Comparative Evaluation of Modified Vaccinia Ankara as a Surrogate Virus for Disinfectant Efficacy Testing Against AIV, FMDV, and ASFV
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses and Cells
2.2. Disinfectants
- (1)
- Quaternary ammonium compounds (QACs; n = 22);
- (2)
- Oxidizing agents (n = 8);
- (3)
- Potassium peroxymonosulfate (PPMS)-based products (n = 28);
- (4)
- Organic acids (n = 6).
2.3. Virucidal Efficacy Test
2.4. Data Analysis
3. Results
3.1. Comparative Virucidal Efficacy of Disinfectants Against Four Viruses
3.2. Correlation of Virucidal Efficacy Between MVA and Target Viruses
3.3. Classification Performance of MVA for Predicting Virucidal Efficacy Against Target Viruses
3.4. Comparison of Disinfectant Efficacy by Chemical Group
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIV | Avian influenza virus |
ANOVA | Analysis of variance |
APQA | Animal and Plant Quarantine Agency |
ASFV | African swine fever virus |
AUC | Area under curve |
CPE | Cytopathic effect |
CV | Coefficient of variation |
EID | Egg Infectious Dose |
FBS | Fetal bovine serum |
FMDV | Foot-and-mouth disease virus |
KVCC | Korea Veterinary Culture Collection |
MVA | Modified vaccinia ankara |
NaN | Not a number |
NPV | Negative predictive value |
PPMS | Potassium peroxymonosulfate |
PPV | Positive predictive value |
QACs | Quaternary ammonium compounds |
SD | Standard deviation |
TCID | Tissue culture infectious dose |
References
- Clemmons, E.A.; Alfson, K.J.; Dutton, J.W. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals 2021, 11, 2039. [Google Scholar] [CrossRef] [PubMed]
- Torres-Velez, F.; Havas, K.A.; Spiegel, K.; Brown, C. Transboundary animal diseases as re-emerging threats–impact on one health. Semin. Diagn. Pathol. 2019, 36, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Gongal, G.; Rahman, H.; Thakuri, K.C.; Vijayalakshmy, K. An overview of transboundary animal diseases of viral origin in South Asia: What needs to be done? Vet. Sci. 2022, 9, 586. [Google Scholar] [CrossRef]
- Xian, Y.; Xiao, C. The structure of ASFV advances the fight against the disease. Trends Biochem. Sci. 2020, 45, 276–278. [Google Scholar] [CrossRef]
- Coelho, I.M.P.; Paiva, M.T.; da Costa, A.J.A.; Nicolino, R.R. African Swine Fever: Spread and seasonal patterns worldwide. Prev. Vet. Med. 2025, 235, 106401. [Google Scholar] [CrossRef]
- Aslam, M.; Alkheraije, K.A. The prevalence of foot-and-mouth disease in Asia. Front. Vet. Sci. 2023, 10, 1201578. [Google Scholar] [CrossRef]
- Stenfeldt, C.; Eschbaumer, M.; Humphreys, J.; Medina, G.N.; Arzt, J. The pathogenesis of foot-and-mouth disease virus: Current understandings and knowledge gaps. Vet. Res. 2025, 56, 119. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Hermann, E.; Rasmussen, A.L. Highly pathogenic avian influenza H5N1: History, current situation, and outlook. J. Virol. 2025, 99, e02209–e02224. [Google Scholar] [CrossRef]
- Sanchez-Rojas, I.C.; Bonilla-Aldana, D.K.; Solarte-Jimenez, C.L.; Bonilla-Aldana, J.L.; Acosta-España, J.D.; Rodriguez-Morales, A.J. Highly Pathogenic Avian Influenza (H5N1) Clade 2.3. 4.4 b in Cattle: A Rising One Health Concern. Animals 2025, 15, 1963. [Google Scholar] [CrossRef]
- Beato, M.S.; D’Errico, F.; Iscaro, C.; Petrini, S.; Giammarioli, M.; Feliziani, F. Disinfectants against African Swine Fever: An Updated Review. Viruses 2022, 14, 1384. [Google Scholar] [CrossRef]
- Juszkiewicz, M.; Walczak, M.; Woźniakowski, G.; Podgórska, K. African swine fever: Transmission, spread, and control through biosecurity and disinfection, including polish trends. Viruses 2023, 15, 2275. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African Swine Fever Virus: An Emerging DNA Arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef] [PubMed]
- Wales, A.D.; Davies, R.H. Disinfection to control African swine fever virus: A UK perspective. J. Med. Microbiol. 2021, 70, 001410. [Google Scholar] [CrossRef]
- Songkasupa, T.; Boonpornprasert, P.; Suwankitwat, N.; Lohlamoh, W.; Nuengjamnong, C.; Nuanualsuwan, S. Thermal inactivation of African swine fever virus in feed ingredients. Sci. Rep. 2022, 12, 15998. [Google Scholar] [CrossRef]
- Alejo, A.; Matamoros, T.; Guerra, M.; Andres, G. A Proteomic Atlas of the African Swine Fever Virus Particle. J. Virol. 2018, 92. [Google Scholar] [CrossRef]
- De Benedictis, P.; Beato, M.S.; Capua, I. Inactivation of avian influenza viruses by chemical agents and physical conditions: A review. Zoonoses Public Health 2007, 54, 51–68. [Google Scholar] [CrossRef]
- Rhee, C.; Kang, Y.; Han, B.; Kim, Y.-W.; Her, M.; Jeong, W.; Kim, S. Virucidal efficacy of seven active substances in commercial disinfectants used against H9N2 low pathogenic avian influenza virus. J. Appl. Poult. Res. 2021, 30, 100198. [Google Scholar] [CrossRef]
- Rhee, C.H.; Park, S.-C.; Her, M.; Jeong, W. Surrogate Selection for Foot-and-Mouth Disease Virus in Disinfectant Efficacy Tests by Simultaneous Comparison of Bacteriophage MS2 and Bovine Enterovirus Type 1. Viruses 2022, 14, 2590. [Google Scholar] [CrossRef]
- Gabbert, L.R.; Neilan, J.G.; Rasmussen, M. Recovery and chemical disinfection of foot-and-mouth disease and African swine fever viruses from porous concrete surfaces. J. Appl. Microbiol. 2020, 129, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, J. Surrogate viruses for testing virucidal efficacy of chemical disinfectants. J. Hosp. Infect. 2004, 56, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Schwebke, I.; Suchomel, M.; Fotheringham, V.; Gebel, J.; Meyer, B.; Morace, G.; Roedger, H.J.; Roques, C.; Visa, P. The European tiered approach for virucidal efficacy testing–rationale for rapidly selecting disinfectants against emerging and re-emerging viral diseases. Eurosurveillance 2021, 26, 2000708. [Google Scholar] [CrossRef] [PubMed]
- USEP Agency. OCSPP 810.2200: Disinfectants for Use on Environmental Surfaces, Guidance for Efficacy Testing. Available online: https://downloads.regulations.gov/EPA-HQ-OPP-2015-0276-0013/content.pdf (accessed on 9 May 2025).
- Bolten, A.; Schmidt, V.; Steinhauer, K. Use of the European standardization framework established by CEN/TC 216 for effective disinfection strategies in human medicine, veterinary medicine, food hygiene, industry, and domestic and institutional use—A review. GMS Hyg. Infect. Control 2022, 17, Doc14. [Google Scholar] [CrossRef] [PubMed]
- Volz, A.; Sutter, G. Modified vaccinia virus Ankara: History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017, 97, 187–243. [Google Scholar] [CrossRef]
- Rhee, C.H.; Her, M.; Jeong, W. Modified vaccinia virus Ankara as a potential biosafety level 2 surrogate for African swine fever virus in disinfectant efficacy tests. Pathogens 2022, 11, 320. [Google Scholar] [CrossRef]
- Okeke, M.I.; Okoli, A.S.; Diaz, D.; Offor, C.; Oludotun, T.G.; Tryland, M.; Bøhn, T.; Moens, U. Hazard characterization of modified vaccinia virus ankara vector: What are the knowledge gaps? Viruses 2017, 9, 318. [Google Scholar] [CrossRef]
- Steinhauer, K.; Meister, T.L.; Todt, D.; Krawczyk, A.; Paßvogel, L.; Becker, B.; Paulmann, D.; Bischoff, B.; Eggers, M.; Pfaender, S. Virucidal efficacy of different formulations for hand and surface disinfection targeting SARS CoV-2. J. Hosp. Infect. 2021, 112, 27–30. [Google Scholar] [CrossRef]
- Yilmaz, A.; Kaleta, E. Evaluation of virucidal activity of three commercial disinfectants and formic acid using bovine enterovirus type 1 (ECBO virus), mammalian orthoreovirus type 1 and bovine adenovirus type 1. Vet. J. 2003, 166, 67–78. [Google Scholar] [CrossRef]
- Holmes, A.C.; Semler, B.L. Picornaviruses and RNA metabolism: Local and global effects of infection. J. Virol. 2019, 93. [Google Scholar] [CrossRef]
- Sobhy, N.M.; Quinonez-Munoz, A.; Aboubakr, H.A.; Youssef, C.R.; Ojeda-Barría, G.; Mendoza-Fernández, J.; Goyal, S.M. In vitro virucidal activity of a commercial disinfectant against viruses of domestic animals and poultry. Front. Vet. Sci. 2024, 10, 1276031. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.S. Variability and Relative Order of Susceptibility of Non-Enveloped. In Disinfection of Viruses; Intechopen: London, UK, 2022; p. 93. [Google Scholar] [CrossRef]
- Richards, G.P. Critical Review of Norovirus Surrogates in Food Safety Research: Rationale for Considering Volunteer Studies. Food Environ. Virol. 2012, 4, 6–13. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Guzik, K.; Slezak, K.; Dziedzic, J.; Rokita, H. Heat shock protein and heat shock factor 1 expression and localization in vaccinia virus infected human monocyte derived macrophages. J. Inflamm. 2005, 2, 12. [Google Scholar] [CrossRef]
- Dong, H.; Liu, P.; Bai, M.; Wang, K.; Feng, R.; Zhu, D.; Sun, Y.; Mu, S.; Li, H.; Harmsen, M. Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies. Protein Cell 2022, 13, 446–453. [Google Scholar] [CrossRef]
- Malik, N.; Kotecha, A.; Gold, S.; Asfor, A.; Ren, J.; Huiskonen, J.T.; Tuthill, T.J.; Fry, E.E.; Stuart, D.I. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation. PLoS Pathog. 2017, 13, e1006607. [Google Scholar] [CrossRef] [PubMed]
- Tarka, P.; Nitsch-Osuch, A. Evaluating the Virucidal Activity of Disinfectants According to European Union Standards. Viruses 2021, 13, 534. [Google Scholar] [CrossRef] [PubMed]
- Tanneberger, F.; Abd El Wahed, A.; Fischer, M.; Blome, S.; Truyen, U. The efficacy of disinfection on modified vaccinia Ankara and African Swine fever Virus in various forest soil types. Viruses 2021, 13, 2173. [Google Scholar] [CrossRef]
- Heffron, J.; Samsami, M.; Juedemann, S.; Lavin, J.; Tavakoli Nick, S.; Kieke, B.A.; Mayer, B.K. Mitigation of viruses of concern and bacteriophage surrogates via common unit processes for water reuse: A meta-analysis. Water Res. 2024, 252, 121242. [Google Scholar] [CrossRef] [PubMed]
- Galabov, A.S. Virucidal agents in the eve of manorapid synergy®. GMS Krankenhaushyg. Interdiszip. 2007, 2, Doc18. [Google Scholar]
- Eterpi, M.; McDonnell, G.; Thomas, V. Virucidal Activity of Disinfectants against Parvoviruses and Reference Viruses. Appl. Biosaf. 2010, 15, 165–171. [Google Scholar] [CrossRef]
- Ruenphet, S.; Kunanusont, N.; Punyadarsaniya, D. Effectiveness of potassium peroxymonosulfate against enveloped viruses using an aqueous phase and its application on various contaminated carrier surfaces and artificially avian influenza virus-contaminated clothes. Vet. World 2024, 17, 2595. [Google Scholar] [CrossRef]
- Paulus, W. Oxidizing agents. In Directory of Microbicides for the Protection of Materials: A Handbook; Paulus, W., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 758–777. [Google Scholar]
- Xiao, S.; Yuan, Z.; Huang, Y. Disinfectants against SARS-CoV-2: A Review. Viruses 2022, 14, 1721. [Google Scholar] [CrossRef]
Active Ingredient Type | Group | No. of Products | Example Composition |
---|---|---|---|
QACs-based | QACs + Organic Acids | 21 | BZK (100 g), CA (200 g), PA (60 g) |
QACs + Aldehyde | 1 | QACs (100 g), GLT (150 g) | |
Oxidizer | Peroxide-based Oxidizers | 7 | HP (250 g), PAA (50 g) |
Chlorine-based Oxidizers | 1 | NaDCC (3.3 g) | |
PPMS-based | PPMS + Organic Acids | 23 | PPMS (500 g), MA (100 g), SA (50 g) |
PPMS + Surfactant only | 1 | PPMS (500 g), SDBS (150 g) | |
PPMS + Chlorine-based Oxidizer | 2 | PPMS (500 g), NaDCC (50 g) | |
PPMS + Acid + Chlorine-based Oxidizer | 2 | PPMS (500 g), MA (150 g), NaDCC (51 g) | |
Acids | Organic Acids (Single or Mixed) | 6 | CA (200 g), AcOH (100 g), PA (100 g), Thymol (25 g) |
Virus | Group | Mean ± SD * | CV (%) | Efficacy (%) * |
---|---|---|---|---|
AIV | QACs-based | 5.07 ± 0.49 | 9.7 | 99.9991 |
Oxidizer | 5.21 ± 0.44 | 8.5 | 99.9994 | |
PPMS-based | 5.21 ± 0.40 | 7.7 | 99.9994 | |
Acids | 4.92 ± 0.60 | 12.2 | 99.9988 | |
FMDV | QACs-based | 3.85 ± 0.27 | 7 | 99.9859 |
Oxidizer | 4.53 ± 0.21 | 4.6 | 99.9971 | |
PPMS-based | 4.49 ± 0.36 | 8 | 99.9968 | |
Acids | 4.11 ± 0.49 | 11.9 | 99.9923 | |
ASFV | QACs-based | 4.29 ± 0.88 | 20.5 | 99.9948 |
Oxidizer | 4.73 ± 0.71 | 15 | 99.9981 | |
PPMS-based | 4.74 ± 0.52 | 11 | 99.9982 | |
Acids | 4.57 ± 0.29 | 6.3 | 99.9973 | |
MVA | QACs-based | 2.37 ± 0.75 | 31.6 | 99.5705 |
Oxidizer | 3.91 ± 0.50 | 12.8 | 99.9876 | |
PPMS-based | 4.06 ± 0.78 | 19.2 | 99.9914 | |
Acids | 3.58 ± 1.06 | 29.6 | 99.9736 |
Parameter | AIV | ASFV | FMDV |
---|---|---|---|
Correlation (r) | 0.002 (Negligible) | 0.157 (Very low) | 0.671 (Moderate) |
AUC | Not applicable (Uniformly high efficacy) | 0.78 (Fair) | 0.83 (Good) |
Quantitative Prediction | Not feasible | Limited | Feasible |
Surrogate Utility | Conservative binary screening surrogate for highly sensitive viruses | Binary classification & Conservative screening | Binary classification & Conservative screening & Approximate quantitative prediction |
Practical Application | Exclusion of ineffective disinfectants under conservative criteria | Screening and Exclusion of ineffective disinfectants | Pre-approval evaluation and potential replacement for live virus testing |
Protective Threshold (MVA-kill implies full-kill) | Always (MVA-killing dilution always sufficient for AIV) | Often (but some borderline mismatches may occur) | Often (especially at conservative threshold of MVA ≤ 2.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Kim, S.-J.; Shin, K.-S.; Park, S.-H.; Joo, Y.Y.; Han, B.; Lee, C.-Y.; Park, G.-W.; Ku, H.-O.; Jeong, W.; et al. Comparative Evaluation of Modified Vaccinia Ankara as a Surrogate Virus for Disinfectant Efficacy Testing Against AIV, FMDV, and ASFV. Viruses 2025, 17, 1156. https://doi.org/10.3390/v17091156
Song S, Kim S-J, Shin K-S, Park S-H, Joo YY, Han B, Lee C-Y, Park G-W, Ku H-O, Jeong W, et al. Comparative Evaluation of Modified Vaccinia Ankara as a Surrogate Virus for Disinfectant Efficacy Testing Against AIV, FMDV, and ASFV. Viruses. 2025; 17(9):1156. https://doi.org/10.3390/v17091156
Chicago/Turabian StyleSong, Sok, Su-Jeong Kim, Kyu-Sik Shin, So-Hee Park, Yong Yi Joo, Bokhee Han, Cho-Yeon Lee, Gong-Woo Park, Hyun-Ok Ku, Wooseog Jeong, and et al. 2025. "Comparative Evaluation of Modified Vaccinia Ankara as a Surrogate Virus for Disinfectant Efficacy Testing Against AIV, FMDV, and ASFV" Viruses 17, no. 9: 1156. https://doi.org/10.3390/v17091156
APA StyleSong, S., Kim, S.-J., Shin, K.-S., Park, S.-H., Joo, Y. Y., Han, B., Lee, C.-Y., Park, G.-W., Ku, H.-O., Jeong, W., & Park, C.-K. (2025). Comparative Evaluation of Modified Vaccinia Ankara as a Surrogate Virus for Disinfectant Efficacy Testing Against AIV, FMDV, and ASFV. Viruses, 17(9), 1156. https://doi.org/10.3390/v17091156