C.A.; Gibbins, M.P.; Mcguinness, D.; Milner, D.A.; Marti, M. New Insights into Malaria Pathogenesis. Annu. Rev. Pathol. 2020, 15, 315–343. [Google Scholar] [CrossRef]
- Ministério da Saúde. Boletim Epidemiológico Vol.53 No 17. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/edicoes/2022/boletim-epidemiologico-vol-53-no17.pdf/view (accessed on 6 March 2023).
- Lindblade, K.A.; Li Xiao, H.; Tiffany, A.; Galappaththy, G.; Alonso, P.; Abeyasinghe, R.; Akpaka, K.; Aragon-Lopez, M.A.; Baba, E.S.; Bahena, A.; et al. Supporting Countries to Achieve Their Malaria Elimination Goals: The WHO E-2020 Initiative. Malar. J. 2021, 20, 481. [Google Scholar] [CrossRef]
- Pan, W.-H.; Xu, X.-Y.; Shi, N.; Tsang, S.; Zhang, H.-J. Antimalarial Activity of Plant Metabolites. Int. J. Mol. Sci. 2018, 19, 1382. [Google Scholar] [CrossRef]
- Kaur, H.; Mukhtar, H.M.; Singh, A.; Mahajan, A. Antiplasmodial Medicinal Plants: A Literature Review on Efficacy, Selectivity and Phytochemistry of Crude Plant Extracts. J. Biol. Act. Prod. Nat. 2018, 8, 272–294. [Google Scholar] [CrossRef]
- Cock, I.E.; Selesho, M.I.; van Vuuren, S.F. A Review of the Traditional Use of Southern African Medicinal Plants for the Treatment of Malaria. J. Ethnopharmacol. 2019, 245, 112176. [Google Scholar] [CrossRef]
- Noronha, M.; Pawar, V.; Prajapati, A.; Subramanian, R.B. A Literature Review on Traditional Herbal Medicines for Malaria. S. Afr. J. Bot. 2020, 128, 292–303. [Google Scholar] [CrossRef]
- Bekono, B.D.; Ntie-Kang, F.; Onguéné, P.A.; Lifongo, L.L.; Sippl, W.; Fester, K.; Owono, L.C.O. The Potential of Anti-Malarial Compounds Derived from African Medicinal Plants: A Review of Pharmacological Evaluations from 2013 to 2019. Malar. J. 2020, 19, 183. [Google Scholar] [CrossRef]
- Nigussie, G.; Wale, M. Medicinal Plants Used in Traditional Treatment of Malaria in Ethiopia: A Review of Ethnomedicine, Anti-Malarial and Toxicity Studies. Malar. J. 2022, 21, 262. [Google Scholar] [CrossRef] [PubMed]
- Moyo, P.; Mugumbate, G.; Eloff, J.N.; Louw, A.I.; Maharaj, V.J.; Birkholtz, L.M. Natural Products: A Potential Source of Malaria Transmission Blocking Drugs? Pharmaceuticals 2020, 13, 251. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Ma, N.; Tian, J.; Shao, Y.; Zhu, B.; Wong, Y.K.; Liang, Z.; Zou, C.; Wang, J. Target Identification of Natural Medicine with Chemical Proteomics Approach: Probe Synthesis, Target Fishing and Protein Identification. Signal Transduct. Target. Ther. 2020, 5, 72. [Google Scholar] [CrossRef] [PubMed]
- Kam, C.M.; Abuelyaman, A.S.; Li, Z.; Hudig, D.; Powers, J.C. Biotinylated Isocoumarins, New Inhibitors and Reagents for Detection, Localization, and Isolation of Serine Proteases. Bioconjug. Chem. 1993, 4, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Patricelli, M.P.; Cravatt, B.F. Activity-Based Protein Profiling: The Serine Hydrolases. Proc. Natl. Acad. Sci. USA 1999, 96, 14694–14699. [Google Scholar] [CrossRef] [PubMed]
- Murale, D.P.; Hong, S.C.; Haque, M.M.; Lee, J.-S. Photo-Affinity Labeling (PAL) in Chemical Proteomics: A Handy Tool to Investigate Protein-Protein Interactions (PPIs). Proteome Sci. 2016, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Molina, D.M.; Jafari, R.; Ignatushchenko, M.; Seki, T.; Larsson, E.A.; Dan, C.; Sreekumar, L.; Cao, Y.; Nordlund, P. Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay. Science 2013, 341, 84–87. [Google Scholar] [CrossRef]
- Gaetani, M.; Sabatier, P.; Saei, A.A.; Beusch, C.M.; Yang, Z.; Lundström, S.L.; Zubarev, R.A. Proteome Integral Solubility Alteration: A High-Throughput Proteomics Assay for Target Deconvolution. J. Proteome Res. 2019, 18, 4027–4037. [Google Scholar] [CrossRef]
- Dziekan, J.M.; Yu, H.; Chen, D.; Dai, L.; Wirjanata, G.; Larsson, A.; Prabhu, N.; Sobota, R.M.; Bozdech, Z.; Nordlund, P. Identifying Purine Nucleoside Phosphorylase as the Target of Quinine Using Cellular Thermal Shift Assay. Sci. Transl. Med. 2019, 11, eaau3174. [Google Scholar] [CrossRef]
- Lomenick, B.; Hao, R.; Jonai, N.; Chin, R.M.; Aghajan, M.; Warburton, S.; Wang, J.; Wu, R.P.; Gomez, F.; Loo, J.A.; et al. Target Identification Using Drug Affinity Responsive Target Stability (DARTS). Proc. Natl. Acad. Sci. USA 2009, 106, 21984–21989. [Google Scholar] [CrossRef]
- Piazza, I.; Kochanowski, K.; Cappelletti, V.; Fuhrer, T.; Noor, E.; Sauer, U.; Picotti, P. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell 2018, 172, 358–372.e23. [Google Scholar] [CrossRef] [PubMed]
- West, G.M.; Tang, L.; Fitzgerald, M.C. Thermodynamic Analysis of Protein Stability and Ligand Binding Using a Chemical Modification- and Mass Spectrometry-Based Strategy. Anal. Chem. 2008, 80, 4175–4185. [Google Scholar] [CrossRef] [PubMed]
- Van Vranken, J.G.; Li, J.; Mitchell, D.C.; Navarrete-Perea, J.; Gygi, S.P. Assessing Target Engagement Using Proteome-Wide Solvent Shift Assays. eLife 2021, 10, e70784. [Google Scholar] [CrossRef] [PubMed]
- Yen, K.; Travins, J.; Wang, F.; David, M.D.; Artin, E.; Straley, K.; Padyana, A.; Gross, S.; DeLaBarre, B.; Tobin, E.; et al. AG-221, a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations. Cancer Discov. 2017, 7, 478–493. [Google Scholar] [CrossRef] [PubMed]
- Popovici-Muller, J.; Lemieux, R.M.; Artin, E.; Saunders, J.O.; Salituro, F.G.; Travins, J.; Cianchetta, G.; Cai, Z.; Zhou, D.; Cui, D.; et al. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers. ACS Med. Chem. Lett. 2018, 9, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.S.; Patel, J.; Wise, D.R.; Abdel-Wahab, O.; Bennett, B.D.; Coller, H.A.; Cross, J.R.; Fantin, V.R.; Hedvat, C.V.; Perl, A.E.; et al. The Common Feature of Leukemia-Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting α-Ketoglutarate to 2-Hydroxyglutarate. Cancer Cell 2010, 17, 225–234. [Google Scholar] [CrossRef]
- Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; et al. Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature 2009, 462, 739–744. [Google Scholar] [CrossRef]
- Freire, R.T.; Bero, J.; Beaufay, C.; Selegato, D.M.; Coqueiro, A.; Choi, Y.H.; Quetin-Leclercq, J. Identification of Antiplasmodial Triterpenes from Keetia Species Using NMR-Based Metabolic Profiling. Metabolomics 2019, 15, 27. [Google Scholar] [CrossRef]
- Graziani, V.; Scognamiglio, M.; Belli, V.; Esposito, A.; D’Abrosca, B.; Chambery, A.; Russo, R.; Panella, M.; Russo, A.; Ciardiello, F.; et al. Metabolomic Approach for a Rapid Identification of Natural Products with Cytotoxic Activity against Human Colorectal Cancer Cells. Sci. Rep. 2018, 8, 5309. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Hubert, J.; Nuzillard, J.-M.; Renault, J.-H. Dereplication Strategies in Natural Product Research: How Many Tools and Methodologies behind the Same Concept? Phytochem. Rev. 2017, 16, 55–95. [Google Scholar] [CrossRef]
- Drennan, B.W.; Wicker, A.P.; Berger, B.K.; Schug, K.A. Measurements of Drugs and Metabolites in Biological Matrices Using SFC and SFE-SFC-MS. In Practical Application of Supercritical Fluid Chromatography for Pharmaceutical Research and Development; Elsevier: Amsterdam, The Netherlands, 2022; pp. 73–99. [Google Scholar]
- Ketteler, R.; Kriston-Vizi, J. High-Content Screening in Cell Biology. In Encyclopedia of Cell Biology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 234–244. [Google Scholar]
- Li, Z.; Cvijic, M.E.; Zhang, L. Cellular Imaging in Drug Discovery: Imaging and Informatics for Complex Cell Biology. In Comprehensive Medicinal Chemistry III; Elsevier: Amsterdam, The Netherlands, 2017; pp. 362–387. [Google Scholar]
- Wolfender, J.-L.; Litaudon, M.; Touboul, D.; Queiroz, E.F. Innovative Omics-Based Approaches for Prioritisation and Targeted Isolation of Natural Products—New Strategies for Drug Discovery. Nat. Prod. Rep. 2019, 36, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Kurita, K.L.; Linington, R.G. Connecting Phenotype and Chemotype: High-Content Discovery Strategies for Natural Products Research. J. Nat. Prod. 2015, 78, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Mbouna, C.D.J.; Kouipou, R.M.T.; Keumoe, R.; Tchokouaha, L.R.Y.; Fokou, P.V.T.; Tali, B.M.T.; Sahal, D.; Boyom, F.F. Potent Antiplasmodial Extracts and Fractions from Terminalia mantaly and Terminalia superba. Malar. J. 2018, 17, 142. [Google Scholar] [CrossRef]
- Chibli, L.A.; Rosa, A.L.; Nonato, M.C.; Da Costa, F.B. Untargeted LC–MS Metabolomic Studies of Asteraceae Species to Discover Inhibitors of Leishmania Major Dihydroorotate Dehydrogenase. Metabolomics 2019, 15, 59. [Google Scholar] [CrossRef]
- Navarro-Muñoz, J.C.; Selem-Mojica, N.; Mullowney, M.W.; Kautsar, S.A.; Tryon, J.H.; Parkinson, E.I.; De Los Santos, E.L.C.; Yeong, M.; Cruz-Morales, P.; Abubucker, S.; et al. A Computational Framework to Explore Large-Scale Biosynthetic Diversity. Nat. Chem. Biol. 2020, 16, 60–68. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Xu, J.; Wei, K.; Zhang, G.; Lei, L.; Yang, D.; Wang, W.; Han, Q.; Xia, Y.; Bi, Y.; Yang, M.; et al. Ethnopharmacology, Phytochemistry, and Pharmacology of Chinese Salvia Species: A Review. J. Ethnopharmacol. 2018, 225, 18–30. [Google Scholar] [CrossRef]
- Krettli, A.U.; Adebayo, J.O.; Krettli, L.G. Testing of Natural Products and Synthetic Molecules Aiming at New Antimalarials. Curr. Drug Targets 2009, 10, 261–270. [Google Scholar] [CrossRef]
- Wein, S.; Maynadier, M.; Van Ba, C.T.; Cerdan, R.; Peyrottes, S.; Fraisse, L.; Vial, H. Reliability of Antimalarial Sensitivity Tests Depends on Drug Mechanisms of Action. J. Clin. Microbiol. 2010, 48, 1651–1660. [Google Scholar] [CrossRef]
- Mokgethi-Morule, T.; N’Da, D.D. Cell Based Assays for Anti-Plasmodium Activity Evaluation. Eur. J. Pharm. Sci. 2016, 84, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Abdulrazak, A. In Vitro Antimalarial Activity of Extracts of Some Indigenous Plant Species in Kebbi State. UMYU J. Microbiol. Res. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Boeno, S.I.; Vieira, I.J.C.; Braz-Filho, R.; de Souza Passos, M.; Curcino Vieira, M.G.; do Nascimento, M.F.A.; Gontijo, D.C.; de Oliveira, A.B. Antiplasmodial and Cytotoxic Effects of the Methanol Extract, Canthinone Alkaloids, Squalene- and Protolimonoid-Type Triterpenes from Homalolepis suffruticosa Roots. J. Ethnopharmacol. 2022, 285, 114890. [Google Scholar] [CrossRef]
- Kaharudin, F.A.; Zohdi, R.M.; Mukhtar, S.M.; Sidek, H.M.; Bihud, N.V.; Rasol, N.E.; Ahmad, F.B.; Ismail, N.H. In Vitro Antiplasmodial and Cytotoxicity Activities of Crude Extracts and Major Compounds from Goniothalamus lanceolatus. J. Ethnopharmacol. 2020, 254, 112657. [Google Scholar] [CrossRef]
- Dwivedi, M.K.; Shukla, R.; Sharma, N.K.; Manhas, A.; Srivastava, K.; Kumar, N.; Singh, P.K. Evaluation of Ethnopharmacologically Selected Vitex negundo L. for In Vitro Antimalarial Activity and Secondary Metabolite Profiling. J. Ethnopharmacol. 2021, 275, 114076. [Google Scholar] [CrossRef]
- Yun, H.S.; Dinzouna-Boutamba, S.D.; Lee, S.; Moon, Z.; Kwak, D.; Chung, D.I.; Hong, Y.; Rhee, M.H.; Goo, Y.K. Petasites Japonicus Extract Exerts Anti-Malarial Effects by Inhibiting Platelet Activation. Phytomedicine 2022, 102, 154167. [Google Scholar] [CrossRef] [PubMed]
- Pratama, A.N.W.; Pratoko, D.K.; Triatmoko, B.; Winarto, N.B.; Laksono, T.A.; Nugraha, A.S. Senna occidentalis and Cyanthillium patulum: Indonesian Herbs as Source for Antimalarial Agents. Proc. Int. Conf. Green Technol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Budiarti, M.; Maruzy, A.; RK, N.R.; Brotojoyo, E. Aktivitas Antimalaria Daun Gempol (Nauclea orientalis (L.) L) Terhadap Plasmodium falciparum. Media Penelit. Pengemb. Kesehat. 2020, 30, 135–146. [Google Scholar] [CrossRef]
- Cudjoe, E.; Cudjoe, E.; Donu, D.; Donu, D.; Okonu, R.E.; Okonu, R.E.; Amponsah, J.A.; Amoah, L.E.; Amoah, L.E. The in Vitro Antiplasmodial Activities of Aqueous Extracts of Selected Ghanaian Herbal Plants. J. Parasitol. Res. 2020, 2020, 5041919. [Google Scholar] [CrossRef]
- Ekasari, W.; Widya Pratiwi, D.; Amanda, Z.; Suciati; Widyawaruyanti, A.; Arwati, H.; Uzor, P.F. Various Parts of Helianthus annuus Plants as New Sources of Antimalarial Drugs. Evid.-Based Complement. Altern. Med. 2019, 2019, 7390385. [Google Scholar] [CrossRef]
- Koffi, J.A.; Silué, K.D.; Tano, D.K.; Dable, T.M.; Yavo, W. Evaluation of Antiplasmodial Activity of Extracts from Endemic Medicinal Plants Used to Treat Malaria in Côte d’Ivoire. BioImpacts 2020, 10, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Sevik Kilicaslan, O.; Cretton, S.; Quirós-Guerrero, L.; Bella, M.A.; Kaiser, M.; Mäser, P.; Ndongo, J.T.; Cuendet, M. Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity. Molecules 2022, 27, 2200. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, D.C.; do Nascimento, M.F.A.; Rody, H.V.S.; Magalhães, R.A.; Margalho, L.F.; Brandão, G.C.; de Oliveira, A.B. In Vitro Antiplasmodial Activity, Targeted LC–MS Metabolite Profiling, and Identification of Major Natural Products in the Bioactive Extracts of Palicourea and Psychotria Species from the Amazonia and Atlantic Forest Biomes, Brazil. Metabolomics 2021, 17, 81. [Google Scholar] [CrossRef]
- Dwivedi, M.K.; Mishra, S.; Sonter, S.; Singh, P.K. Diterpenoids as Potential Anti-Malarial Compounds from Andrographis paniculata. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 7. [Google Scholar] [CrossRef]
- Chaniad, P.; Techarang, T.; Phuwajaroanpong, A.; Horata, N.; Septama, A.W.; Punsawad, C. Exploring Potential Antimalarial Candidate from Medicinal Plants of Kheaw Hom Remedy. Trop. Med. Infect. Dis. 2022, 7, 368. [Google Scholar] [CrossRef] [PubMed]
- Wahyuni, D.K.; Wacharasindhu, S.; Bankeeree, W.; Wahyuningsih, S.P.A.; Ekasari, W.; Purnobasuki, H.; Punnapayak, H.; Prasongsuk, S. In Vitro and in Vivo Antiplasmodial Activities of Leaf Extracts from Sonchus arvensis L. BMC Complement. Med. Ther. 2023, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Chaniad, P.; Techarang, T.; Phuwajaroanpong, A.; Plirat, W.; Viriyavejakul, P.; Septama, A.W.; Punsawad, C. Antimalarial Efficacy and Toxicological Assessment of Medicinal Plant Ingredients of Prabchompoothaweep Remedy as a Candidate for Antimalarial Drug Development. BMC Complement. Med. Ther. 2023, 23, 12. [Google Scholar] [CrossRef]
- Rummun, N.; Payne, B.; Blom van Staden, A.; Twilley, D.; Houghton, B.; Horrocks, P.; Li, W.-W.; Lall, N.; Bahorun, T.; Neergheen, V.S. Pluripharmacological Potential of Mascarene Endemic Plant Leaf Extracts. Biocatal. Agric. Biotechnol. 2023, 47, 102572. [Google Scholar] [CrossRef]
- Djouwoug, C.N.; Gounoue, R.K.; Ngueguim, F.T.; NankapTsakem, J.M.; Gouni, C.D.; Kandeda, A.C.; Ngouela, S.; Lenta, B.N.; Sewald, N.; Fekam, F.B.; et al. In Vitro and in Vivo Antiplasmodial Activity of Hydroethanolic Bark Extract of Bridelia atroviridis Müll. Arg. (Euphorbiaceae) and Lc-Ms-Based Phytochemical Analysis. J. Ethnopharmacol. 2021, 266, 113424. [Google Scholar] [CrossRef]
- Erhunse, N.; Omoregie, E.S.; Sahal, D. Antiplasmodial and Antimalarial Evaluation of a Nigerian Hepta-Herbal Agbo-Iba Decoction: Identification of Magic Bullets and Possible Facilitators of Drug Action. J. Ethnopharmacol. 2023, 301, 115807. [Google Scholar] [CrossRef]
- Guo, X.; Tang, C.C.; Thomas, D.C.; Couvreur, T.L.P.; Saunders, R.M.K. A Mega-Phylogeny of the Annonaceae: Taxonomic Placement of Five Enigmatic Genera and Support for a New Tribe, Phoenicantheae. Sci. Rep. 2017, 7, 7323. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Luyten, W. Antiparasitic Activity in Asteraceae with Special Attention to Ethnobotanical Use by the Tribes of Odisha, India. Parasite 2018, 25, 10. [Google Scholar] [CrossRef] [PubMed]
- Mogaka, S.; Molu, H.; Kagasi, E.; Ogila, K.; Waihenya, R.; Onditi, F.; Ozwara, H. Senna occidentalis (L.) Link Root Extract Inhibits Plasmodium Growth in Vitro and in Mice. BMC Complement. Med. Ther. 2023, 23, 71. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, A.; Hamann, C.; Bonnet, O.; Jullien, K.; Quetin-Leclercq, J.; Tchinda, A.; Smadja, J.; Gauvin-Bialecki, A.; Maquoi, E.; Frédérich, M. Bioactive Clerodane Diterpenoids from the Leaves of Casearia coriacea Vent. Molecules 2023, 28, 1197. [Google Scholar] [CrossRef] [PubMed]
- Abdel-ٍٍSattar, E.; Abdallah, H.M.; El-Mekkawy, S.; Ichino, C.; Kiyohara, H.; Yamada, H. Antimalarial Alkaloid from Hypoestes Forskaolii. Exp. Parasitol. 2020, 211, 107851. [Google Scholar] [CrossRef]
- Bhatt, V.; Kumari, S.; Upadhyay, P.; Agrawal, P.; Anmol; Sahal, D.; Sharma, U. Chemical Profiling and Quantification of Potential Active Constituents Responsible for the Antiplasmodial Activity of Cissampelos Pareira. J. Ethnopharmacol. 2020, 262, 113185. [Google Scholar] [CrossRef] [PubMed]
- Anmol; Kumari, S.; Kumar, R.; Singh, R.; Aggarwal, G.; Agrawal, P.; Sahal, D.; Sharma, U. Antiplasmodial Diterpenoid Alkaloid from Aconitum heterophyllum Wall. Ex Royle: Isolation, Characterization, and UHPLC-DAD Based Quantification. J. Ethnopharmacol. 2022, 287, 114931. [Google Scholar] [CrossRef]
- Keita, A.; Franetich, J.-F.; Carraz, M.; Valentin, L.; Bordessoules, M.; Baron, L.; Bigeard, P.; Dupuy, F.; Geay, V.; Tefit, M.; et al. Potent Antiplasmodial Derivatives of Dextromethorphan Reveal the Ent-Morphinan Pharmacophore of Tazopsine-Type Alkaloids. Pharmaceutics 2022, 14, 372. [Google Scholar] [CrossRef]
- Greve, H.L.; Kaiser, M.; Kaiser, M.; Schmidt, T.J. Investigation of Antiplasmodial Effects of Terpenoid Compounds Isolated from Myrrh. Planta Med. 2020, 86, 643–654. [Google Scholar] [CrossRef]
- Baldé, M.A.; Tuenter, E.; Traoré, M.S.; Peeters, L.; Matheeussen, A.; Cos, P.; Caljon, G.; Vermeyen, T.; Herrebout, W.; Balde, A.M.; et al. Antiplasmodial Oleanane Triterpenoids from Terminalia albida Root Bark. J. Nat. Prod. 2021, 84, 666–675. [Google Scholar] [CrossRef]
- Nyandoro, S.S.; Maeda, G.; Munissi, J.J.E.; Gruhonjic, A.; Fitzpatrick, P.A.; Lindblad, S.; Duffy, S.; Pelletier, J.; Pan, F.; Puttreddy, R.; et al. A New Benzopyranyl Cadenane Sesquiterpene and Other Antiplasmodial and Cytotoxic Metabolites from Cleistochlamys kirkii. Molecules 2019, 24, 2746. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Latif, A.; Kong, C.-S.; Seo, Y.; Dalal, S.R.; Cassera, M.B.; Kingston, D.G.I. Antimalarial Diterpenoids from Vitex Rotundifolia: Isolation, Structure Elucidation, and in Vitro Antiplasmodial Activity. Bioorg. Chem. 2020, 100, 103925. [Google Scholar] [CrossRef] [PubMed]
- Djoumessi, A.K.; Nono, R.N.; Neumann, B.; Stammler, H.-G.; Bitchagno, G.T.M.; Efange, N.M.; Nkenfou, C.N.; Ayong, L.; Lenta, B.N.; Sewald, N.; et al. Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities. Metabolites 2023, 13, 298. [Google Scholar] [CrossRef] [PubMed]
- Mahambo, E.T.; Uwamariya, C.; Miah, M.; da Costa Clementino, L.; Alvarez, L.C.S.; Di Santo Meztler, G.P.; Trybala, E.; Said, J.; Wieske, L.H.E.; Ward, J.S.; et al. Crotofolane Diterpenoids and Other Constituents Isolated from Croton kilwae. J. Nat. Prod. 2023, 86, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wu, Y.; Dalal, S.; Merino, E.F.; Liu, Q.-F.; Xu, C.-H.; Yuan, T.; Ding, J.; Kingston, D.G.I.; Cassera, M.B.; et al. Nanomolar Antimalarial Agents against Chloroquine-Resistant Plasmodium falciparum from Medicinal Plants and Their Structure–Activity Relationships. J. Nat. Prod. 2017, 80, 96–107. [Google Scholar] [CrossRef]
- Zhou, B.; Zimbres, F.M.; Butler, J.H.; Xu, C.H.; Haney, R.S.; Wu, Y.; Cassera, M.B.; Yue, J.M. Picomolar Antimalarial Agent from a Chinese Medicinal Plant. Sci. China Chem. 2022, 65, 82–86. [Google Scholar] [CrossRef]
- Maeda, G.; Munissi, J.J.E.; Lindblad, S.; Duffy, S.; Pelletier, J.; Avery, V.M.; Nyandoro, S.S.; Erdélyi, M. A Meroisoprenoid, Heptenolides, and C-Benzylated Flavonoids from Sphaerocoryne gracilis ssp. Gracilis. J. Nat. Prod. 2020, 83, 316–322. [Google Scholar] [CrossRef]
- Du, Y.; Martin, B.A.; Valenciano, A.L.; Clement, J.A.; Goetz, M.; Cassera, M.B.; Kingston, D.G.I. Galtonosides A-E: Antiproliferative and Antiplasmodial Cholestane Glycosides from Galtonia regalis. J. Nat. Prod. 2020, 83, 1043–1050. [Google Scholar] [CrossRef]
- Herlina, T.; Rudiana, T.; Julaeha, E.; Parubak, A.S. Flavonoids from Stem Bark of Akway (Drymis beccariana Gibs) and Theirs Antimalarial Properties. In Proceedings of the Journal of Physics: Conference Series; Institute of Physics Publishing: Bristol, UK, 2019; Volume 1280. [Google Scholar]
- Vásquez-Ocmín, P.G.; Gallard, J.-F.; Van Baelen, A.-C.; Leblanc, K.; Cojean, S.; Mouray, E.; Grellier, P.; Guerra, C.A.A.; Beniddir, M.A.; Evanno, L.; et al. Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant Piper coruscans Kunth. Molecules 2022, 27, 7638. [Google Scholar] [CrossRef]
- Dawurung, C.J.; Nguyen, M.T.H.; Pengon, J.; Dokladda, K.; Bunyong, R.; Rattanajak, R.; Kamchonwongpaisan, S.; Nguyen, P.T.M.; Pyne, S.G. Isolation of Bioactive Compounds from Medicinal Plants Used in Traditional Medicine: Rautandiol B, a Potential Lead Compound against Plasmodium falciparum. BMC Complement. Med. Ther. 2021, 21, 231. [Google Scholar] [CrossRef]
- Mianda, S.M.; Invernizzi, L.; van der Watt, M.E.; Reader, J.; Moyo, P.; Birkholtz, L.-M.; Maharaj, V.J. In Vitro Dual Activity of Aloe Marlothii Roots and Its Chemical Constituents against Plasmodium falciparum Asexual and Sexual Stage Parasites. J. Ethnopharmacol. 2022, 297, 115551. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Kumar, S.; Ramdas; Khare, S.; Shukla, A.; Shanker, K.; Pal, A.; Khan, F.; Darokar, M.P. Quebrachitol from Putranjiva roxburghii Wall. (Putranjivaceae) a Potent Antimalarial: Pre-Clinical Efficacy and Its Interaction with PfLDH. Parasitol. Int. 2023, 92, 102675. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Plant Parts | Type of Extract | IC50 Value against P. falciparum (μg/mL) | References |
---|---|---|---|---|
Azadirachta indica (A. Juss) | Leaves | Ethanol | Aqueous | 7.4 (ethanol) and 8.6 (aqueous) | [57] |
Homalolepis suffruticosa (Engl.) (Devecchi and Pirani) | Roots | Methanol | 1.88 (W2) | [58] |
Goniothalamus Lanceolatus (Miq.) | Roots | Methanol | 2.7 (3D7) and 1.7 (K1) | [59] |
Vitex negundo (L.) | Leaves | Chloroform | 7.21 (3D7) and 7.43 μg/mL (K1) | [60] |
Petasites japonicus (Siebold and Zucc.) (Maxim) | Leaves | Ethanol (70%) | 8.48 (3D7) and 7.83 (Dd2) | [61] |
Senna occidentalis (L.) (Link) | Leaves and seeds | Methanol | 12.19 (leaves) and 6.82 (seeds) | [62] |
Roots | Methanol | 1.76 (3D7) | ||
Nauclea orientalis (L.) | Leaves | Methanol | 3.91 (3D7) | [63] |
Alchornea cordifolia (Schumach.) (Müll. Arg.) | Herbal | Aqueous | 5.8 (NF54), 17.4 (Cam WT_C580Y), and 15.8 (IPC 4912) | [64] |
Helianthus annuus (L.) | Roots and leaves | Ethanol | 2.3 (3D7) | [65] |
Harungana madagascariensis Lam. ex Poir. | Barks | Aqueous | 6.16 (NF54) | [66] |
Pericopsis laxiflora (Benth. ex Baker) (Meeuwen) | Leaves | Methanol | 7.44 (K1) | [66] |
Pleiocarpa bicarpellate (Stapf) | Roots | Dichloromethane/Methanol (1:1) | 3.5 (NF54) | [67] |
Psychotria apoda (Steyerm.) (Delprete and J.H.Kirkbr.) | Leaves | Acid-base | >90% (W2) | [68] |
Andrographis paniculate (Burm.f.) (Wall.) | Whole plant | Chloroform | 6.36 (3D7) and 5.24 (K1) | [69] |
Globba malaccensis (Ridl.) | Rhizomes | Ethanol | 1.50 (K1) | [70] |
Sanchus arvensis L. | Leaves | Ethyl acetate | 2.9 (3D7) | [71] |
Terminalia arjuna (Roxb. Ex DC.) (Wight and Arn.) | Fruits | Aqueous | 4.05 (K1) | [72] |
Terminalia bentzoe (L.) L.f. | Leaves | Methanol | 6.06 (Dd2) | [73] |
Bridelia atroviridis Müll. Arg. | Bark | Hydroethanolic | 8.08 (Dd2) | [74] |
Annickia affinis (Exell) (Versteegh and Sosef) | Leaves | Aqueous | 1.49 (3D7) | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, G.d.J.G.; Rei Yan, S.L.; Palmisano, G.; Wrenger, C. Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Pharmaceutics 2023, 15, 1638. https://doi.org/10.3390/pharmaceutics15061638
Ribeiro GdJG, Rei Yan SL, Palmisano G, Wrenger C. Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Pharmaceutics. 2023; 15(6):1638. https://doi.org/10.3390/pharmaceutics15061638
Chicago/Turabian StyleRibeiro, Giovane de Jesus Gomes, Sun Liu Rei Yan, Giuseppe Palmisano, and Carsten Wrenger. 2023. "Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022" Pharmaceutics 15, no. 6: 1638. https://doi.org/10.3390/pharmaceutics15061638
APA StyleRibeiro, G. d. J. G., Rei Yan, S. L., Palmisano, G., & Wrenger, C. (2023). Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Pharmaceutics, 15(6), 1638. https://doi.org/10.3390/pharmaceutics15061638