Physiological Impacts on the Mosquito Vector Hosts Refine Vectorial Capacity Estimates of Mayaro Virus Transmission Risk
Abstract
1. Introduction
2. Methods
2.1. Cell Lines
2.2. Mosquito Maintenance
2.3. Virus Culture and Plaque Assay
2.4. Mosquito Infection and Tissue Collection
2.5. RNA Extraction and RT-qPCR
2.6. Estimating Vector Survivorship
2.7. Fecundity Measurements
2.8. Statistical Analyses
3. Results
3.1. Rapid Dissemination of MAYV in Mosquitoes Is Genus-Specific
3.2. Differential Vector Survivorship Following MAYV Infection
3.3. Vector Species-Specific Fecundity Impacts Following MAYV Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, L.L.L.; Tom, R.; Kim, Y.C. Mayaro Virus: An Emerging Alphavirus in the Americas. Viruses 2024, 16, 1297. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, F.B.; de Curcio, J.S.; Silva, L.D.C.; da Silva, D.M.F.; Salem-Izacc, S.M.; Anunciação, C.E.; Ribeiro, B.M.; de Paula Silveira-Lacerda, E. Report of natural Mayaro virus infection in Mansonia humeralis (Dyar & Knab, Diptera: Culicidae). Parasit Vectors 2023, 16, 140. [Google Scholar] [CrossRef]
- Brustolin, M.; Bartholomeeusen, K.; Rezende, T.; Ariën, K.K.; Müller, R. Mayaro virus, a potential threat for Europe: Vector competence of autochthonous vector species. Parasit Vectors 2024, 17, 200. [Google Scholar] [CrossRef]
- Paniz-Mondolfi, A.E.; Lednicky, J.A.; Ascanio, L.C.; Cardoso, S.; Chace, A. Mayaro Virus in the Americas: A Short Review. In Emerging Virus in Latin America; Springer: Cham, Switzerland, 2024; pp. 139–160. [Google Scholar]
- Segura, N.A.; Muñoz, A.L.; Losada-Barragán, M.; Torres, O.; Rodríguez, A.K.; Rangel, H.; Bello, F. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathog. Dis. 2021, 79, ftab043. [Google Scholar] [CrossRef]
- Diagne, C.T.; Bengue, M.; Choumet, V.; Hamel, R.; Pompon, J.; Missé, D. Mayaro virus pathogenesis and transmission mechanisms. Pathogens 2020, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- PAHO. “No Title.Mayaro virus in Latin America and the Caribbean” [Online]. Available online: https://iris.paho.org/handle/10665.2/51857 (accessed on 23 June 2025).
- Wiggins, K.; Eastmond, B.; Alto, B.W. Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes. Med. Vet. Entomol. 2018, 32, 436–442. [Google Scholar] [CrossRef]
- Lima, W.G.; Pereira, R.S.; da Cruz Nizer, W.S.; Brito, J.C.M.; Godói, I.P.; Cardoso, V.N.; Fernandes, S.O.A. Rate of exposure to Mayaro virus (MAYV) in Brazil between 1955 and 2018: A systematic review and meta-analysis. Arch. Virol. 2021, 166, 347–361. [Google Scholar] [CrossRef]
- Pereira, T.N.; Carvalho, F.D.; De Mendonça, S.F.; Rocha, M.N.; Moreira, L.A. Vector competence of aedes aegypti, aedes albopictus, and culex quinquefasciatus mosquitoes for Mayaro virus. PLoS Negl. Trop. Dis. 2020, 14, e0007518. [Google Scholar] [CrossRef]
- Long, K.C.; Ziegler, S.A.; Thangamani, S.; Hausser, N.L.; Kochel, T.J.; Higgs, S.; Tesh, R.B. Experimental transmission of Mayaro virus by Aedes aegypti. Am. J. Trop. Med. Hyg. 2011, 85, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Krokovsky, L.; Lins, C.R.B.; Guedes, D.R.D.; da Luz Wallau, G.; Ayres, C.F.J.; Paiva, M.H.S. Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model. Viruses 2023, 15, 799. [Google Scholar] [CrossRef]
- Terradas, G.; Novelo, M.; Metz, H.; Brustolin, M.; Rasgon, J.L. Anopheles albimanus is a Potential Alphavirus Vector in the Americas. Am. J. Trop. Med. Hyg. 2023, 108, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Brustolin, M.; Pujhari, S.; Henderson, C.A.; Rasgon, J.L. Anopheles mosquitoes may drive invasion and transmission of Mayaro virus across geographically diverse regions. PLoS Negl. Trop. Dis. 2018, 12, e0006895. [Google Scholar] [CrossRef] [PubMed]
- Brault, A.C.; Foy, B.D.; Myles, K.M.; Kelly, C.L.H.; Higgs, S.; Weaver, S.C.; Olson, K.E.; Miller, B.R.; Powers, A.M. Infection patterns of o’nyong nyong virus in the malaria-transmitting mosquito, Anopheles gambiae. Insect Mol. Biol. 2004, 13, 625–635. [Google Scholar] [CrossRef]
- Lwande, O.W.; Obanda, V.; Lindström, A.; Ahlm, C.; Evander, M.; Näslund, J.; Bucht, G. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector-Borne Zoonotic Dis. 2020, 20, 71–81. [Google Scholar] [CrossRef]
- Ayers, J.B.; Coatsworth, H.G.; Kang, S.; Dinglasan, R.R.; Zhou, L. Clustered rapid induction of apoptosis limits ZIKV and DENV-2 proliferation in the midguts of Aedes aegypti. Commun. Biol. 2021, 4, 69. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, C.J.; Coatsworth, H.; Kang, S.; Lednicky, J.A.; Dinglasan, R.R. Transmission Potential of Floridian Aedes aegypti Mosquitoes for Dengue Virus Serotype 4: Implications for Estimating Local Dengue Risk. mSphere 2021, 6, e00271-21. [Google Scholar] [CrossRef]
- R Core Team. The R Foundation for Statistical Computing. [Online]. Available online: https://www.r-project.org/ (accessed on 23 June 2025).
- Therneau, C.C.T.M.; Lumley, T.; (original S->R port and R maintainer until 2009); Elizabeth, A. A Package for Survival Analysis in R. R Package Version 3.8-3. [Online]. Available online: https://github.com/therneau/survival (accessed on 23 June 2025).
- Urakova, N.; Brustolin, M.; Joseph, R.E.; Johnson, R.M.; Pujhari, S.; Rasgon, J.L. Anopheles gambiae densovirus (AgDNV) negatively affects Mayaro virus infection in Anopheles gambiae cells and mosquitoes. Parasit Vectors 2020, 13, 210. [Google Scholar] [CrossRef]
- Alomar, A.A.; Alto, B.W. Temperature-Mediated Effects on Mayaro Virus Vector Competency of Florida Aedes aegypti Mosquito Vectors. Viruses 2022, 14, 880. [Google Scholar] [CrossRef]
- Gabiane, G.; Bohers, C.; Mousson, L.; Obadia, T.; Dinglasan, R.R.; Vazeille, M.; Dauga, C.; Viglietta, M.; Yébakima, A.; Vega-Rúa, A.; et al. Evaluating vector competence for Yellow fever in the Caribbean. Nat. Commun. 2024, 15, 1236. [Google Scholar] [CrossRef]
- Alto, B.W.; Civana, A.; Wiggins, K.; Eastmond, B.; Shin, D. Effect of Oral Infection of Mayaro Virus on Fitness Correlates and Expression of Immune Related Genes in Aedes aegypti. Viruses 2020, 12, 719. [Google Scholar] [CrossRef]
- Diop, F.; Alout, H.; Diagne, C.T.; Bengue, M.; Baronti, C.; Hamel, R.; Talignani, L.; Liegeois, F.; Pompon, J.; Vargas, R.E.M.; et al. Differential susceptibility and innate immune response of aedes aegypti and aedes albopictus to the haitian strain of the mayaro virus. Viruses 2019, 11, 924. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.; Crepeau, M.; Lanzaro, G.C. Defining the genetics of the widely used G3 strain of the mosquito, Anopheles gambiae. Sci. Rep. 2025, 15, 13142. [Google Scholar] [CrossRef]
- Armstrong, P.M.; Ehrlich, H.Y.; Magalhaes, T.; Miller, M.R.; Conway, P.J.; Bransfield, A.; Misencik, M.J.; Gloria-Soria, A.; Warren, J.L.; Andreadis, T.G.; et al. Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential. Nat. Microbiol. 2020, 5, 239–247. [Google Scholar] [CrossRef]
- Brackney, D.E.; LaReau, J.C.; Smith, R.C. Frequency matters: How successive feeding episodes by blood-feeding insect vectors influences disease transmission. PLoS Pathog. 2021, 17, e1009590. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, Z.; Dieme, C.; Sproch, H.; Kramer, L.D.; Ciota, A.T.; Brackney, D.E. Multiple bloodmeals enhance dissemination of arboviruses in three medically relevant mosquito genera. Parasit Vectors 2024, 17, 432. [Google Scholar] [CrossRef]
- Scott, T.W.; Takken, W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012, 28, 114–121. [Google Scholar] [CrossRef] [PubMed]
Days Post-Infection (dpi) | IR | DR Head–Thorax | DR Abdomen | DR Ovaries | TR | TE | |
---|---|---|---|---|---|---|---|
Ae. aegypti | 2 dpi | 40.0% 12/30 | 33.3% 4/12 | 0.0% 0/12 | 0.0% 0/12 | 0.0% 0/12 | 0.0% 0/30 |
7 dpi | 30.0% 9/30 | 66.6% 6/9 | 77.7% 7/9 | 44.4% 4/9 | 33.3% 3/9 | 10.0% 3/30 | |
14 dpi | 40.0% 12/30 | 100.0% 12/12 | 100.0% 12/12 | 100.0% 12/12 | 58.3% 7/12 | 23.3% 7/30 | |
An. gambiae | 2 dpi | 96.6% 29/30 | 89.6% 26/29 | 31.0% 9/29 | 6.8% 2/29 | 0.0% 0/29 | 0.0% 0/30 |
7 dpi | 96.6% 29/30 | 96.5% 28/29 | 51.7% 15/29 | 10.3% 3/29 | 13.7% 4/29 | 13.3% 4/30 | |
14 dpi | 90.0% 19/20 | 89.4% 17/19 | 73.6% 14/19 | 36.8% 7/19 | 52.6% 10/19 | 50.0% 10/20 | |
An. albimanus | 2 dpi | 100.0% 30/30 | 76.6% 23/30 | 76.6% 23/30 | 66.6% 20/30 | 16.6% 5/30 | 16.6% 5/30 |
7 dpi | 100.0% 30/30 | 100.0% 30/30 | 100.0% 30/30 | 86.6% 26/30 | 60.0% 18/30 | 60.0% 18/30 | |
14 dpi | 100.0% 32/32 | 100.0% 32/32 | 100.0% 32/32 | 87.5% 28/32 | 81.2% 26/32 | 81.2% 26/32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Palomares, L.A.; Williams, J.F.; Burgess, E.R., IV; Lednicky, J.A.; Dinglasan, R.R. Physiological Impacts on the Mosquito Vector Hosts Refine Vectorial Capacity Estimates of Mayaro Virus Transmission Risk. Viruses 2025, 17, 1155. https://doi.org/10.3390/v17091155
Alonso-Palomares LA, Williams JF, Burgess ER IV, Lednicky JA, Dinglasan RR. Physiological Impacts on the Mosquito Vector Hosts Refine Vectorial Capacity Estimates of Mayaro Virus Transmission Risk. Viruses. 2025; 17(9):1155. https://doi.org/10.3390/v17091155
Chicago/Turabian StyleAlonso-Palomares, Luis A., John F. Williams, Edwin R. Burgess, IV, John A. Lednicky, and Rhoel R. Dinglasan. 2025. "Physiological Impacts on the Mosquito Vector Hosts Refine Vectorial Capacity Estimates of Mayaro Virus Transmission Risk" Viruses 17, no. 9: 1155. https://doi.org/10.3390/v17091155
APA StyleAlonso-Palomares, L. A., Williams, J. F., Burgess, E. R., IV, Lednicky, J. A., & Dinglasan, R. R. (2025). Physiological Impacts on the Mosquito Vector Hosts Refine Vectorial Capacity Estimates of Mayaro Virus Transmission Risk. Viruses, 17(9), 1155. https://doi.org/10.3390/v17091155