Next Article in Journal
The Human Lung Adenocarcinoma Cell Line EKVX Produces an Infectious Xenotropic Murine Leukemia Virus
Next Article in Special Issue
Analysis of the Genome of the Sexually Transmitted Insect Virus Helicoverpa zea Nudivirus 2
Previous Article in Journal
The Use of Fluorescence Microscopy to Study the Association Between Herpesviruses and Intrinsic Resistance Factors
Previous Article in Special Issue
The Lymantria dispar IPLB-Ld652Y Cell Line Transcriptome Comprises Diverse Virus-Associated Transcripts

Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Universita’ degli Studi di Napoli “Federico II”, Via Universita’ n.100, 80055 Portici, Napoli, Italy
College of Plant Protection, Yunnan Agricultural University, Yunnan 650201, China
Institute of Apicultural Research, Chinese Academy of Agricultural Science, Xiangshan, Beijing 100093, China
USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ 85719, USA
Author to whom correspondence should be addressed.
These authors contributed equally to this study.
Viruses 2011, 3(12), 2425-2441;
Received: 16 November 2011 / Revised: 28 November 2011 / Accepted: 29 November 2011 / Published: 14 December 2011
(This article belongs to the Special Issue Insect Viruses)
The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV) as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees. View Full-Text
Keywords: bee; viruses; Varroa; vitellogenin; temperature bee; viruses; Varroa; vitellogenin; temperature
Show Figures

Figure 1

MDPI and ACS Style

Prisco, G.D.; Zhang, X.; Pennacchio, F.; Caprio, E.; Li, J.; Evans, J.D.; DeGrandi-Hoffman, G.; Hamilton, M.; Chen, Y.P. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera. Viruses 2011, 3, 2425-2441.

AMA Style

Prisco GD, Zhang X, Pennacchio F, Caprio E, Li J, Evans JD, DeGrandi-Hoffman G, Hamilton M, Chen YP. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera. Viruses. 2011; 3(12):2425-2441.

Chicago/Turabian Style

Prisco, Gennaro Di, Xuan Zhang, Francesco Pennacchio, Emilio Caprio, Jilian Li, Jay D. Evans, Gloria DeGrandi-Hoffman, Michele Hamilton, and Yan Ping Chen. 2011. "Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera" Viruses 3, no. 12: 2425-2441.

Find Other Styles

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Back to TopTop