Phage-Based Control of Listeria innocua in the Food Industry: A Strategy for Preventing Listeria monocytogenes Persistence in Biofilms
Abstract
:1. Introduction
2. The Occurrence of L. innocua in the Food Industry
3. Disinfection in the Food Industry
4. Biofilms
5. Coexistence of L. innocua and L. monocytogenes in Biofilms
6. Bacteriophages
7. Bacteriophages and Biofilms
8. Listeria spp. Bacteriophages
8.1. Phage-Based Biocontrol of L. innocua in Foods
8.2. Inhibition of L. innocua on Surfaces
8.3. Using of Endolysin Against L. innocua
9. Listeria Resistance to Phages
10. Summary and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gradovska, S.; Šteingolde, Ž.; Ķibilds, J.; Meistere, I.; Avsejenko, J.; Streikiša, M.; Alksne, L.; Terentjeva, M.; Bērziņš, A. Genetic Diversity and Known Virulence Genes in Listeria innocua Strains Isolated from Cattle Abortions and Farm Environment. Vet. Anim. Sci. 2022, 19, 100276. [Google Scholar] [PubMed]
- Kaszoni-Rückerl, I.; Mustedanagic, A.; Muri-Klinger, S.; Brugger, K.; Wagner, K.-H.; Wagner, M.; Stessl, B. Predominance of Distinct Listeria innocua and Listeria monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities. Microorganisms 2020, 8, 234. [Google Scholar] [CrossRef]
- Gana, J.; Gcebe, N.; Pierneef, R.E.; Chen, Y.; Moerane, R.; Adesiyun, A.A. Genomic Characterization of Listeria innocua Isolates Recovered from Cattle Farms, Beef Abattoirs, and Retail Outlets in Gauteng Province, South Africa. Pathogens 2023, 12, 1062. [Google Scholar] [CrossRef]
- Guérin, A.; Bridier, A.; Le Grandois, P.; Sévellec, Y.; Palma, F.; Félix, B.; LISTADAPT Study Group; Roussel, S.; Soumet, C. Exposure to Quaternary Ammonium Compounds Selects Resistance to Ciprofloxacin in Listeria monocytogenes. Pathogens 2021, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Avila-Novoa, M.G.; Solis-Velazquez, O.A.; Guerrero-Medina, P.J.; Martínez-Chávez, L.; Martínez-Gonzáles, N.E.; Gutiérrez-Lomelí, M. Listeria monocytogenes in Fruits and Vegetables: Antimicrobial Resistance, Biofilm, and Genomic Insights. Antibiotics 2024, 13, 1039. [Google Scholar] [CrossRef]
- Zhu, Q.; Gooneratne, S.R.; Hussain, M.A. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef]
- Hurley, D.; Luque-Sastre, L.; Parker, C.T.; Huynh, S.; Eshwar, A.K.; Nguyen, S.V.; Andrews, N.; Moura, A.; Fox, E.M.; Jordan, K.; et al. Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period. mSphere 2019, 4, e00252-19. [Google Scholar] [PubMed]
- Møretrø, T.; Schirmer, B.C.T.; Heir, E.; Fagerlund, A.; Hjemli, P.; Langsrud, S. Tolerance to Quaternary Ammonium Compound Disinfectants May Enhance Growth of Listeria monocytogenes in the Food Industry. Int. J. Food Microbiol. 2017, 241, 215–224. [Google Scholar] [CrossRef]
- Mafuna, T.; Matle, I.; Magwedere, K.; Pierneef, R.; Reva, O. Comparative Genomics of Listeria Species Recovered from Meat and Food Processing Facilities. Microbiol. Spectr. 2022, 10, e01189-22. [Google Scholar]
- Matto, C.; D’Alessandro, B.; Mota, M.I.; Braga, V.; Buschiazzo, A.; Gianneechini, E.; Varela, G.; Rivero, R. Listeria innocua Isolated from Diseased Ruminants Harbour Minor Virulence Genes of L. monocytogenes. Vet. Med. Sci. 2022, 8, 735–740. [Google Scholar]
- Clayton, E.M.; Daly, K.M.; Guinane, C.M.; Hill, C.; Cotter, P.D.; Ross, P.R. Atypical Listeria innocua Strains Possess an Intact LIPI-3. BMC Microbiol. 2014, 14, 58. [Google Scholar]
- Lee, S.; Parsons, C.; Chen, Y.; Dungan, R.S.; Kathariou, S. Contrasting Genetic Diversity of Listeria Pathogenicity Islands 3 and 4 Harbored by Nonpathogenic Listeria spp. Appl. Environ. Microbiol. 2023, 89, e0209722. [Google Scholar]
- Moreno, L.Z.; Paixão, R.; Gobbi, D.D.; Raimundo, D.C.; Ferreira, T.P.; Hofer, E.; Matte, M.H.; Moreno, A.M. Characterization of Atypical Listeria innocua Isolated from Swine Slaughterhouses and Meat Markets. Res. Microbiol. 2012, 163, 268–271. [Google Scholar]
- Moura, A.; Disson, O.; Lavina, M.; Thouvenot, P.; Huang, L.; Leclercq, A.; Fredriksson-Ahomaa, M.; Eshwar, A.K.; Stephan, R.; Lecuit, M. Atypical Hemolytic Listeria innocua Isolates Are Virulent, Albeit Less Than Listeria monocytogenes. Infect. Immun. 2019, 87, e00758-18. [Google Scholar] [PubMed]
- Katharios-Lanwermeyer, S.; Rakic-Martinez, M.; Elhanafi, D.; Ratani, S.; Tiedje, J.M.; Kathariou, S. Coselection of Cadmium and Benzalkonium Chloride Resistance in Conjugative Transfers from Nonpathogenic Listeria spp. to Other Listeriae. Appl. Environ. Microbiol. 2012, 78, 7549–7556. [Google Scholar] [PubMed]
- Johnson, J.; Jinneman, K.; Stelma, G.; Smith, B.G.; Lye, D.; Ulaszek, J.; Evsen, L.; Gendel, S.; Bennett, R.W.; Pruckler, J.; et al. Natural Atypical Listeria Innocua Strains with Listeria monocytogenes Pathogenicity Island 1 Genes. Appl. Environ. Microbiol. 2004, 70, 4256–4266. [Google Scholar]
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’Bryan, C.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A Review of the Ecology, Genomics, and Stress Response of Listeria innocua and Listeria monocytogenes. Crit. Rev. Food Sci. Nutr. 2012, 52, 712–725. [Google Scholar]
- Ramadan, H.; Al-Ashmawy, M.; Soliman, A.M.; Elbediwi, M.; Sabeq, I.; Yousef, M.; Algammal, A.M.; Hiott, L.M.; Berrang, M.E.; Frye, J.G.; et al. Whole-Genome Sequencing of Listeria innocua Recovered from Retail Milk and Dairy Products in Egypt. Front. Microbiol. 2023, 14, 1160244. [Google Scholar]
- Perrin, M.; Bemer, M.; Delamare, C. Fatal Case of Listeria innocua Bacteremia. J. Clin. Microbiol. 2003, 41, 5308–5309. [Google Scholar]
- Favaro, M.; Sarmati, L.; Sancesario, G.; Fontana, C. First Case of Listeria innocua Meningitis in a Patient on Steroids and Eternecept. JMM Case Rep. 2014, 1–5. [Google Scholar]
- Arumugam, S.K.; Govindharaj, K.; Subramaniam, A.; Rangasamy, R. Neonatal Listeria innocua Sepsis. Int. J. Contemp. Pediatr. 2021, 8, 938. [Google Scholar]
- Liao, Y.; Liu, L.; Zhou, H.; Fang, F.; Liu, X. Case Report: Refractory Listeria innocua Meningoencephalitis in a Three-Year-Old Boy. Front. Pediatr. 2022, 10, 857900. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Saha, U.; Kumar, R.; Laik, J.; Mishra, M. Listeria innocua Infection in an Old Case of Total Knee Replacement—An Unusual Case Report. Front. Microbiol. 2023, 6, 000524-v3. [Google Scholar]
- Chen, J.; Chen, Q.; Jiang, L.; Cheng, C.; Bai, F.; Wang, J.; Mo, F.; Fang, W. Internalin Profiling and Multilocus Sequence Typing Suggest Four Listeria innocua Subgroups with Different Evolutionary Distances from Listeria monocytogenes. BMC Microbiol. 2010, 10, 97. [Google Scholar]
- Palaiodimou, L.; Fanning, S.; Fox, E.M. Genomic Insights into Persistence of Listeria Species in the Food Processing Environment. J. Appl. Microbiol. 2021, 131, 2082–2094. [Google Scholar] [PubMed]
- Koo, O.K.; Ndahetuye, J.B.; O’Bryan, C.A.; Ricke, S.C.; Crandall, P.G. Influence of Listeria innocua on the Attachment of Listeria monocytogenes to Stainless Steel and Aluminum Surfaces. Food Control 2014, 39, 135–138. [Google Scholar]
- Moreira, G.M.S.G.; Gronow, S.; Dübel, S.; Mendonça, M.; Moreira, Â.N.; Conceição, F.R.; Hust, M. Phage Display-Derived Monoclonal Antibodies Against Internalins A and B Allow Specific Detection of Listeria monocytogenes. Front. Public Health 2022, 10, 712657. [Google Scholar]
- Qi, Y.; Cao, Q.; Zhao, X.; Tian, C.; Li, T.; Shi, W.; Wei, H.; Song, C.; Xue, H.; Gou, H. Comparative Genomic Analysis of Pathogenic Factors of Listeria spp. Using Whole-Genome Sequencing. BMC Genom. 2024, 25, 935. [Google Scholar]
- Talens-Perales, D.; Daròs, J.-A.; Polaina, J.; Marín-Navarro, J. Synergistic Enzybiotic Effect of a Bacteriophage Endolysin and an Engineered Glucose Oxidase Against Listeria. Biomolecules 2025, 15, 24. [Google Scholar]
- Xu, D.; Li, Y.; Zahid, M.S.; Yamasaki, S.; Shi, L.; Li, J.-R.; Yan, H. Benzalkonium Chloride and Heavy-Metal Tolerance in Listeria monocytogenes from Retail Foods. Int. J. Food Microbiol. 2014, 190, 24–30. [Google Scholar]
- Conficoni, D.; Losasso, C.; Cortini, E.; Di Cesare, A.; Cibin, V.; Giaccone, V.; Corno, G.; Ricci, A. Resistance to Biocides in Listeria monocytogenes Collected in Meat-Processing Environments. Front. Microbiol. 2016, 7, 1627. [Google Scholar]
- Jiang, X.; Jiang, C.; Yu, T.; Jiang, X.; Ren, S.; Kang, R.; Qiu, S. Benzalkonium Chloride Adaptation Increases Expression of the Agr System, Biofilm Formation, and Virulence in Listeria monocytogenes. Front. Microbiol. 2022, 13, 856274. [Google Scholar]
- Cossu, A.; Si, Y.; Sun, G.; Nitin, N. Antibiofilm Effect of Poly(Vinyl Alcohol-co-Ethylene) Halamine Film Against Listeria innocua and Escherichia coli O157:H7. Appl. Environ. Microbiol. 2017, 83, e00975-17. [Google Scholar]
- Xu, D.; Deng, Y.; Fan, R.; Shi, L.; Bai, J.; Yan, H. Coresistance to Benzalkonium Chloride Disinfectant and Heavy Metal Ions in Listeria monocytogenes and Listeria innocua Swine Isolates from China. Foodborne Pathog. Dis. 2019, 16, 696–703. [Google Scholar]
- He, Y.; Xu, T.; Li, S.; Mann, D.A.; Britton, B.; Oliver, H.F.; Bakker, H.C.D.; Deng, X. Integrative Assessment of Reduced Listeria monocytogenes Susceptibility to Benzalkonium Chloride in Produce Processing Environments. Appl. Environ. Microbiol. 2022, 88, e0126922. [Google Scholar]
- Mereghetti, L.; Quentin, R.; Marquet-Van Der Mee, N.; Audurier, A. Low Sensitivity of Listeria monocytogenes to Quaternary Ammonium Compounds. Appl. Environ. Microbiol. 2000, 66, 5083–5086. [Google Scholar]
- Mullapudi, S.; Siletzky, R.M.; Kathariou, S. Heavy-Metal and Benzalkonium Chloride Resistance of Listeria monocytogenes Isolates from the Environment of Turkey-Processing Plants. Appl. Environ. Microbiol. 2008, 74, 1464–1468. [Google Scholar] [PubMed]
- Elhanafi, D.; Dutta, V.; Kathariou, S. Genetic Characterization of Plasmid-Associated Benzalkonium Chloride Resistance Determinants in a Listeria monocytogenes Strain from the 1998–1999 Outbreak. Appl. Environ. Microbiol. 2010, 76, 8231–8238. [Google Scholar]
- Bolten, S.; Harrand, A.S.; Skeens, J.; Wiedmann, M. Nonsynonymous Mutations in fepR Are Associated with Adaptation of Listeria monocytogenes and Other Listeria spp. to Low Concentrations of Benzalkonium Chloride but Do Not Increase Survival of L. monocytogenes and Other Listeria spp. After Exposure to Benzalkonium Chloride Concentrations Recommended for Use in Food Processing Environments. Appl. Environ. Microbiol. 2022, 88, e0048622. [Google Scholar]
- Stoller, A.; Stevens, M.J.A.; Stephan, R.; Guldimann, C. Characteristics of Listeria Monocytogenes Strains Persisting in a Meat Processing Facility over a 4-Year Period. Pathogens 2019, 8, 32. [Google Scholar] [CrossRef]
- Berlec, A.; Janež, N.; Sterniša, M.; Klančnik, A.; Sabotič, J. Listeria innocua Biofilm Assay Using NanoLuc Luciferase. Bio. Protoc. 2022, 12, e4308. [Google Scholar]
- Panebianco, F.; Rubiola, S.; Chiesa, F.; Civera, T.; Di Ciccio, P.A. Effect of Gaseous Ozone on Listeria monocytogenes Planktonic Cells and Biofilm: An In Vitro Study. Foods 2021, 10, 1484. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.; Thi Anh Ngoc, T.; Masuda, Y.; Hohjoh, K.I.; Miyamoto, T. Biofilm Formation From Listeria monocytogenes Isolated From Pangasius Fish-processing Plants. J. Food Prot. 2023, 86, 100044. [Google Scholar]
- Jeon, H.R.; Kwon, M.J.; Yoon, K.S. Control of Listeria innocua Biofilms on Food Contact Surfaces with Slightly Acidic Electrolyzed Water and the Risk of Biofilm Cells Transfer to Duck Meat. J. Food Prot. 2018, 81, 582–592. [Google Scholar] [PubMed]
- Gemmell, C.T.; Parreira, V.R.; Farber, J.M. Controlling Listeria monocytogenes Growth and Biofilm Formation Using Flavonoids. J. Food Prot. 2022, 85, 639–646. [Google Scholar]
- Pracser, N.; Voglauer, E.M.; Thalguter, S.; Pietzka, A.; Selberherr, E.; Wagner, M.; Rychli, K. Exploring the Occurrence of Listeria in Biofilms and Deciphering the Bacterial Community in a Frozen Vegetable Producing Environment. Front. Microbiol. 2024, 15, 1404002. [Google Scholar] [CrossRef] [PubMed]
- Fulaz, S.; Vitale, S.; Quinn, L.; Casey, E. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol. 2019, 27, 915–926. [Google Scholar] [CrossRef]
- Cucić, S.; Ells, T.; Guri, A.; Kropinski, A.M.; Khursigara, C.M.; Anany, H. Degradation of Listeria monocytogenes Biofilm by Phages Belonging to the Genus Pecentumvirus. Appl. Environ. Microbiol. 2024, 90, e0106223. [Google Scholar]
- Wang, J.; Liu, Q.; Li, X.; Ma, S.; Hu, H.; Wu, B.; Zhang, X.-X.; Ren, H. In-Situ Monitoring AHL-Mediated Quorum-Sensing Regulation of the Initial Phase of Wastewater Biofilm Formation. Environ. Int. 2020, 135, 105326. [Google Scholar]
- Berne, C.; Brun, Y.V. The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation. J. Bacteriol. 2019, 201, e00071-19. [Google Scholar]
- Xiu, W.; Wan, L.; Yang, K.; Li, X.; Yuwen, L.; Dong, H.; Mou, Y.; Yang, D.; Wang, L. Potentiating Hypoxic Microenvironment for Antibiotic Activation by Photodynamic Therapy to Combat Bacterial Biofilm Infections. Nat. Commun. 2022, 13, 3875. [Google Scholar]
- Yu, T.; Jiang, X.; Xu, X.; Jiang, C.; Kang, R.; Jiang, X. Andrographolide Inhibits Biofilm and Virulence in Listeria monocytogenes as a Quorum-Sensing Inhibitor. Molecules 2022, 27, 3234. [Google Scholar] [CrossRef]
- Agustin, M.; Brugnoni, L. Multispecies Biofilms Between Listeria monocytogenes and Listeria innocua With Resident Microbiota Isolated From Apple Juice Processing Equipment. J. Food Saf. 2018, 38, e12499. [Google Scholar]
- Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’Orio, V.; Vergara, A.; Conter, M.; Ianieri, A. Influence of Temperature on Biofilm Formation by Listeria monocytogenes on Various Food-Contact Surfaces: Relationship With Motility and Cell Surface Hydrophobicity. J. Appl. Microbiol. 2008, 104, 1552–1561. [Google Scholar]
- Wu, Y.; Park, K.C.; Choi, B.G.; Park, J.H.; Yoon, K.S. The Antibiofilm Effect of Ginkgo biloba Extract Against Salmonella and Listeria Isolates From Poultry. Foodborne Pathog. Dis. 2016, 13, 229–238. [Google Scholar]
- Puga, C.H.; Rodríguez-López, P.; Cabo, M.L.; SanJose, C.; Orgaz, B. Enzymatic Dispersal of Dual-Species Biofilms Carrying Listeria monocytogenes and Other Associated Food Industry Bacteria. Food Control 2018, 94, 222–228. [Google Scholar]
- Sundarram, A.; Britton, B.C.; Liu, J.; Desiree, K.; Ogas, R.; Lemaster, P.; Navarrete, B.; Nowakowski, H.; Harrod, M.K.; Marks, D.; et al. Lytic Capacity Survey of Commercial Listeria Phage Against Listeria spp. with Varied Genotypic and Phenotypic Characteristics. Foodborne Pathog. Dis. 2021, 18, 413–418. [Google Scholar] [PubMed]
- Lone, A.; Martinez-Soto, C.E.; Anany, H. Bacteriophages Isolation and Efficacy Testing. Methods Mol. Biol. 2024, 2813, 219–233. [Google Scholar]
- Song, Y.; Peters, T.L.; Bryan, D.W.; Hudson, L.K.; Denes, T.G. Characterization of a Novel Group of Listeria Phages That Target Serotype 4b Listeria monocytogenes. Viruses 2021, 13, 671. [Google Scholar] [CrossRef] [PubMed]
- Colás-Medà, P.; Viñas, I.; Alegre, I. Evaluation of Commercial Anti-Listerial Products for Improvement of Food Safety in Ready-to-Eat Meat and Dairy Products. Antibiotics 2023, 12, 414. [Google Scholar] [CrossRef]
- Hagens, S.; Loessner, M. Bacteriophage for Biocontrol of Foodborne Pathogens: Calculations and Considerations. Curr. Pharm. Biotechnol. 2010, 11, 58–68. [Google Scholar]
- Hagens, S.; Loessner, M.J. Phages of Listeria Offer Novel Tools for Diagnostics and Biocontrol. Front. Microbiol. 2014, 5, 159. [Google Scholar]
- Schellekens, M.M.; Woutersi, J.; Hagens, S.; Hugenholtz, J. Bacteriophage P100 Application to Control Listeria monocytogenes on Smeared Cheese. Milchwissenschaft 2007, 62, 284–287. [Google Scholar]
- Leverentz, B.; Conway, W.S.; Camp, M.J.; Janisiewicz, W.J.; Abuladze, T.; Yang, M.; Saftner, R.; Sulakvelidze, A. Biocontrol of Listeria monocytogenes on Fresh-Cut Produce by Treatment with Lytic Bacteriophages and a Bacteriocin. Appl. Environ. Microbiol. 2003, 69, 4519–4526. [Google Scholar] [PubMed]
- Carlton, R.M.; Noordman, W.H.; Biswas, B.; de Meester, E.D.; Loessner, M.J. Bacteriophage P100 for Control of Listeria monocytogenes in Foods: Genome Sequence, Bioinformatic Analyses, Oral Toxicity Study and Application. Regul. Toxicol. Pharmacol. 2005, 43, 301–312. [Google Scholar] [PubMed]
- Guenther, S.; Huwyler, D.; Richard, S.; Loessner, M.J. Virulent Bacteriophage for Efficient Biocontrol of Listeria monocytogenes in Ready-to-Eat Foods. Appl. Environ. Microbiol. 2009, 75, 93–100. [Google Scholar]
- Soni, K.A.; Nannapaneni, R.; Hagens, S. Reduction of Listeria monocytogenes on the Surface of Fresh Channel Catfish Fillets by Bacteriophage Listex P100. Foodborne Pathog. Dis. 2010, 7, 427–434. [Google Scholar] [PubMed]
- Bigot, B.; Lee, W.J.; McIntyre, L.; Wilson, T.; Billington, C.; Heinemann, J. Control of Listeria monocytogenes Growth in a Ready-to-Eat Poultry Product Using a Bacteriophage. Food Microbiol. 2011, 28, 1448–1452. [Google Scholar]
- Oliveira, M.; Viñas, I.; Colàs, P.; Anguera, M.; Usall, J.; Abadias, M. Effectiveness of a Bacteriophage in Reducing Listeria monocytogenes on Fresh-Cut Fruits and Fruit Juices. Food Microbiol. 2014, 38, 137–142. [Google Scholar]
- Figueiredo, A.C.L.; Almeida, R.C.C. Antibacterial Efficacy of Nisin, Bacteriophage P100 and Sodium Lactate Against Listeria monocytogenes in Ready-to-Eat Sliced Pork Ham. Braz. J. Microbiol. 2017, 48, 724–729. [Google Scholar]
- Ganegama Arachchi, G.J.; Cridge, A.G.; Dias-Wanigasekera, B.M.; Cruz, C.D.; McIntyre, L.; Liu, R.; Flint, S.H.; Mutukumira, A.N. Effectiveness of Phages in the Decontamination of Listeria monocytogenes Adhered to Clean Stainless Steel, Stainless Steel Coated with Fish Protein and as a Biofilm. J. Ind. Microbiol. Biotechnol. 2013, 40, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, R.G.; Kalinowski, R.M.; Bodnaruk, P.W.; Eifert, J.D.; Boyer, R.R.; Duncan, S.E.; Bailey, R.H. Fate of Listeria on Various Food Contact and Noncontact Surfaces When Treated with Bacteriophage. J. Food Saf. 2020, 40, e12775. [Google Scholar] [CrossRef]
- Mayorga-Ramos, A.; Carrera-Pacheco, S.E.; Barba-Ostria, C.; Guamán, L.P. Bacteriophage-Mediated Approaches for Biofilm Control. Front. Cell. Infect. Microbiol. 2024, 14, 1428637. [Google Scholar] [CrossRef] [PubMed]
- Stone, E.; Lhomet, A.; Neve, H.; Grant, I.R.; Campbell, K.; McAuliffe, O. Isolation and Characterization of Listeria monocytogenes Phage vB_LmoH_P61, a Phage With Biocontrol Potential on Different Food Matrices. Front. Sustain. Food Syst. 2020, 4, 521645. [Google Scholar]
- Soni, K.A.; Desai, M.; Oladunjoye, A.; Skrobot, F.; Nannapaneni, R. Reduction of Listeria monocytogenes in Queso Fresco Cheese by a Combination of Listericidal and Listeriostatic GRAS Antimicrobials. Int. J. Food Microbiol. 2012, 155, 82–88. [Google Scholar] [CrossRef]
- Lewis, R.; Bolocan, A.S.; Draper, L.A.; Ross, R.P.; Hill, C. The Effect of a Commercially Available Bacteriophage and Bacteriocin on Listeria monocytogenes in Coleslaw. Viruses 2019, 11, 977. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, M.; Wang, Y.; Yang, Z.; Ye, M.; Wu, L.; Bao, H.; Pang, M.; Zhou, Y.; Wang, R.; et al. Broad Host Range Phage vB-LmoM-SH3-3 Reduces the Risk of Listeria Contamination in Two Types of Ready-to-Eat Food. Food Control 2020, 108, 106830. [Google Scholar]
- Li, T.; Zhao, X.; Wang, X.; Wang, Z.; Tian, C.; Shi, W.; Qi, Y.; Wei, H.; Song, C.; Xue, H.; et al. Characterization and Preliminary Application of Phage Isolated from Listeria monocytogenes. Front. Vet. Sci. 2022, 9, 946814. [Google Scholar]
- Zhang, H.; Bao, H.; Billington, C.; Hudson, J.A.; Wang, R. Isolation and Lytic Activity of the Listeria Bacteriophage Endolysin LysZ5 Against Listeria monocytogenes in Soya Milk. Food Microbiol. 2012, 31, 133–136. [Google Scholar] [CrossRef]
- Romero, P.; Bartual, S.G.; Schmelcher, M.; Glück, C.; Hermoso, J.A.; Loessner, M.J. Structural Insights into the Binding and Catalytic Mechanisms of the Listeria monocytogenes Bacteriophage Glycosyl Hydrolase PlyP40. Mol. Microbiol. 2018, 108, 128–142. [Google Scholar] [CrossRef]
- Simmons, M.; Morales, C.A.; Oakley, B.B.; Seal, B.S. Recombinant Expression of a Putative Amidase Cloned from the Genome of Listeria monocytogenes that Lyses the Bacterium and its Monolayer in Conjunction with a Protease. Probiotics Antimicrob. Proteins 2012, 4, 1–10. [Google Scholar] [PubMed]
- Pennone, V.; Sanz-Gaitero, M.; O’Connor, P.; Coffey, A.; Jordan, K.; van Raaij, M.J.; McAuliffe, O. Inhibition of L. monocytogenes Biofilm Formation by the Amidase Domain of the Phage Vb_lmos_293 Endolysin. Viruses 2019, 11, 722. [Google Scholar] [PubMed]
- Loessner, M.J.; Wendlinger, G.; Scherer, S. Heterogeneous Endolysins in Listeria monocytogenes Bacteriophages: A New Class of Enzymes and Evidence for Conserved Holin Genes Within the Siphoviral Lysis Cassettes. Mol. Microbiol. 1995, 16, 1231–1241. [Google Scholar] [PubMed]
- Wohlfarth, J.C.; Feldmüller, M.; Schneller, A.; Kilcher, S.; Burkolter, M.; Meile, S.; Pilhofer, M.; Schuppler, M.; Loessner, M.J. L-Form Conversion in Gram-Positive Bacteria Enables Escape From Phage Infection. Nat. Microbiol. 2023, 8, 387–399. [Google Scholar]
- Vongkamjan, K.; Roof, S.; Stasiewicz, M.J.; Wiedmann, M. Persistent Listeria monocytogenes Subtypes Isolated from a Smoked Fish Processing Facility Included Both Phage Susceptible and Resistant Isolates. Food Microbiol. 2013, 35, 38–48. [Google Scholar]
- Castillo, D.; Rorbo, N.; Jorgensen, J.; Lange, J.; Tan, D.; Kalatzis, P.G.; Lo Svenningsen, S.; Middelboe, M. Phage Defense Mechanisms and Their Genomic and Phenotypic Implications in the Fish Pathogen Vibrio anguillarum. FEMS Microbiol. Ecol. 2019, 95, fiz004. [Google Scholar]
- Montso, P.K.; Mlambo, V.; Ateba, C.N. Efficacy of Novel Phages for Control of Multi-drug Resistant Escherichia coli O177 on Artificially Contaminated Beef and Their Potential to Disrupt Biofilm Formation. Food Microbiol. 2021, 94, 103647. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ). Evaluation of the Safety and Efficacy of ListexTM P100 for Reduction of Pathogens on Different Ready-to-Eat (RTE) Food Products. EFSA J. 2016, 14, e04565. [Google Scholar]
- Yang, L.; Liu, Y.; Wu, H.; Høiby, N.; Molin, S.; Song, Z.J. Current Understanding of Multi-Species Biofilms. Int. J. Oral Sci. 2011, 3, 74–81. [Google Scholar]
- Velázquez-Moreno, S.; Zavala-Alonso, N.V.; Oliva Rodríguez, R.; Quintana, M.; Ojeda-Galván, H.J.; Gonzalez-Ortega, O.; Martinez-Gutierrez, F. Multispecies Oral Biofilm and Identification of Components as Treatment Target. Arch. Oral Biol. 2023, 156, 105821. [Google Scholar]
- Seckbach, J.; Oren, A. Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawiasa, A.; Schmidt, M.; Olejnik-Schmidt, A. Phage-Based Control of Listeria innocua in the Food Industry: A Strategy for Preventing Listeria monocytogenes Persistence in Biofilms. Viruses 2025, 17, 482. https://doi.org/10.3390/v17040482
Zawiasa A, Schmidt M, Olejnik-Schmidt A. Phage-Based Control of Listeria innocua in the Food Industry: A Strategy for Preventing Listeria monocytogenes Persistence in Biofilms. Viruses. 2025; 17(4):482. https://doi.org/10.3390/v17040482
Chicago/Turabian StyleZawiasa, Anna, Marcin Schmidt, and Agnieszka Olejnik-Schmidt. 2025. "Phage-Based Control of Listeria innocua in the Food Industry: A Strategy for Preventing Listeria monocytogenes Persistence in Biofilms" Viruses 17, no. 4: 482. https://doi.org/10.3390/v17040482
APA StyleZawiasa, A., Schmidt, M., & Olejnik-Schmidt, A. (2025). Phage-Based Control of Listeria innocua in the Food Industry: A Strategy for Preventing Listeria monocytogenes Persistence in Biofilms. Viruses, 17(4), 482. https://doi.org/10.3390/v17040482