Investigation of Avian Reovirus Evolution and Cross-Species Transmission in Turkey Hosts by Segment-Based Temporal Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Real-Time Reverse Transcription Polymerase Chain Reaction (qRT-PCR)
2.2. Virus Isolation
2.3. Whole Genome Sequencing (WGS)
2.4. Data Acquisition and Curation
2.5. Phylogenetics and Temporal Reconstruction of ARV Transmission
2.6. Reassortment, Recombination, and Selective Pressure Analyses
2.7. Statistics
3. Results
3.1. Clinical Data
3.2. ARV Nucleotide Homology
3.3. Phylogeny of ARV Segments and Spillover Investigation
3.3.1. Chicken as a Common Ancestral Host for ARVs in Turkeys
3.3.2. M2 Has a Unique Evolutionary History
3.3.3. The S1 σC-Encoding Region in Turkeys Is Estimated to Have Differing Common Ancestors Compared to Other Segments
3.3.4. Estimated Higher Nucleotide Mutation Rates in L3, M2, and the S1 σC-Encoding Region
3.3.5. Cross-Species Transmission Predominantly from Chickens to Turkeys and Other Avian Species
3.3.6. Positive Selective Pressure on σC Protein
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitcovski, J.; Goyal, S.M. Avian Reovirus Infections. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 382–400. [Google Scholar]
- Kumar, R.; Sharafeldin, T.A.; Sobhy, N.M.; Goyal, S.M.; Porter, R.E.; Mor, S.K. Comparative Pathogenesis of Turkey Reoviruses: Reovirus pathogenesis. Avian Pathol. 2022, 51, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Jones, R. Avian reovirus infections. Rev. Sci. Tech.-Off. Int. Des Epizoot. 2000, 19, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, R.A. Molecular Characterization of Variant Avian Reoviruses and Their Relationship with Antigenicity and Pathogenicity. Avian Dis. 2022, 66, 443–446. [Google Scholar] [CrossRef]
- Kim, S.-W.; Choi, Y.-R.; Park, J.-Y.; Wei, B.; Shang, K.; Zhang, J.-F.; Jang, H.-K.; Cha, S.-Y.; Kang, M. Isolation and genomic characterization of avian reovirus from wild birds in South Korea. Front. Vet. Sci. 2022, 9, 794934. [Google Scholar] [CrossRef]
- Choi, Y.-R.; Kim, S.-W.; Shang, K.; Park, J.-Y.; Zhang, J.-F.; Jang, H.-K.; Wei, B.; Cha, S.-Y.; Kang, M. Avian reoviruses from wild birds exhibit pathogenicity to specific pathogen free chickens by footpad route. Front. Vet. Sci. 2022, 9, 844903. [Google Scholar] [CrossRef]
- Rafique, S.; Rashid, F.; Wei, Y.; Zeng, T.; Xie, L.; Xie, Z. Avian orthoreoviruses: A systematic review of their distribution, dissemination patterns, and genotypic clustering. Viruses 2024, 16, 1056. [Google Scholar] [CrossRef] [PubMed]
- Benavente, J.; Martínez-Costas, J. Avian reovirus: Structure and biology. Virus Res. 2007, 123, 105–119. [Google Scholar] [CrossRef]
- Xu, W.; Coombs, K.M. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein. Virol. J. 2008, 5, 153. [Google Scholar] [CrossRef]
- Tourís-Otero, F.; Cortez-San Martín, M.; Martínez-Costas, J.; Benavente, J. Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions. J. Mol. Biol. 2004, 341, 361–374. [Google Scholar] [CrossRef]
- Day, J.M.; Pantin-Jackwood, M.J.; Spackman, E. Sequence and phylogenetic analysis of the S1 genome segment of turkey-origin reoviruses. Virus Genes 2007, 35, 235–242. [Google Scholar] [CrossRef]
- Dawe, W.; Kapczynski, D.; Linnemann, E.; Gauthiersloan, V.; Sellers, H. Analysis of the Immune Response and Identification of Antibody Epitopes Against the Sigma C Protein of Avian Orthoreovirus Following Immunization with Live or Inactivated Vaccines. Avian Dis. 2022, 66, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Bodelón, G.; Labrada, L.; Martínez-Costas, J.; Benavente, J. Modification of late membrane permeability in avian reovirus-infected cells: Viroporin activity of the S1-encoded nonstructural p10 protein. J. Biol. Chem. 2002, 277, 17789–17796. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, R.; Li, W.; Pan, X.; Dai, Y.; Wu, H.; Wu, Y.; Zhang, C. Host protein PRPS2 interact with the non-structural protein p17 of Avian Reovirus and promote viral replication. Poult. Sci. 2025, 104, 104582. [Google Scholar] [CrossRef]
- Liu, H.-J.; Lin, P.-Y.; Lee, J.-W.; Hsu, H.-Y.; Shih, W.-L. Retardation of cell growth by avian reovirus p17 through the activation of p53 pathway. Biochem. Biophys. Res. Commun. 2005, 336, 709–715. [Google Scholar] [CrossRef]
- Premanand, B.; Zhong Wee, P.; Prabakaran, M. Baculovirus surface display of immunogenic proteins for vaccine development. Viruses 2018, 10, 298. [Google Scholar] [CrossRef]
- King, A.M.; Lefkowitz, E.; Adams, M.J.; Carstens, E.B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2011; Volume 9. [Google Scholar]
- Matthijnssens, J.; Attoui, H.; Bányai, K.; Brussaard, C.P.D.; Danthi, P.; Del Vas, M.; Dermody, T.S.; Duncan, R.; Fāng, Q.; Johne, R.; et al. ICTV virus taxonomy profile: Spinareoviridae 2022. J. Gen. Virol. 2022, 103, 001781. [Google Scholar] [CrossRef] [PubMed]
- Curtis, P.; Al-Mufarrej, S.; Jones, R.; Morris, J.; Sutton, P. Tenosynovitis in young pheasants associated with reovirus, staphylococci and environmental factors. Vet. Sec. 1992, 131, 293. [Google Scholar] [CrossRef]
- Kugler, R.; Dandár, E.; Fehér, E.; Jakab, F.; Mató, T.; Palya, V.; Bányai, K.; Farkas, S.L. Phylogenetic analysis of a novel reassortant orthoreovirus strain detected in partridge (Perdix perdix). Virus Res. 2016, 215, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Ritter, G.D.; Ley, D.; Levy, M.; Guy, J.; Barnes, H.J. Intestinal cryptosporidiosis and reovirus isolation from bobwhite quail (Colinus virginianus) with enteritis. Avian Dis. 1986, 30, 603–608. [Google Scholar] [CrossRef]
- Farkas, S.L.; Dandár, E.; Marton, S.; Fehér, E.; Oldal, M.; Jakab, F.; Mató, T.; Palya, V.; Bányai, K. Detection of shared genes among Asian and European waterfowl reoviruses in the whole genome constellations. Infect. Genet. Evol. 2014, 28, 55–57. [Google Scholar] [CrossRef]
- Wille, M.; Holmes, E.C. The ecology and evolution of influenza viruses. Cold Spring Harb. Perspect. Med. 2020, 10, a038489. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Guo, J.; Shen, J.; Guan, M.; Liu, L.; Xie, Y.; Xu, H.; Wang, M.; Ren, A.; Li, W.; et al. Genetics and biological characteristics of duck reoviruses isolated from ducks and geese in China. Vet. Res. 2025, 56, 30. [Google Scholar] [CrossRef]
- Ayalew, L.E.; Ahmed, K.A.; Mekuria, Z.H.; Lockerbie, B.; Popowich, S.; Tikoo, S.K.; Ojkic, D.; Gomis, S. The dynamics of molecular evolution of emerging avian reoviruses through accumulation of point mutations and genetic re-assortment. Virus Evol. 2020, 6, veaa025. [Google Scholar] [CrossRef]
- Farkas, S.L.; Marton, S.; Dandár, E.; Kugler, R.; Gál, B.; Jakab, F.; Bálint, Á.; Kecskeméti, S.; Bányai, K. Lineage diversification, homo-and heterologous reassortment and recombination shape the evolution of chicken orthoreoviruses. Sci. Rep. 2016, 6, 36960. [Google Scholar] [CrossRef]
- Tang, Y.; Lu, H. Whole genome alignment based one-step real-time RT-PCR for universal detection of avian orthoreoviruses of chicken, pheasant and turkey origins. Infect. Genet. Evol. 2016, 39, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Tang, Y.; Dunn, P.A.; Wallner-Pendleton, E.A.; Lin, L.; Knoll, E.A. Isolation and molecular characterization of newly emerging avian reovirus variants and novel strains in Pennsylvania, USA, 2011–2014. Sci. Rep. 2015, 5, 14727. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zhang, J.; Gauger, P.C.; Burrough, E.R.; Zhang, J.; Harmon, K.; Wang, L.; Zheng, Y.; Petznick, T.; Li, G. Genetic characterization of porcine sapoviruses identified from pigs during a diarrhoea outbreak in Iowa, 2019. Transbound. Emerg. Dis. 2022, 69, 1246–1255. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Simpson, J.T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.J.; Birol, I. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009, 19, 1117–1123. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Sellers, H.S. Avian reoviruses from clinical cases of tenosynovitis: An overview of diagnostic approaches and 10-year review of isolations and genetic characterization. Avian Dis. 2022, 66, 420–426. [Google Scholar] [CrossRef]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef]
- Sagulenko, P.; Puller, V.; Neher, R.A. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018, 4, vex042. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree v1. 4. Molecular Evolution, Phylogenetics And Epidemiology; University of Edinburgh, Institute of Evolutionary Biology: Edinburgh, UK, 2012. [Google Scholar]
- Markin, A.; Macken, C.A.; Baker, A.L.; Anderson, T.K. Revealing reassortment in influenza A viruses with TreeSort. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kosakovsky Pond, S.L.; Posada, D.; Gravenor, M.B.; Woelk, C.H.; Frost, S.D.W. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 2006, 23, 1891–1901. [Google Scholar] [CrossRef]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Kosakovsky Pond, S.L. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef]
- Kosakovsky Pond, S.L.; Frost, S.D.W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 2005, 22, 1208–1222. [Google Scholar] [CrossRef]
- Murrell, B.; Moola, S.; Mabona, A.; Weighill, T.; Sheward, D.; Kosakovsky Pond, S.L.; Scheffler, K. FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evol. 2013, 30, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef]
- Dandar, E.; Huhtamo, E.; Farkas, S.L.; Oldal, M.; Jakab, F.; Vapalahti, O.; Banyai, K. Complete genome analysis identifies Tvärminne avian virus as a candidate new species within the genus Orthoreovirus. J. Gen. Virol. 2014, 95, 898–904. [Google Scholar] [CrossRef]
- Wille, M.; Shi, M.; Hurt, A.C.; Klaassen, M.; Holmes, E.C. RNA virome abundance and diversity is associated with host age in a bird species. Virology 2021, 561, 98–106. [Google Scholar] [CrossRef]
- Pantin-Jackwood, M.J.; Spackman, E.; Day, J.M. Pathology and virus tissue distribution of Turkey origin reoviruses in experimentally infected Turkey poults. Vet. Pathol. 2007, 44, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.G.; Fox, G.C.; Parrado, X.L.H.; Llamas-Saiz, A.L.; Costas, C.; Martínez-Costas, J.; Benavente, J.; van Raaij, M.J. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J. Mol. Biol. 2005, 354, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Tucciarone, C.M.; Faustini, G.; Poletto, F.; Baston, R.; Cecchinato, M.; Legnardi, M. Reconstruction of Avian Reovirus History and Dispersal Patterns: A Phylodynamic Study. Viruses 2024, 16, 796. [Google Scholar] [CrossRef]
- De Carli, S.; Wolf, J.M.; Gräf, T.; Lehmann, F.K.M.; Fonseca, A.S.K.; Canal, C.W.; Lunge, V.R.; Ikuta, N. Genotypic characterization and molecular evolution of avian reovirus in poultry flocks from Brazil. Avian Pathol. 2020, 49, 611–620. [Google Scholar] [CrossRef]
- Wasik, B.R.; de Wit, E.; Munster, V.; Lloyd-Smith, J.O.; Martinez-Sobrido, L.; Parrish, C.R. Onward transmission of viruses: How do viruses emerge to cause epidemics after spillover? Philos. Trans. R. Soc. B 2019, 374, 20190017. [Google Scholar] [CrossRef]
- Gál, B.; Varga-Kugler, R.; Ihász, K.; Kaszab, E.; Farkas, S.; Marton, S.; Martella, V.; Bányai, K. A Snapshot on the Genomic Epidemiology of Turkey Reovirus Infections, Hungary. Animals 2023, 13, 3504. [Google Scholar] [CrossRef]
- Spackman, E.; Pantin-Jackwood, M.; Michael Day, J.; Sellers, H. The pathogenesis of turkey origin reoviruses in turkeys and chickens. Avian Pathol. 2005, 34, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.K.; Marthaler, D.; Verma, H.; Sharafeldin, T.A.; Jindal, N.; Porter, R.E.; Goyal, S.M. Phylogenetic analysis, genomic diversity and classification of M class gene segments of turkey reoviruses. Vet. Microbiol. 2015, 176, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, O.F.; Grund, C.; Cöven, F. Reovirus infection of pheasants (Phasianus colchicus). Tierarztl. Praxis. Ausg. G Grosstiere/Nutztiere 1998, 26, 104–107. [Google Scholar]
- Sitthicharoenchai, P.; Zhang, J.; Tian, L.; Stasko, J.; Hashish, A.; Hsueh, C.-S.; Sato, Y.; Hause, B.; El-Gazzar, M. High mortality associated with avian reoviral hepatitis in young quail (Colinus virginianus). Vet. Pathol. 2024, 62, 216–220. [Google Scholar] [CrossRef]
- Kant, A.; Balk, F.; Born, L.; van Roozelaar, D.; Heijmans, J.; Gielkens, A.; ter Huurne, A. Classification of Dutch and German avian reoviruses by sequencing the σ C protein. Vet. Res. 2003, 34, 203–212. [Google Scholar] [CrossRef]
- Jenkins, G.M.; Rambaut, A.; Pybus, O.G.; Holmes, E.C. Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. J. Mol. Evol. 2002, 54, 156–165. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Heylen, E.; Zeller, M.; Rahman, M.; Lemey, P.; Van Ranst, M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol. Biol. Evol. 2010, 27, 2431–2436. [Google Scholar] [CrossRef]
- McDonald, S.M.; Nelson, M.I.; Turner, P.E.; Patton, J.T. Reassortment in segmented RNA viruses: Mechanisms and outcomes. Nat. Rev. Microbiol. 2016, 14, 448–460. [Google Scholar] [CrossRef]
- Smith, B.L.; Wilke, C.O. A new twist in measuring mutation rates. Elife 2017, 6, e29586. [Google Scholar] [CrossRef] [PubMed]
Data Source | L1 | L2 | L3 | M1 | M2 | M3 | S1 a | S2 | S3 | S4 | |
---|---|---|---|---|---|---|---|---|---|---|---|
ISU-VDL | Total sequence number in the analysis | 90 | 88 | 88 | 90 | 92 | 92 | 92 | 89 | 93 | 89 |
Number of co-detection sequences | 5 | 5 | 6 | 5 | 6 | 9 | 5 | 5 | 6 | 4 | |
Additional sequences from the same case accession in different organ(s) | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
Sequences with >10% missing nucleotides in full-length ORF | 2 | 4 | 5 | 2 | 1 | 4 | 1 | 3 | 0 | 2 | |
Nucleotide similarity (%) | 90.6–100 | 93.2–100 | 91.4–100 | 90.1–100 | 64–100 | 86–100 | 42.6–100 | 90.1–100 | 84.7–100 | 88.6–100 | |
Amino acid similarity (%) | 94–100 | 93.0–100 | 92.7–100 | 93.1–100 | 65.3–100 | 91.5–100 | 31.8–100 | 96.7–100 | 90.6–100 | 94.0–100 | |
GenBank | Total sequence number in the analysis | 108 | 107 | 96 | 103 | 136 | 108 | 102 | 99 | 74 | 95 |
All | Total sequence number | 198 | 195 | 184 | 193 | 228 | 200 | 194 | 188 | 167 | 184 |
Nucleotide similarity (%) | 81.8–100 | 80.6–100 | 71.0–100 | 83.7–100 | 61.8–100 | 77.6–100 | 42.1–100 | 85.2–100 | 67.2–100 | 76.4–100 | |
Amino acid similarity (%) | 92.3–100 | 88.8–100 | 78.0–100 | 92.0–100 | 63.04–100 | 86.0–100 | 29.0–100 | 89.2–100 | 72.8–100 | 80.6–100 | |
Host species | Chicken, Pheasant, Turkey, Quail | Chicken, Pheasant, Turkey, Quail, Partridge | Chicken, Pheasant, Turkey, Quail, Partridge | Chicken, Pheasant, Turkey, Quail | Turkey, Chicken, Quail, Pheasant, Muscovy Duck, Mallard Duck, Goose, Cherry Valley Duck, Black Swan, Duck (Unspecified) | Chicken, Pheasant, Turkey, Quail | Turkey, Chicken, Partridge, Guineafowl, Ruddy Turnstone, Quail, Pheasant, Chukar | Chicken, Pheasant, Turkey, Quail, Muscovy Duck | Chicken, Pheasant, Turkey, Quail, Muscovy Duck | Chicken, Pheasant, Turkey, Quail, Muscovy Duck, Chickadee, Partridge |
TreeTime | TempEst | ||||||
---|---|---|---|---|---|---|---|
tMCRA | Mutation Rate (n/y/s) | R2 | tMCRA | Mutation Rate (n/y/s) | R2 | ||
L1 | 1890 | 1.62 × 10−3 | 0.62 | L1 | 1896 | 1.74 × 10−3 | 0.48 |
L2 | 1883 | 1.37 × 10−3 | 0.32 | L2 | 1918 | 1.91 × 10−3 | 0.39 |
L3 | 1895 | 4.62 × 10−3 | 0.29 | L3 | 1901 | 5.21 × 10−3 | 0.32 |
M1 | 1941 | 1.42 × 10−3 | 0.49 | M1 | 1948 | 1.90 × 10−3 | 0.48 |
M2-1 a | 1948 | 1.18 × 10−3 | 0.6 | M2-1 | 1947 | 1.91 × 10−3 | 0.61 |
M2-2 b | 1902 | 9.61 × 10−4 | 0.35 | M2-2 | 1910 | 1.03 × 10−3 | 0.19 |
M2-3 c | 1978 | 1.80 × 10−3 | 0.41 | M2-3 | 1968 | 8.19 × 10−3 | 0.3 |
M2-4 d | 1926 | 9.03 × 10−3 | 0.51 | M2-4 | 1912 | 9.27 × 10−4 | 0.51 |
M2-5 e | 1995 | 1.53 × 10−3 | 0.95 | M2-5 | 2001 | 2.14 × 10−3 | 0.92 |
M2-6 f | 2005 | 2.07 × 10−2 | 0.65 | M2-6 | 2006 | 2.33 × 10−2 | 0.7 |
M3 | 1834 | 1.24 × 10−3 | 0.41 | M3 | 1834 | 1.24 × 10−3 | 0.41 |
S1-1 g | 1952 | 2.45 × 10−3 | 0.56 | S1-1 a | 1952 | 2.50 × 10−3 | 0.56 |
S1-2 h | 1949 | 1.48 × 10−3 | 1 | S1-2 a | 1951 | 1.58 × 10−3 | 0.83 |
S2 | 1920 | 1.36 × 10−3 | 0.44 | S2 | 1920 | 1.36 × 10−3 | 0.44 |
S3 | 1698 | 1.63 × 10−3 | 0.4 | S3 | 1683 | 1.56 × 10−3 | 0.36 |
S4 | 1779 | 1.17 × 10−3 | 0.21 | S4 | 1779 | 1.17 × 10−3 | 0.21 |
Codon | MEME | FEL | FUBAR | |||||
---|---|---|---|---|---|---|---|---|
LRT | p-Value | Class | LRT | p-Value | Class | Beta/Alpha | Post. Probability | |
22 | 3.472 | 0.083 | Diversifying | 2.211 | 0.137 | Neutral | −0.018 | 0.534 |
26 | 4.1 | 0.06 | Diversifying | 0.119 | 0.7301 | Neutral | −0.011 | 0.477 |
31 | 8.568 | 0.006 | Diversifying | 0.014 | 0.9067 | Neutral | −0.441 | 0.14 |
60 | 3.575 | 0.079 | Diversifying | 0.636 | 0.4251 | Neutral | −0.482 | 0.282 |
79 | 3.695 | 0.074 | Diversifying | 0.868 | 0.3516 | Neutral | 0.129 | 0.614 |
117 | 5.528 | 0.029 | Diversifying | 4.683 | 0.0305 | Diversifying | 1.092 | 0.918 |
135 | 3.873 | 0.068 | Diversifying | 0.014 | 0.9056 | Neutral | −0.36 | 0.264 |
148 | 8.224 | 0.007 | Diversifying | 2.963 | 0.0852 | Diversifying | 1.218 | 0.921 |
215 | 18.462 | 0 | Diversifying | 0.428 | 0.5131 | Neutral | −0.161 | 0.271 |
240 | 3.132 | 0.1 | Diversifying | 12.039 | 0.0005 | Purifying | −2.393 | 0 |
273 | 10.113 | 0.003 | Diversifying | 7.19 | 0.0073 | Diversifying | 1.735 | 0.981 |
281 | 16.147 | 0 | Diversifying | 1.662 | 0.1974 | Neutral | −1.695 | 0.006 |
282 | 9.83 | 0.003 | Diversifying | 0.412 | 0.5211 | Neutral | −1.59 | 0.024 |
289 | 3.603 | 0.078 | Diversifying | 0.268 | 0.6047 | Neutral | 0.13 | 0.613 |
296 | 8.084 | 0.008 | Diversifying | 10.615 | 0.0011 | Purifying | −2.837 | 0 |
306 | 5.299 | 0.032 | Diversifying | 0.656 | 0.4178 | Neutral | −0.637 | 0.092 |
307 | 4.151 | 0.058 | Diversifying | 0.411 | 0.5215 | Neutral | −1.762 | 0.014 |
310 | 3.679 | 0.075 | Diversifying | 3.79 | 0.0516 | Purifying | −2.066 | 0.002 |
316 | 10.144 | 0.003 | Diversifying | 0.389 | 0.533 | Neutral | −1.676 | 0.025 |
318 | 10.688 | 0.002 | Diversifying | 0.993 | 0.319 | Neutral | −1.771 | 0.02 |
319 | 17.884 | 0 | Diversifying | 0.59 | 0.4423 | Neutral | −0.285 | 0.35 |
320 | 17.92 | 0 | Diversifying | 0.003 | 0.9531 | Neutral | −1.315 | 0.078 |
321 | 7.18 | 0.012 | Diversifying | 1.276 | 0.2586 | Neutral | 0.079 | 0.536 |
325 | 31.05 | 0 | Diversifying | 0.076 | 0.7823 | Neutral | −1.5 | 0.044 |
326 | 27.676 | 0 | Diversifying | 0.299 | 0.5845 | Neutral | −0.697 | 0.197 |
327 | 8.414 | 0.007 | Diversifying | 5.275 | 0.0216 | Diversifying | 0.236 | 0.725 |
328 | 25.523 | 0 | Diversifying | 0.974 | 0.3237 | Neutral | −0.236 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsueh, C.-S.; Zeller, M.; Hashish, A.; Fasina, O.; Piñeyro, P.; Li, G.; Zhang, J.; El-Gazzar, M.; Sato, Y. Investigation of Avian Reovirus Evolution and Cross-Species Transmission in Turkey Hosts by Segment-Based Temporal Analysis. Viruses 2025, 17, 926. https://doi.org/10.3390/v17070926
Hsueh C-S, Zeller M, Hashish A, Fasina O, Piñeyro P, Li G, Zhang J, El-Gazzar M, Sato Y. Investigation of Avian Reovirus Evolution and Cross-Species Transmission in Turkey Hosts by Segment-Based Temporal Analysis. Viruses. 2025; 17(7):926. https://doi.org/10.3390/v17070926
Chicago/Turabian StyleHsueh, Cheng-Shun, Michael Zeller, Amro Hashish, Olufemi Fasina, Pablo Piñeyro, Ganwu Li, Jianqiang Zhang, Mohamed El-Gazzar, and Yuko Sato. 2025. "Investigation of Avian Reovirus Evolution and Cross-Species Transmission in Turkey Hosts by Segment-Based Temporal Analysis" Viruses 17, no. 7: 926. https://doi.org/10.3390/v17070926
APA StyleHsueh, C.-S., Zeller, M., Hashish, A., Fasina, O., Piñeyro, P., Li, G., Zhang, J., El-Gazzar, M., & Sato, Y. (2025). Investigation of Avian Reovirus Evolution and Cross-Species Transmission in Turkey Hosts by Segment-Based Temporal Analysis. Viruses, 17(7), 926. https://doi.org/10.3390/v17070926