Pharmacokinetics and Metabolism of Broad-Spectrum Antivirals Remdesivir and Obeldesivir with a Consideration to Metabolite GS-441524: Same, Similar, or Different?
Abstract
1. Introduction
2. Materials and Methods
2.1. Compounds, Reagents, and In Vivo Formulations
2.2. In Vitro Characterization
2.2.1. Permeability and Transporter Substrate Assesment
2.2.2. Plasma Stability
2.2.3. S9 Fraction Stability
2.3. In Vivo Pharmacokinetic Studies
2.3.1. Plasma Processing
2.3.2. PBMC Processing
2.3.3. Tissue Collection
2.3.4. Pharmacokinetic Data Analysis
2.3.5. Radiolabeled Metabolism, Excretion, and Tissue Distribution
3. Results
3.1. In Vitro Characterization
3.1.1. Plasma Stability
3.1.2. Gastrointestinal and Hepatic S9 Fraction Stability
3.1.3. Transporter Phenotyping
3.2. In Vivo Pharmacokinetics
3.2.1. Pharmacokinetics Following IV RDV Administration
3.2.2. Plasma Pharmacokinetics Following GS-441524 Administration
3.2.3. Plasma Pharmacokinetics Following ODV Administration
3.2.4. Tissue Pharmacokinetics
3.2.5. In Vivo ODV Characterization of Absorption and Metabolism
3.2.6. In Vivo Tissue Distribution
3.2.7. In Vivo Metabolism and Excretion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADME | absorption, distribution, metabolism, and excretion |
AGM | African green monkey |
AUC | area under the curve |
BCRP | breast cancer resistance protein |
C24h | 24 h concentration |
CL | clearance |
Cmax | maximum concentration |
CNT | concentrative nucleoside transporter |
ENT | equilibrative nucleoside transporter |
eq | equivalent |
GIS9 | gastrointestinal S9 fraction |
T1/2 | half-life |
HepS9 | hepatic S9 fraction |
HINT | histidine triad nucleotide binding protein |
IQ | inhibitory quotient |
IV | intravenous |
LC-MS/MS | liquid chromatography–tandem mass spectrometry |
MDCK | Madin–Darby canine kidney |
MARG | microautoradiography |
MDR | multidrug resistance |
NRTI | nucleos(t)ide reverse transcriptase inhibitor |
ODV | obeldesivir |
OATP | organic anion transporter polypeptides |
PBMC | peripheral blood mononuclear cell |
P-gp | P-glycoprotein |
PK | pharmacokinetics |
PMSF | phenylmethylsulfonyl fluoride |
QWBA | quantitative whole-body autoradiography |
RDV | remdesivir |
RSV | respiratory syncytial virus |
RNA | ribonucleic acid |
SARS-CoV | severe acute respiratory coronavirus |
SD | standard deviation |
Vss | steady-state volume of distribution |
Tmax | time to maximum concentration |
References
- WHO Ebola Response Team. Ebola virus disease in West Africa—The first 9 months of the epidemic and forward projections. N. Engl. J. Med. 2014, 371, 1481–1495. [Google Scholar] [CrossRef]
- Honigsbaum, M. Disease X and other unknowns. Lancet 2019, 393, 1496–1497. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.; Saunders, O.L.; Butler, T.; Zhang, L.; Xu, J.; Vela, J.E.; Feng, J.Y.; Ray, A.S.; Kim, C.U. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett. 2012, 22, 2705–2707. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Gotte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020, 295, 6785–6797. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Gotte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020, 295, 4773–4779. [Google Scholar] [CrossRef]
- Feng, J.Y. Addressing the selectivity and toxicity of antiviral nucleosides. Antivir. Chem. Chemother. 2018, 26, 2040206618758524. [Google Scholar] [CrossRef]
- Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Gotte, M. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses 2019, 11, 326. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, S.; Li, J.; Wang, W.; Zhu, H.J. Cell-Dependent Activation of ProTide Prodrugs and Its Implications in Antiviral Studies. ACS Pharmacol. Transl. Sci. 2023, 6, 1340–1346. [Google Scholar] [CrossRef]
- Siegel, D.; Hui, H.C.; Doerffler, E.; Clarke, M.O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo [2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017, 60, 1648–1661. [Google Scholar] [CrossRef]
- Mackman, R.L.; Hui, H.C.; Perron, M.; Murakami, E.; Palmiotti, C.; Lee, G.; Stray, K.; Zhang, L.; Goyal, B.; Chun, K.; et al. Prodrugs of a 1′-CN-4-Aza-7,9-dideazaadenosine C-Nucleoside Leading to the Discovery of Remdesivir (GS-5734) as a Potent Inhibitor of Respiratory Syncytial Virus with Efficacy in the African Green Monkey Model of RSV. J. Med. Chem. 2021, 64, 5001–5017. [Google Scholar] [CrossRef]
- Mackman, R.L.; Kalla, R.V.; Babusis, D.; Pitts, J.; Barrett, K.T.; Chun, K.; Du Pont, V.; Rodriguez, L.; Moshiri, J.; Xu, Y.; et al. Discovery of GS-5245 (Obeldesivir), an Oral Prodrug of Nucleoside GS-441524 That Exhibits Antiviral Efficacy in SARS-CoV-2-Infected African Green Monkeys. J. Med. Chem. 2023, 66, 11701–11717. [Google Scholar] [CrossRef] [PubMed]
- Hau, R.K.; Wright, S.H.; Cherrington, N.J. Addressing the Clinical Importance of Equilibrative Nucleoside Transporters in Drug Discovery and Development. Clin. Pharmacol. Ther. 2023, 114, 780–794. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Shi, J.; Wang, X.; Xue, Y.; Zhu, H.J. Tissue-Specific Proteomics Analysis of Anti-COVID-19 Nucleoside and Nucleotide Prodrug-Activating Enzymes Provides Insights into the Optimization of Prodrug Design and Pharmacotherapy Strategy. ACS Pharmacol. Transl. Sci. 2021, 4, 870–887. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; Navarro, V.; Peyrottes, S. Prodrugs of Nucleoside 5′-Monophosphate Analogues: Overview of the Recent Literature Concerning their Synthesis and Applications. Curr. Med. Chem. 2023, 30, 1256–1303. [Google Scholar] [CrossRef] [PubMed]
- Pitts, J.; Babusis, D.; Humeniuk, R.; Martinez, D.R.; Cox, R.M.; Schafer, A.; Riola, N.C.; Feng, J.; Du Pont, V.; Anoshchenko, O.; et al. Efficacy in Multiple SARS-CoV-2 Animal Models Supports Phase 3 Dose Selection for Obeldesivir. In Proceedings of the Infectious Diseases Week, Boston, MA, USA, 11–15 October 2023. [Google Scholar]
- Anoshchenko, O.; Abdelghany, M.; Lichtman, A.; Duan, R.; Chen, H.; Shaik, N.A.; Peng, C.C.; Yue, Q.; Subramanian, R.; Hyland, R.H.; et al. Pharmacokinetics, Mass Balance, Safety, and Tolerability of Obeldesivir in Healthy Participants. Clin. Pharmacol. Ther. 2024, 116, 1231–1239. [Google Scholar] [CrossRef]
- Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016, 531, 381–385. [Google Scholar] [CrossRef]
- Pruijssers, A.J.; George, A.S.; Schafer, A.; Leist, S.R.; Gralinksi, L.E.; Dinnon, K.H., 3rd; Yount, B.L.; Agostini, M.L.; Stevens, L.J.; Chappell, J.D.; et al. Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep. 2020, 32, 107940. [Google Scholar] [CrossRef]
- Pitts, J.; Babusis, D.; Vermillion, M.S.; Subramanian, R.; Barrett, K.; Lye, D.; Ma, B.; Zhao, X.; Riola, N.; Xie, X.; et al. Intravenous delivery of GS-441524 is efficacious in the African green monkey model of SARS-CoV-2 infection. Antivir. Res. 2022, 203, 105329. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017, 9, eaal3653. [Google Scholar] [CrossRef]
- Lo, M.K.; Feldmann, F.; Gary, J.M.; Jordan, R.; Bannister, R.; Cronin, J.; Patel, N.R.; Klena, J.D.; Nichol, S.T.; Cihlar, T.; et al. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci. Transl. Med. 2019, 11, eaau9242. [Google Scholar] [CrossRef]
- Porter, D.P.; Weidner, J.M.; Gomba, L.; Bannister, R.; Blair, C.; Jordan, R.; Wells, J.; Wetzel, K.; Garza, N.; Van Tongeren, S.; et al. Remdesivir (GS-5734) Is Efficacious in Cynomolgus Macaques Infected With Marburg Virus. J. Infect. Dis. 2020, 222, 1894–1901. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schafer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Julander, J.G.; Bunyan, E.; Jordan, R.; Porter, D.P. Remdesivir efficacy against yellow fever in a hamster model. Antivir. Res. 2022, 203, 105331. [Google Scholar] [CrossRef] [PubMed]
- Cross, R.W.; Bornholdt, Z.A.; Prasad, A.N.; Woolsey, C.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Abelson, D.M.; Kim, D.H.; Shestowsky, W.S.; et al. Combination therapy with remdesivir and monoclonal antibodies protects nonhuman primates against advanced Sudan virus disease. JCI Insight 2022, 7, e159090. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19 - Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- FDA. VEKLURY® (Remdesivir) for Injection-Highlights of Prescribing Information; FDA: Silver Spring, MD, USA, 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214787Orig1s000lbl.pdf (accessed on 21 May 2025).
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Sibomana, J.P. Fight or Flight-Facing the Marburg Outbreak in Rwanda. N. Engl. J. Med. 2024, 391, 2070–2072. [Google Scholar] [CrossRef]
- Pitts, J.; Zamora, J.L.R.; Manhas, S.; Aeschbacher, T.; Chan, J.; Cutillas, V.; Nair, V.; Riola, N.C.; Vijjapurapu, A.; Vermillion, M.S.; et al. Oral dosing of the nucleoside analog obeldesivir is efficacious against RSV infection in African green monkeys. bioRxiv 2025. [Google Scholar] [CrossRef]
- Martinez, D.R.; Moreira, F.R.; Catanzaro, N.J.; Diefenbacher, M.V.; Zweigart, M.R.; Gully, K.L.; De la Cruz, G.; Brown, A.J.; Adams, L.E.; Yount, B.; et al. The oral nucleoside prodrug GS-5245 is efficacious against SARS-CoV-2 and other endemic, epidemic, and enzootic coronaviruses. Sci. Transl. Med. 2024, 16, eadj4504. [Google Scholar] [CrossRef]
- Cross, R.W.; Woolsey, C.; Prasad, A.N.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Harrison, M.B.; Dobias, N.S.; Fenton, K.A.; Cihlar, T.; et al. Oral obeldesivir provides postexposure protection against Marburg virus in nonhuman primates. Nat. Med. 2025, 31, 1303–1311. [Google Scholar] [CrossRef]
- FDA. Safety Testing of Drug Metabolites-Guidance for Industry; FDA: Silver Spring, MD, USA, 2020. Available online: https://www.fda.gov/media/72279/download (accessed on 21 May 2025).
- Humeniuk, R.; Mathias, A.; Cao, H.; Osinusi, A.; Shen, G.; Chng, E.; Ling, J.; Vu, A.; German, P. Safety, Tolerability, and Pharmacokinetics of Remdesivir, An Antiviral for Treatment of COVID-19, in Healthy Subjects. Clin. Transl. Sci. 2020, 13, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Yan, V.C.; Muller, F.L. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for COVID-19 Treatment. ACS Med. Chem. Lett. 2020, 11, 1361–1366. [Google Scholar] [CrossRef]
- Nakano, Y.; Inokuchi, Y.; Hayama, T.; Hirai, T.; Nishiyama, M.; Sueyasu, Y.; Yokoo, K. Exploration of the optimal GS-441524 trough concentration for treating COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106892. [Google Scholar] [CrossRef]
- Dubey, N.K.; Jain, P.; Raj, A.; Tiwari, S. Assessment of remdesivir and its nucleoside metabolite in beagle dogs and healthy humans by liquid chromatography coupled with triple quadrupole mass spectrometry. Biomed. Chromatogr. 2024, 38, e5965. [Google Scholar] [CrossRef]
- Nishikawa, A.; Ito, I.; Yonezawa, A.; Itohara, K.; Matsubara, T.; Sato, Y.; Matsumura, K.; Hamada, S.; Tanabe, N.; Kai, S.; et al. Pharmacokinetics of GS-441524, the active metabolite of remdesivir, in patients receiving continuous renal replacement therapy: A case series. J. Infect. Chemother. 2024, 30, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Q.; Hagen, N.R.; Padilha, E.C.; Yang, M.; Shah, P.; Chen, C.Z.; Huang, W.; Terse, P.; Sanderson, P.; Zheng, W.; et al. Preclinical Pharmacokinetics and In Vitro Properties of GS-441524, a Potential Oral Drug Candidate for COVID-19 Treatment. Front. Pharmacol. 2022, 13, 918083. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liclican, A.; Xu, Y.; Pitts, J.; Niu, C.; Zhang, J.; Kim, C.; Zhao, X.; Soohoo, D.; Babusis, D.; et al. Key Metabolic Enzymes Involved in Remdesivir Activation in Human Lung Cells. Antimicrob. Agents Chemother. 2021, 65, e0060221. [Google Scholar] [CrossRef]
- Durand-Gasselin, L.; Van Rompay, K.K.; Vela, J.E.; Henne, I.N.; Lee, W.A.; Rhodes, G.R.; Ray, A.S. Nucleotide analogue prodrug tenofovir disoproxil enhances lymphoid cell loading following oral administration in monkeys. Mol. Pharm. 2009, 6, 1145–1151. [Google Scholar] [CrossRef]
- Benech, H.; Theodoro, F.; Herbet, A.; Page, N.; Schlemmer, D.; Pruvost, A.; Grassi, J.; Deverre, J.R. Peripheral blood mononuclear cell counting using a DNA-detection-based method. Anal. Biochem. 2004, 330, 172–174. [Google Scholar] [CrossRef]
- Subramanian, R.; Ling, J.; Wang, J.; Wang, K.; Hao, J.; Jin, H.; Lai, Y.; Murray, B.; Wijaya, S.; Zhang, H.; et al. Human and nonclinical disposition of [14C]bictegravir, a potent integrase strand-transfer inhibitor for the treatment of HIV-1 infection. Xenobiotica 2022, 52, 973–985. [Google Scholar] [CrossRef]
- Humeniuk, R.; Mathias, A.; Kirby, B.J.; Lutz, J.D.; Cao, H.; Osinusi, A.; Babusis, D.; Porter, D.; Wei, X.; Ling, J.; et al. Pharmacokinetic, Pharmacodynamic, and Drug-Interaction Profile of Remdesivir, a SARS-CoV-2 Replication Inhibitor. Clin. Pharmacokinet. 2021, 60, 569–583. [Google Scholar] [CrossRef]
- Rasmussen, H.B.; Jurgens, G.; Thomsen, R.; Taboureau, O.; Zeth, K.; Hansen, P.E.; Hansen, P.R. Cellular Uptake and Intracellular Phosphorylation of GS-441524: Implications for Its Effectiveness against COVID-19. Viruses 2021, 13, 1369. [Google Scholar] [CrossRef] [PubMed]
- Yan, V. First-in-Woman Safety, Tolerability, and Pharmacokinetics of Orally Administered GS-441524: A Broad-Spectrum Antiviral Treatment for COVID-19. OSF Prepr. 2021. [Google Scholar] [CrossRef]
- Bahar, F.G.; Ohura, K.; Ogihara, T.; Imai, T. Species difference of esterase expression and hydrolase activity in plasma. J. Pharm. Sci. 2012, 101, 3979–3988. [Google Scholar] [CrossRef]
- Bai, G.; Feng, B.; Wang, J.B.; Pozharski, E.; Shapiro, M. Studies on ligand binding to histidine triad nucleotide binding protein 1. Bioorg. Med. Chem. 2010, 18, 6756–6762. [Google Scholar] [CrossRef]
- Jovanovic, D.; Tremmel, P.; Pallan, P.S.; Egli, M.; Richert, C. The Enzyme-Free Release of Nucleotides from Phosphoramidates Depends Strongly on the Amino Acid. Angew. Chem. Int. Ed. Engl. 2020, 59, 20154–20160. [Google Scholar] [CrossRef]
- Jamieson, G.P.; Finch, L.R.; Snook, M.; Wiley, J.S. Degradation of 1-β-d-Arabinofuranosylcytosine 5′-Triphosphate in Human Leukemic Myeloblasts and Lymphoblasts1. Cancer Res. 1987, 47, 3130–3135. [Google Scholar] [PubMed]
- Balzarini, J.; Hao, Z.; Herdewijn, P.; Johns, D.G.; De Clercq, E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc. Natl. Acad. Sci. USA 1991, 88, 1499–1503. [Google Scholar] [CrossRef]
- Varga, A.; Lionne, C.; Roy, B. Intracellular Metabolism of Nucleoside/Nucleotide Analogues: A Bottleneck to Reach Active Drugs on HIV Reverse Transcriptase. Curr. Drug Metab. 2016, 17, 237–252. [Google Scholar] [CrossRef]
- Sofia, M.J. Nucleotide prodrugs for the treatment of HCV infection. Adv. Pharmacol. 2013, 67, 39–73. [Google Scholar] [CrossRef]
- Aarnoutse, R.E.; Schapiro, J.M.; Boucher, C.A.; Hekster, Y.A.; Burger, D.M. Therapeutic drug monitoring: An aid to optimising response to antiretroviral drugs? Drugs 2003, 63, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Kappelhoff, B.S.; Crommentuyn, K.M.; de Maat, M.M.; Mulder, J.W.; Huitema, A.D.; Beijnen, J.H. Practical guidelines to interpret plasma concentrations of antiretroviral drugs. Clin. Pharmacokinet. 2004, 43, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Peterson, S.; Sedaghat, A.R.; McMahon, M.A.; Callender, M.; Zhang, H.; Zhou, Y.; Pitt, E.; Anderson, K.S.; Acosta, E.P.; et al. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat. Med. 2008, 14, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Pruvost, A.; Becher, F.; Bardouille, P.; Guerrero, C.; Creminon, C.; Delfraissy, J.F.; Goujard, C.; Grassi, J.; Benech, H. Direct determination of phosphorylated intracellular anabolites of stavudine (d4T) by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2001, 15, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Piliero, P.J. Pharmacokinetic properties of nucleoside/nucleotide reverse transcriptase inhibitors. J. Acquir. Immune Defic. Syndr. 2004, 37 (Suppl. S1), S2–S12. [Google Scholar] [CrossRef]
- Adams, J.L.; Sykes, C.; Menezes, P.; Prince, H.M.; Patterson, K.B.; Fransen, K.; Crucitti, T.; De Baetselier, I.; Van Damme, L.; Kashuba, A.D. Tenofovir diphosphate and emtricitabine triphosphate concentrations in blood cells compared with isolated peripheral blood mononuclear cells: A new measure of antiretroviral adherence? J. Acquir. Immune Defic. Syndr. 2013, 62, 260–266. [Google Scholar] [CrossRef]
- Pucci, V.; Giuliano, C.; Zhang, R.; Koeplinger, K.A.; Leone, J.F.; Monteagudo, E.; Bonelli, F. HILIC LC-MS for the determination of 2′-C-methyl-cytidine-triphosphate in rat liver. J. Sep. Sci. 2009, 32, 1275–1283. [Google Scholar] [CrossRef]
- Wang, T.; Babusis, D.; Park, Y.; Niu, C.; Kim, C.; Zhao, X.; Lu, B.; Ma, B.; Muench, R.C.; Sperger, D.; et al. Species differences in liver accumulation and metabolism of nucleotide prodrug sofosbuvir. Drug Metab. Pharmacokinet. 2020, 35, 334–340. [Google Scholar] [CrossRef]
- Sykes, C.; Van Horne, B.; Jones, J.; Kashuba, A.D.M.; Gatto, G.; Van Der Straten, A.; Johnson, L.; Cottrell, M.L. Intracellular islatravir pharmacology differs between species in an in vitro model: Implications for preclinical study design. J. Antimicrob. Chemother. 2022, 77, 1000–1004. [Google Scholar] [CrossRef]
- de Miranda, P.; Good, S.S. Species Differences in the Metabolism and Disposition of Antiviral Nucleoside Analogues: 1. Acyclovir. Antivir. Chem. Chemother. 1992, 3, 1–8. [Google Scholar] [CrossRef]
- Van Gelder, J.; Shafiee, M.; De Clercq, E.; Penninckx, F.; Van den Mooter, G.; Kinget, R.; Augustijns, P. Species-dependent and site-specific intestinal metabolism of ester prodrugs. Int. J. Pharm. 2000, 205, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Vermillion, M.S.; Murakami, E.; Ma, B.; Pitts, J.; Tomkinson, A.; Rautiola, D.; Babusis, D.; Irshad, H.; Siegel, D.; Kim, C.; et al. Inhaled remdesivir reduces viral burden in a nonhuman primate model of SARS-CoV-2 infection. Sci. Transl. Med. 2021, 14, eabl8282. [Google Scholar] [CrossRef] [PubMed]
- Williamson, B.N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D.P.; Schulz, J.; van Doremalen, N.; Leighton, I.; Yinda, C.K.; Perez-Perez, L.; et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 2020, 585, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Warren, T.K.; Kane, C.D.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Steffens, J.; Gomba, L.; Weidner, J.M.; et al. Remdesivir is efficacious in rhesus monkeys exposed to aerosolized Ebola virus. Sci. Rep. 2021, 11, 19458. [Google Scholar] [CrossRef]
- Cross, R.W.; Bornholdt, Z.A.; Prasad, A.N.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Abelson, D.M.; Kim, D.H.; Shestowsky, W.S.; Campbell, L.A.; et al. Combination therapy protects macaques against advanced Marburg virus disease. Nat. Commun. 2021, 12, 1891. [Google Scholar] [CrossRef]
Assay | RDV | GS-704277 | GS-441524 | ODV | |
---|---|---|---|---|---|
Solubility (PBS; µg/mL) | 40.1 | ND | 26.5 | ~1000 | |
LogD | 2.5 | −10 b | <0.3 | 0.9 | |
Permeability (MDCK A-to-B; 10−6 cm/s) | 1.32 | ND | 0.16 | 1.8 | |
Plasma protein binding c (% free) | 6–14 | 95–100 | 85–99 | 56–76 | |
Plasma stability c | Moderately Stable (unstable in mouse, rat) | Stable d | Stable | Unstable (stable in dog) | |
S9 Stability c | Intestinal | ND | ND | Stable | Unstable |
Hepatic | Unstable | ND | Stable | Unstable | |
Transporter substrate | OATP1B1/P-gp | OATP1B1/3 | BCRP/P-gp ENT1/2/CNT3 | BCRP/P-gp | |
Enzyme hydrolysis phenotype (fm) | CatA (10%) CES-1 (80%) | HINT1 | ND | CES-1/2 |
Mean ± SD PK Parameter (N = 3) | ||||
---|---|---|---|---|
Plasma RDV | Plasma GS-704277 | Plasma GS-441524 | PBMC GS-443902 | |
T1/2 (h) | 0.40 ± 0.11 | 0.56 ± 0.01 | 16.1 ± 4.0 | 29.4 ± 3.0 |
Tmax (h) | 0.33 ± 0.13 | 0.58 ± 0 | 1 ± 0 | 4 ± 0 |
Cmax (nM) | 14,500 ± 2400 | 2200 ± 640 | 872 ± 163 | 54,600 ± 7400 |
AUC0–t (nM·h) | 7020 ± 1150 | 2640 ± 750 | 6340 ± 860 | NC |
Cl (L/h/kg) | 2.40 ± 0.17 | NA | NA | NA |
Vss (L/kg) | 0.504 ± 0.175 | NA | NA | NA |
Compound | RDV | GS-441524 | ODV |
---|---|---|---|
Route | IV | IV | Oral |
Test article dose (mg/kg) | 10 | 20 | 11.6 |
GS-441524 equivalent dose (mg-eq/kg) | 4.8 | 20 | 9.4 |
Parameter | Plasma GS-441524 a | ||
T1/2 (h) | NR b | 2.68 ± 0.07 | 2.62 ± 0.55 |
Tmax (h) | 1 ± 0 | 0.516 ± 0.058 | 1.67 ± 0.58 |
Cmax (nM) | 1400 ± 400 | 79,200 ± 6700 | 7570 ± 6070 |
AUC0–24h (nM·h) | 9070 ± 2080 | 124,000 ± 11,000 | 21,600 ± 11,000 |
PBMC GS-443902 | |||
Cmax (µM) | 46.8 ± 5.6 | 12.5 ± 1.6 | 3.01 ± 0.57 |
C24h (µM) | 31.0 ± 11.8 | 8.59 ± 0.52 | 1.90 ± 0.31 |
PBMC-to-plasma ratio c | 3.42 | 0.069 | 0.088 |
Lung GS-443902 | |||
C24h (nmol/g) | 1.39 ± 0.15 | 0.410 ± 0.087 | 0.095 f |
Lung-to-plasma ratio d | 0.207 ± 0.032 | 0.003 ± 0.001 | - |
Lung-to-PBMC ratio e | 0.049 ± 0.016 | 0.048 ± 0.010 | - |
GS-441524 | RDV | |||||
---|---|---|---|---|---|---|
Lung Region Animal No. | 101 | 102 | 103 | 201 | 202 | 203 |
Bronchus (cartilage) | ++ | +++ | NP | NP | NP | NP |
Bronchus (smooth muscle) | ++ | ++ | NP | NP | NP | NP |
Bronchus (epithelium) | ++ | +++ | NP | NP | NP | NP |
Bronchioles | +++ | +++ | +++ | +++ | +++ | +++ |
Alveoli wall | +++ | +++ | +++ | +++ | +++ | +++ |
Alveoli sac | ++ | ++ | + | + | + | + |
Blood vessels | +++ | +++ | +++ | +++ | +++ | +++ |
Trachea (representative) | ++ | ++ | ++ | ++ | ++ | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babusis, D.; Kim, C.; Yang, J.; Zhao, X.; Geng, G.; Ip, C.; Kozon, N.; Le, H.; Leung, J.; Pitts, J.; et al. Pharmacokinetics and Metabolism of Broad-Spectrum Antivirals Remdesivir and Obeldesivir with a Consideration to Metabolite GS-441524: Same, Similar, or Different? Viruses 2025, 17, 836. https://doi.org/10.3390/v17060836
Babusis D, Kim C, Yang J, Zhao X, Geng G, Ip C, Kozon N, Le H, Leung J, Pitts J, et al. Pharmacokinetics and Metabolism of Broad-Spectrum Antivirals Remdesivir and Obeldesivir with a Consideration to Metabolite GS-441524: Same, Similar, or Different? Viruses. 2025; 17(6):836. https://doi.org/10.3390/v17060836
Chicago/Turabian StyleBabusis, Darius, Cynthia Kim, Jesse Yang, Xiaofeng Zhao, Guoju Geng, Carmen Ip, Nathan Kozon, Hoa Le, Jennifer Leung, Jared Pitts, and et al. 2025. "Pharmacokinetics and Metabolism of Broad-Spectrum Antivirals Remdesivir and Obeldesivir with a Consideration to Metabolite GS-441524: Same, Similar, or Different?" Viruses 17, no. 6: 836. https://doi.org/10.3390/v17060836
APA StyleBabusis, D., Kim, C., Yang, J., Zhao, X., Geng, G., Ip, C., Kozon, N., Le, H., Leung, J., Pitts, J., Siegel, D. S., Kalla, R., Murray, B., Bilello, J. P., Bannister, R., Mackman, R. L., & Subramanian, R. (2025). Pharmacokinetics and Metabolism of Broad-Spectrum Antivirals Remdesivir and Obeldesivir with a Consideration to Metabolite GS-441524: Same, Similar, or Different? Viruses, 17(6), 836. https://doi.org/10.3390/v17060836