1,4-Dihydropyridine Antihypertensive Drugs: Recent Advances in Photostabilization Strategies
Abstract
:1. Introduction
2. Photostabilization Approaches
2.1. Use of Dark or Opaque Containers
2.2. Use of Light-Absorbing Excipients
2.3. Incorporation in Liposomes
2.4. Incorporation in Cyclodextrins
2.5. Cyclodextrins in Liposomes
2.6. Microspheres and Nanocapsules
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elliott, W.J.; Ram, C.V.S. Calcium Channel Blockers. J. Clin. Hypertens. 2011, 13, 687–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St-Onge, M.; Dube, P.A.; Gosselin, S.; Guimont, C.; Godwin, J.; Archambault, P.M.; Chauny, J.M.; Frenette, A.J.; Darveau, M.; Le Sage, N.; et al. Treatment for calcium channel blocker poisoning: A systematic review. Clin. Toxicol. 2014, 52, 926–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khedkar, S.A.; Auti, P.B. 1,4-Dihydropyridines: A class of pharmacologically important molecules. Mini Rev. Med. Chem. 2014, 14, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Coca, A.; Mazón, P.; Aranda, P.; Redón, J.; Divisón, J.A.; Martínez, J.; Calvo, C.; Galcerán, J.M.; Barrios, V.; Coll, A.R.-C.I. Role of dihydropyridinic calcium channel blockers in the management of hypertension. Expert Rev. Cardiovasc. Ther. 2013, 11, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Carosati, E.; Ioan, P.; Micucci, M.; Broccatelli, F.; Cruciani, G.; Zhorov, B.S.; Chiarini, A.; Budriesi, R. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 2): Action in other targets and antitargets. Curr. Med. Chem. 2012, 19, 4306–4323. [Google Scholar] [CrossRef] [PubMed]
- Fasani, E.; Albini, A.; Gemme, S. Mechanism of the photochemical degradation of amlodipine. Int. J. Pharm. 2008, 352, 197–201. [Google Scholar] [CrossRef]
- Cheng, Z.G.; Dai, X.Y.; Li, L.W.; Wan, Q.; Ma, X.; Xiang, G.Y. Synthesis and characterization of impurities of barnidipine hydrochloride, an antihypertensive drug substance. Molecules 2014, 19, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Maafi, W.; Maafi, M. Modelling nifedipine photodegradation, photostability and actinometric properties. Int. J. Pharm. 2013, 456, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Vetuschi, C.; Ragno, G.; Veronico, M.; Risoli, A.; Gianandrea, A. Comparative Evaluation of Analytical Methods for Simultaneous Determination of Nisoldipine and Its Photodegradation Products. Anal. Lett. 2002, 35, 1327–1339. [Google Scholar] [CrossRef]
- Rehan Zaheer, M.; Gupta, A.; Iqbal, J.; Zia, Q.; Ahmad, A.; Roohi; Owais, M.; Hashlamon, A.; Hamidah Mohd Setapar, S.; Md Ashraf, G.; et al. Molecular Mechanisms of Drug Photodegradation and Photosensitization. Curr. Pharm. Des. 2016, 22, 768–782. [Google Scholar] [CrossRef]
- Fasani, E.; Albini, A.; Mella, M. Photochemistry of Hantzsch 1,4-dihydropyridines and pyridines. Tetrahedron 2008, 64, 3190–3196. [Google Scholar] [CrossRef]
- Ioele, G.; Gündüz, M.G.; De Luca, M.; Şimşek, R.; Şafak, C.; Muzzalupo, R.; Ragno, G. Photodegradation studies of 1,4-dihydropyridine compounds by MCR analysis on UV spectral data. Future Med. Chem. 2016, 8, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Ioele, G.; Oliverio, F.; Andreu, I.; De Luca, M.; Miranda, M.A.M.A.; Ragno, G. Different photodegradation behavior of barnidipine under natural and forced irradiation. J. Photochem. Photobiol. A Chem. 2010, 215, 205–213. [Google Scholar] [CrossRef]
- Dinç, E.; Ragno, G.; Ioele, G.; Baleanu, D. Fractional wavelet analysis for the simultaneous quantitative analysis of lacidipine and its photodegradation product by continuous wavelet transform and multilinear regression calibration. J. AOAC Int. 2006, 89, 1538–1546. [Google Scholar] [PubMed]
- Ragno, G.; Vetuschi, C.; Risoli, A.; Ioele, G. Application of a classical least-squares regression method to the assay of 1,4-dihydropyridine antihypertensives and their photoproducts. Talanta 2003, 59, 375–382. [Google Scholar] [CrossRef]
- Ragno, G.; Ioele, G.; De Luca, M.; Garofalo, A.; Grande, F.; Risoli, A. A critical study on the application of the zero-crossing derivative spectrophotometry to the photodegradation monitoring of lacidipine. J. Pharm. Biomed. Anal. 2006, 42, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Ragno, G.; Vetuschi, C. UV derivative spectrophotometric assay of nicardipine and its photodegradation product. Pharmazie 1998, 53, 628–631. [Google Scholar]
- Ragno, G.; Veronico, M.; Vetuschi, C. Analysis of nimodipine and its photodegradation product by derivative spectrophotometry and gas chromatography. Int. J. Pharm. 1995, 119, 115–119. [Google Scholar] [CrossRef]
- Ioele, G.; De Luca, M.; Oliverio, F.; Ragno, G. Prediction of photosensitivity of 1,4-dihydropyridine antihypertensives by quantitative structure-property relationship. Talanta 2009, 79, 1418–1424. [Google Scholar] [CrossRef]
- Pizarro, N.; Günther, G.; Núñez-Vergara, L.J. Photophysical and photochemical behavior of nimodipine and felodipine. J. Photochem. Photobiol. A Chem. 2007, 189, 23–29. [Google Scholar] [CrossRef]
- Onoue, S.; Igarashi, N.; Yamauchi, Y.; Murase, N.; Zhou, Y.; Kojima, T.; Yamada, S.; Tsuda, Y. In vitro phototoxicity of dihydropyridine derivatives: A photochemical and photobiological study. Eur. J. Pharm. Sci. 2008, 33, 262–270. [Google Scholar] [CrossRef]
- Albini, A.; Fasani, E. (Eds.) Drugs, Photochemistry and Photostability; Royal Society of Chemistry: London, UK, 1998; ISBN 0854047433. [Google Scholar]
- Piechocki, J.T.; Thoma, K. Pharmaceutical Photostability and Stabilization Technology; Drugs and the Pharmaceutical Sciences; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Tønnesen, H.H. Formulation and stability testing of photolabile drugs. Int. J. Pharm. 2001, 225, 1–14. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use: Photostability Testing of New Drug Substances and Products Q1B. Fed. Regist. 1997, 62, 27115–59857. [Google Scholar]
- De Filippis, P.; Bovina, E.; Da Ros, L.; Fiori, J.; Cavrini, V. Photodegradation studies on Lacidipine in solution: Basic experiments with a cis-trans reversible photoequilibrium under UV-A radiation exposure. J. Pharm. Biomed. Anal. 2002, 27, 803–812. [Google Scholar] [CrossRef]
- Kawabe, Y.; Nakamura, H.; Hino, E.; Suzuki, S. Photochemical stabilities of some dihydropyridine calcium-channel blockers in powdered pharmaceutical tablets. J. Pharm. Biomed. Anal. 2008, 47, 618–624. [Google Scholar] [CrossRef]
- Commission, E.P. European Pharmacopoeia 9.5; Deutscher Apotheker Verlag: Stuttgart, Geramny, 2018; ISBN 978-3-7692-6633-7. [Google Scholar]
- De Luca, M.; Ioele, G.; Spatari, C.; Ragno, G. Photostabilization studies of antihypertensive 1,4-dihydropyridines using polymeric containers. Int. J. Pharm. 2016, 505, 376–382. [Google Scholar] [CrossRef]
- De Luca, M.; Tauler, R.; Ioele, G.; Ragno, G. Study of photodegradation kinetics of melatonin by multivariate curve resolution (MCR) with estimation of feasible band boundaries. Drug Test. Anal. 2013, 5, 96–102. [Google Scholar] [CrossRef]
- Dentinger, P.J.; Swenson, C.F.; Anaizi, N.H. Stability of nifedipine in an extemporaneously compounded oral solution. Am. J. Health Pharm. 2003, 60, 1019–1022. [Google Scholar]
- MacDonald, J.L.; Johnson, C.E.; Jacobson, P. Stability of isradipine in an extemporaneously compounded oral liquid. Am. J. Health Pharm. 1994, 51, 2409–2411. [Google Scholar]
- Thoma, K.; Kübler, N. Wavelength dependency of photodegradation processes of drug substances | Einfluss der Wellenlange auf die Photozersetzung von Arzneistoffen. Pharmazie 1996, 51, 660–664. [Google Scholar]
- Mielcarek, J.; Grobelny, P.; Szamburska, P. The effect of β-carotene on the photostability of nisoldipine. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 167–171. [Google Scholar] [CrossRef]
- Khames, A. Liquisolid technique: A promising alternative to conventional coating for improvement of drug photostability in solid dosage forms. Expert Opin. Drug Deliv. 2013, 10, 1335–1343. [Google Scholar] [CrossRef]
- Carita, A.C.; Eloy, J.O.; Chorilli, M.; Lee, R.J.; Leonardi, G.R. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery. Curr. Med. Chem. 2018, 25, 606–635. [Google Scholar] [CrossRef]
- Karami, N.; Moghimipour, E.; Salimi, A. Liposomes as a Novel Drug Delivery System: Fundamental and Pharmaceutical Application. Asian J. Pharm. 2018, 12, S31–S41. [Google Scholar]
- Ioele, G.; De Luca, M.; Garofalo, A.; Ragno, G. Photosensitive drugs: A review on their photoprotection by liposomes and cyclodextrins. Drug Deliv. 2017, 24, 33–44. [Google Scholar] [CrossRef]
- Daeihamed, M.; Dadashzadeh, S.; Haeri, A.; Akhlaghi, M. Potential of Liposomes for Enhancement of Oral Drug Absorption. Curr. Drug Deliv. 2017, 14, 289–303. [Google Scholar] [CrossRef]
- Ragno, G.; Risoli, A.; Ioele, G.; Cione, E.; De Luca, M.; Loele, G.; Cione, E.; De Luca, M. Photostabilization of 1,4-dihydropyridine antihypertensives by incorporation into β-cyclodextrin and liposomes. J. Nanosci. Nanotechnol. 2006, 6, 2979–2985. [Google Scholar] [CrossRef]
- Ragno, G.; Cione, E.; Garofalo, A.; Genchi, G.; Ioele, G.; Risoli, A.; Spagnoletta, A. Design and monitoring of photostability systems for amlodipine dosage forms. Int. J. Pharm. 2003, 265, 125–132. [Google Scholar] [CrossRef]
- Jang, D.J.; Jeong, E.J.; Lee, H.M.; Kim, B.C.; Lim, S.J.; Kim, C.K. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur. J. Pharm. Sci. 2006, 28, 405–411. [Google Scholar] [CrossRef]
- Brito, J.; Pozo, A.; Garcia, C.; Nunez-Vergara, L.; Morales, J.; Gunther, G.; Pizarro, N. Photodegradation of nimodipine and felodipine in microheterogeneous systems. J. Chil. Chem. Soc. 2012, 57, 1313–1317. [Google Scholar] [CrossRef]
- Mielcarek, J. Studies on inclusion complexes of felodipine with β-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 1998, 30, 243–252. [Google Scholar] [CrossRef]
- Qumbar, M.; Ameeduzzafar; Imam, S.S.; Ali, J.; Ahmad, J.; Ali, A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomed. Pharmacother. 2017, 93, 255–266. [Google Scholar] [CrossRef]
- Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Cyclodextrins, from molecules to applications. Environ. Chem. Lett. 2018, 16, 1361–1375. [Google Scholar] [CrossRef]
- Shelley, H.; Babu, R.J. Role of Cyclodextrins in Nanoparticle-Based Drug Delivery Systems. J. Pharm. Sci. 2018, 107, 1741–1753. [Google Scholar] [CrossRef]
- Conceição, J.; Adeoye, O.; Cabral-Marques, H.M.; Lobo, J.M.S. Cyclodextrins as excipients in tablet formulations. Drug Discov. Today 2018, 23, 1274–1284. [Google Scholar] [CrossRef]
- Ragno, G.; Veronico, M.; Vetuschi, C. Gas chromatographic and UV derivative determination of nitrendipine and its photodegradation product. Int. J. Pharm. 1993, 99, 351–355. [Google Scholar] [CrossRef]
- Mielcarek, J. Photochemical stability of the inclusion complexes formed by modified 1,4-dihydropyridine derivatives with β-cyclodextrin. J. Pharm. Biomed. Anal. 1997, 15, 681–686. [Google Scholar] [CrossRef]
- Narkhede, M.R.; Kuchekar, B.S.; Nehete, J.Y. Ternary Systems of HP β-Cyclodextrin Felodipine Inclusion Complexes: Preparation, Characterization and Solubility Studies. Res. J. Pharm. Technol. 2011, 4, 1809–1815. [Google Scholar]
- Ioele, G.; De Luca, M.; Ragno, G. Photostability of barnidipine in combined cyclodextrin-in-liposome matrices. Future Med. Chem. 2014, 6, 35–43. [Google Scholar] [CrossRef]
- Park, J.-B.B.; Lee, G.-H.H.; Kang, J.-W.W.; Jeon, I.-S.S.; Kim, J.-M.M.; Kim, K.-B.B.; Kang, C.-Y.Y. Improvement of photostability and dissolution profile of isradipine using inclusion complex. J. Pharm. Investig. 2013, 43, 55–61. [Google Scholar] [CrossRef]
- Himabindu, S.; Sathish, D.; Kumar, P.; Shayeda, S. Formulation and Ex Vivo Evaluation of Buccal Tablets of Isradipine in a β-Cyclodextrin Complex to Improve the Photostability. Curr. Drug Ther. 2013, 8, 121–131. [Google Scholar] [CrossRef]
- Mielcarek, J.; Daczkowska, E. Photodegradation of inclusion complexes of isradipine with methyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 1999, 21, 393–398. [Google Scholar] [CrossRef]
- Pomponio, R.; Gotti, R.; Fiori, J.; Cavrini, V.; Mura, P.; Cirri, M.; Maestrelli, F. Photostability studies on nicardipine–cyclodextrin complexes by capillary electrophoresis. J. Pharm. Biomed. Anal. 2004, 35, 267–275. [Google Scholar] [CrossRef]
- Mielcarek, J.; Szamburska, O. Inclusion complexes of manidipine with b-cyclodextrin and identification of photodegradation products. J. Incl. Phenom. 2005, 52, 195–200. [Google Scholar] [CrossRef]
- Tagliari, M.P.; Granada, A.; Segatto Silva, M.A.; Stulzer, H.K.; Zanetti-Ramos, B.G.; Fernandes, D.; Silva, I.T.; Simões, C.M.O.; Sordi, R.; Assreuy, J.; et al. Development of oral nifedipine-loaded polymeric nanocapsules: Physicochemical characterisation, photostability studies, in vitro and in vivo evaluation. Quim. Nova 2015, 38, 781–786. [Google Scholar]
- Fujimoto, Y.; Hirai, N.; Takatani-Nakase, T.; Takahashi, K. Photostable Solid Dispersion of Nifedipine by Porous Calcium Silicate. Chem. Pharm. Bull. 2016, 64, 1218–1221. [Google Scholar] [CrossRef] [Green Version]
- Shende, M.A.; Markandeeywar, T. Photostability Studies and Development of Fast Release Nifedipine Tablets. Int. J. Pharma Bio Sci. 2010, 1, 1–14. [Google Scholar]
DHP Drugs | Photoprotection Method | Analytical Approach * | References |
---|---|---|---|
Felodipine | Transparent glass, amber glass, transparent PET, colored PET, quartz containers | UV, MCR | [29] |
Lercanidipine | |||
Nifedipine | |||
Nimodipine | |||
Nifedipine | Polyethylene glycol 400, glycerine and mint oil solutions in amber glass bottles, amber glass bottles wrapped in aluminum foil | HPLC | [31] |
Isradipine | Solutions in simple syrup, amber glass bottles at 4 °C | HPLC | [32] |
DHP Drugs | Photoprotection Method | Analytical Approach * | References |
---|---|---|---|
Nisoldipine | Addition of β-carotene | UV, HPLC | [34] |
Amlodipine | Formulations with propylene glycol mixed with water in a 1:1 drug ratio, Avicel PH 102, amorphous silicon, and titanium dioxide | X-ray, FT-IR | [35] |
DHP Drugs | Photoprotection Method | Analytical Approach * | References |
---|---|---|---|
Amlodipine Felodipine Isradipine Lacidipine Lercanidipine Manidipine Nicardipine Nifedipine Nimodipine Nisoldipine Nitrendipine | Incorporation in phosphatidyl choline liposomes | UV | [40] |
Amlodipine | Incorporation in phosphatidyl choline liposomes | UV | [41] |
Amlodipine | Dry oil-in-water emulsion prepared with labrafil M1944CS and dextrin | UV | [42] |
Felodipine Nimodipine | Liposomes with ionic or non-ionic surfactants (sodium dodecyl sulfate, dodecyl pyridinium chloride, mono lauryl sucrose ester) | UV, HPLC | [43] |
Lacidipine | Niosomal formulated through a thin film hydration technique | UV | [45] |
DHP Drugs | Photoprotection Method | Analytical Approach * | References |
---|---|---|---|
Nifedipine | Complexation with hydroxypropyl-cyclodextrin and dimethyl-cyclodextrin | UV | [51] |
Amlodipine Felodipine Isradipine Lacidipine Lercanidipine Manidipine Nicardipine Nifedipine Nimodipine Nisoldipine Nitrendipine | Incorporation in methyl-β-cyclodextrin | UV | [40] |
Amlodipine | Incorporation in methyl-β-cyclodextrin | UV | [41] |
Felodipine | Incorporation in 2-hydroxypropy-β-cyclodextrin in the presence of water-soluble polymers | X-ray, DSC, FT-IR | [52] |
Barnidipine | Complexation with α-cyclodextrin, β-cyclodextrin, methyl-β-cyclodextrin, hydroxypropyl-β-cyclodextrin, γ-cyclodextrin | UV | [53] |
Isradipine | Incorporation of the β-cyclodextrin drug complex into prolonged-release hydroxypropyl methylcellulose tablets. | DSC, FT-IR | [54] |
Isradipine | Complex with beta-cyclodextrin | X-ray, DSC | [55] |
Isradipine | Complex with methyl-β-cyclodextrin | UV, HPLC | [56] |
Nicardipine | Incorporation in β-cyclodextrin, γ-cyclodextrin, hydroxypropyl-α-cyclodextrin, hydroxypropyl-β-cyclodextrin, hydroxypropyl-γ-cyclodextrin, (2-hydroxyethyl)-β-cyclodextrin and methyl-β-cyclodextrin | Capillary electrophoresis | [57] |
Manidipine | Complex with β-cyclodextrin | UV, HPLC-MS | [58] |
DHP Drugs | Photoprotection Method | Analytical Approach | References |
---|---|---|---|
Nifedipine | Polymer nanocapsules by multichonic surfactants F68 and polyvinyl alcohol | HPLC | [59] |
Nifedipine | Solid formulation by dispersing the drug in porous calcium silicate | HPLC | [60] |
Nifedipine | Complex with weak cation exchange resins, indion 204 and indion 264 | UV | [61] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, M.; Ioele, G.; Ragno, G. 1,4-Dihydropyridine Antihypertensive Drugs: Recent Advances in Photostabilization Strategies. Pharmaceutics 2019, 11, 85. https://doi.org/10.3390/pharmaceutics11020085
De Luca M, Ioele G, Ragno G. 1,4-Dihydropyridine Antihypertensive Drugs: Recent Advances in Photostabilization Strategies. Pharmaceutics. 2019; 11(2):85. https://doi.org/10.3390/pharmaceutics11020085
Chicago/Turabian StyleDe Luca, Michele, Giuseppina Ioele, and Gaetano Ragno. 2019. "1,4-Dihydropyridine Antihypertensive Drugs: Recent Advances in Photostabilization Strategies" Pharmaceutics 11, no. 2: 85. https://doi.org/10.3390/pharmaceutics11020085