Antenatal Screening for HTLV-1 and -2 Among Pregnant Women in Grenada: Combined Seroprevalence, Trends, and Public Health Implications (2015–2024)
Abstract
1. Introduction
Antenatal Screening Program
2. Methods
3. Results
4. Discussion
4.1. Limitations of This Study
4.2. Recommendations
- Confirmatory Testing Improvements
- Implement PCR or Western blot methods in the government laboratories to reduce false positives and accurately assess HTLV prevalence.
- Report positive cases by HTLV serotype to better understand prevalence and associated diseases.
- Antenatal Clinic Initiatives
- Encourage antenatal visits for all pregnant women to ensure compliance with HTLV testing.
- Educate healthcare providers and seropositive mothers on the importance of discontinuing breastfeeding.
- Continue the alternative breastfeeding program, providing formula to HTLV-positive mothers, like the successful HIV program.
- Education and Awareness
- Integrate HTLV education into Grenada’s Baby Friendly Hospital Initiative (BFHI) to sensitize mothers about the virus and transmission routes.
- Improve HTLV awareness as an STI through government, NGO, and private sector initiatives, including school education programs.
- Population Testing and Registry
- Create a national program for HTLV as that created for HIV, with the following:
- Collaborate with researchers and donor agencies to determine HTLV prevalence in the general population.
- Include HTLV testing in routine STI panels for “at-risk” populations and those requesting STI screening.
- Establish a population-based STI registry inclusive of HTLV to track trends and individuals developing related diseases.
- Targeted Interventions
- Develop HTLV and STI prevention programs promoting safe sex, especially for individuals with multiple partners.
- Offer HTLV testing to broader populations, including men, as part of routine STI screening for men with multiple partners.
- Offer HTLV testing in “hot spot” areas where prevalence is the highest.
- Test babies born to HTLV-positive mothers.
- Focus on the Highest Prevalence Areas and Sub-populations
- Target interventions in St. Patrick’s parish (2.18% prevalence) and mature adults in St. David’s parish (11.99% prevalence).
- Address adolescent prevalence in St. John/St. Mark and Carriacou (4.29% and 2.78%, respectively).
- Further Research
- Conduct studies to assess HTLV prevalence and transmission risk factors among the general population, pregnant women, and men, as well as during health and other emergencies, and utilize confirmatory testing that can determine HTLV serotypes. Include datasets from private laboratories to ensure broader and more representative population coverage. Additionally, integrating data from both private and public laboratories will enable the detection of cross-infection. This approach will ensure a more comprehensive understanding of HTLV prevalence and facilitate more effective deployment of interventions.
- Replicate studies in other Caribbean countries and among Caribbean populations to assess prevalence and intervention needs.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HTLV | Human T-Lymphotropic Virus |
| HIV | Human Immunodeficiency Virus |
| STI | Sexually Transmitted Disease |
| ATL | Adult T-cell Leukemia/Lymphoma |
| PAHO | Pan American Health Organization |
| COVID-19 | Coronavirus Disease of 2019 |
| ICD-10 | International Classification of Diseases |
| WHO | World Health Organization |
| NIDCU | National Infectious Disease Control Unit |
| BFHI | Baby Friendly Hospital Initiative |
| CARPHA | Caribbean Public Health Agency |
References
- Marino-Merlo, F.; Balestrieri, E.; Matteucci, C.; Mastino, A.; Grelli, S.; Macchi, B. Antiretroviral Therapy in HTLV-1 Infection: An Updated Overview. Pathogens 2020, 9, 342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Wei, J.-Y.; Wang, L.; Huang, S.-L.; Chen, J.-L. Human T-cell lymphotropic virus type 1 and its oncogenesis. Acta Pharmacol. Sin. 2017, 38, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.P.; Al-Saleem, J.; Green, P.L. Comparative virology of HTLV-1 and HTLV-2. Retrovirology 2019, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.U.; Proietti, F.A.; Ribas, J.G.R.; Araújo, M.G.; Pinheiro, S.R.; Guedes, A.C.; Carneiro-Proietti, A.B.F. Epidemiology, Treatment, and Prevention of Human T-Cell Leukemia Virus Type 1-Associated Diseases. Clin. Microbiol. Rev. 2010, 23, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, E.S.; Tadi, P. Human T-Cell Lymphotropic Virus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK560825/ (accessed on 28 September 2025).
- Rolon, R.M.M.; Yao, J.D. Laboratory Diagnosis of HTLV-1-Associated Myelopathy. Clin. Microbiol. Newsl. 2020, 42, 129–134. [Google Scholar] [CrossRef]
- Tagaya, Y.; Matsuoka, M.; Gallo, R. 40 years of the human T-cell leukemia virus: Past, present, and future. F1000Research 2019, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Prose, N.S.; Dlova, N.C.; Ballona, R.A.; Cunningham, C.K. HIV and HTLV-1 Infection. In Harper’s Textbook of Pediatric Dermatology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 649–659. [Google Scholar] [CrossRef]
- Ramassamy, J.-L.; Tortevoye, P.; Ntab, B.; Seve, B.; Carles, G.; Gaquière, D.; Madec, Y.; Fontanet, A.; Gessain, A. Adult T-cell leukemia/lymphoma incidence rate in French Guiana: A prospective cohort of women infected with HTLV-1. Blood Adv. 2020, 4, 2044–2048. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global and Regional Epidemiology of HTLV-1; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.jstor.org/stable/resrep30125.7 (accessed on 28 September 2025).
- Geographical Distribution of Areas with a High Prevalence of HTLV-1 Infection. Available online: https://www.ecdc.europa.eu/en/publications-data/geographical-distribution-areas-high-prevalence-htlv-1-infection (accessed on 27 September 2025).
- Hamedi, A.; Akhlaghi, F.; Meshkat, Z.; Sezavar, M.; Nomani, H.; Meshkat, M. The Prevalence of Human T-Cell lymphotropic Virus Type 1 in Pregnant Women and Their Newborns. Int. Sch. Res. Not. 2012, 2012, e975135. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, C.N.; McBarnette, B.; Andall, N.; Andall, R.; Fields, P.J. A retrospective case series study of the seroprevalence of Human T Lymphocyte Virus 1 and 2 from the General hospital Laboratory in Grenada. In Caribbean Public Health Agency, Proceedings of the 60th Annual Scientific Meeting, St. George’s, Grenada, 25–27 June 2015; Caribbean Public Health Agency: Port of Spain, Trinidad and Tobago, 2015; pp. 1–75. [Google Scholar]
- Ji, H.; Chang, L.; Yan, Y.; Jiang, X.; Sun, H.; Guo, F.; Wang, L. A Strategy for Screening and Confirmation of HTLV-1/2 Infections in Low-Endemic Areas. Front. Microbiol. 2020, 11, 1151. [Google Scholar] [CrossRef] [PubMed]
- The Diagnosis of Human T Lymphotropic Virus (HTLV) and Strategies to Expand HTLV Screening in the Context of Maternal and Child Health. Meeting Report (Virtual), 7 July 2023—PAHO/WHO|Pan American Health Organization. Available online: https://iris.paho.org/handle/10665.2/59463 (accessed on 28 September 2025).
- Figueroa, J.P.; Cooper, C.J.; Duncan, J.J.; Anzinger, J.J. Urgent need to prevent mother-to-child transmission of HTLV-1 in Jamaica. Lancet Reg. Health-Am. 2024, 35, 100778. [Google Scholar] [CrossRef] [PubMed]
- Caribbean Public Health Agency. Request for Regional HTLV-1/2 Data and Program Information; Caribbean Public Health Agency: Port of Spain, Trinidad and Tobago, 2025. [Google Scholar]
- Global Health Sector Strategies on HIV, Viral Hepatitis and Sexually Transmitted Infections for the Period 2022–2030. Available online: https://www.who.int/publications/i/item/9789240053779 (accessed on 28 September 2025).
- Pan American Health Organization. Technical Note on Good Practices to Prevent Mother-to-Child Transmission of HTLV-1 in the Context of the EMTCT Plus Initiative; PAHO/CDE/HT/24-0011; Pan American Health Organization: Washington, DC, USA, 2024; Available online: https://iris.paho.org/handle/10665.2/62014 (accessed on 28 September 2025).
- World Bank Open Data. Available online: https://data.worldbank.org (accessed on 5 July 2023).
- Grenada Map|Premium Vector. Freepik. Available online: https://www.freepik.com/premium-vector/grenada-map_1693561.htm?sign-up=google&log-in=google (accessed on 28 September 2025).
- Personnel Ministry of Health, Grenada. Personal Interview, HTLV Protocols. 7 August 2025.
- What Is Prevalence?—National Institute of Mental Health (NIMH). Available online: https://www.nimh.nih.gov/health/statistics/what-is-prevalence (accessed on 6 September 2025).
- Retroviruses HIV and HTLV|Immunodiagnostics|Diasorin. Available online: https://int.diasorin.com/en/immunodiagnostics/hepatitis-retrovirus/retrovirus (accessed on 28 September 2025).
- Eshima, N.; Iwata, O.; Iwata, S.; Tabata, M.; Higuchi, Y.; Matsuishi, T.; Karukaya, S. Age and gender specific prevalence of HTLV-1. J. Clin. Virol. 2009, 45, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Gessain, A.; Cassar, O. Epidemiological Aspects and World Distribution of HTLV-1 Infection. Front. Microbiol. 2012, 3, 388. [Google Scholar] [CrossRef] [PubMed]
- Davidoff-Gore, A.; Luke, N.; Wawire, S. Dimensions of poverty and inconsistent condom use among youth in urban Kenya. AIDS Care 2011, 23, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- GenU Grenada Fact Sheet.pdf. Available online: https://www.unicef.org/easterncaribbean/media/2961/file/GenU%20Grenada%20fact%20sheet.pdf (accessed on 17 July 2023).
- Straker, L. Grenada Reporting Increase in Sexual Transmitted Infections|NOW Grenada. Available online: https://nowgrenada.com/2025/04/grenada-reporting-increase-in-sexual-transmitted-infections/ (accessed on 19 August 2025).
- Sánchez-Núñez, J.-P.; De-Miguel-Balsa, E.; Soriano, V.; Lorenzo-Garrido, E.; Giménez-Richarte, A.; Otero-Rodriguez, S.; Celis-Salinas, J.-C.; De-Mendoza, C.; Casapia-Morales, M.; Ramos-Rincón, J.M. Prevalence of HTLV-1/2 infection in pregnant women in Central and South America and the Caribbean: A systematic review and meta-analysis. Int. J. Infect. Dis. 2024, 143, 107018. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E. Infection with human T-lymphotropic virus types-1 and -2 (HTLV-1 and -2): Implications for blood transfusion safety. Transfus. Clin. Biol. J. Soc. Fr. Transfus. Sang. 2016, 23, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization. The Response to HTLV in the Framework of Maternal and Child Health; PAHO/CDE/HT/22-0022; Pan American Health Organization: Washington, DC, USA, 2022; Available online: https://iris.paho.org/handle/10665.2/56888 (accessed on 28 September 2025).
- Kashiwagi, K.; Furusyo, N.; Nakashima, H.; Kubo, N.; Kinukawa, N.; Kashiwagi, S.; Hayashi, J. A Decrease in mother-to-child transmission of human T Lymphotropic Virus type I (HTLV-I) in Okinawa, Japan. Am. J. Trop. Med. Hyg. 2004, 70, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Legrand, N.; McGregor, S.; Bull, R.; Bajis, S.; Valencia, B.M.; Ronnachit, A.; Einsiedel, L.; Gessain, A.; Kaldor, J.; Martinello, M. Clinical and Public Health Implications of Human T-Lymphotropic Virus Type 1 Infection. Clin. Microbiol. Rev. 2022, 35, e0007821. [Google Scholar] [CrossRef] [PubMed]
- Hino, S.; Katamine, S.; Miyata, H.; Tsuji, Y.; Yamabe, T.; Miyamoto, T. Primary prevention of HTLV-1 in Japan. Leukemia 1997, 11 (Suppl. 3), 57–59. [Google Scholar] [CrossRef] [PubMed]
- Freire, J.d.O.; Rodrigues, M.A.F.; da Silva, G.C.S.; Cardoso, H.S.P.; Araújo, M.L.V.; Filho, A.S.N.; Santos, B.R.; Almeida, M.d.C.C.d.; Galvão-Castro, B.; Grassi, M.F.R. HTLV-1 and Pregnancy: A Retrospective Study of Maternal and Neonatal Health Outcomes in an Endemic Region of Brazil. Pathogens 2025, 14, 389. [Google Scholar] [CrossRef] [PubMed]
- Itabashi, K.; Miyazawa, T.; Sekizawa, A.; Tokita, A.; Saito, S.; Moriuchi, H.; Nerome, Y.; Uchimaru, K.; Watanabe, T. A Nationwide Antenatal Human T-Cell Leukemia Virus Type-1 Antibody Screening in Japan. Front. Microbiol. 2020, 11, 595. [Google Scholar] [CrossRef] [PubMed]





| Variable | Level | No. of Pregnant Women | Percentage (%) |
|---|---|---|---|
| Age group | Adolescents (<15–19 years) | 1125 | 11.29 |
| Young adults (20–29 years) | 5250 | 52.67 | |
| Older adults (30–39 years) | 3248 | 32.59 | |
| Mature adults (≥40 years) | 344 | 3.45 | |
| Health District | St. George | 3796 | 38.09 |
| St. Andrew | 2265 | 22.72 | |
| St. David | 1414 | 14.19 | |
| St. Patrick | 1241 | 12.45 | |
| St. John/St. Mark | 802 | 8.05 | |
| Carriacou | 449 | 4.50 | |
| Year | 2015 | 958 | 9.61 |
| 2016 | 1047 | 10.50 | |
| 2017 | 993 | 9.96 | |
| 2018 | 1251 | 12.55 | |
| 2019 | 1313 | 13.17 | |
| 2020 | 1039 | 10.42 | |
| 2021 | 841 | 8.44 | |
| 2022 | 934 | 9.37 | |
| 2023 | 920 | 9.23 | |
| 2024 | 671 | 6.73 |
| Health District | Adolescents (<20 Years) | Young Adults (20–29 Years) | Older Adults (30–39 Years) | Mature Adults (≥40 Years) |
|---|---|---|---|---|
| St. George | 389 | 1994 | 1281 | 132 |
| St. David | 172 | 707 | 495 | 40 |
| St. Andrew | 272 | 1257 | 655 | 81 |
| St. Patrick | 156 | 672 | 366 | 47 |
| St. John/St. Mark | 90 | 401 | 281 | 30 |
| Carriacou | 46 | 219 | 170 | 14 |
| Variable | Level | No. Positive (%) | ϰ2 Value | p-Value | Odds Ratio | 95% CI | |
|---|---|---|---|---|---|---|---|
| Age group | Adolescents (<20 years) | 1.24(14/1125) | 7.981 | Ref | 1.0 | NA | NA |
| Young adults (20–29 years) | 1.33(70/5250) | 0.815 | 1.0714 | 0.6014 | 1.9087 | ||
| Older adults (30–39 years) | 1.54(50/3248 | 0.484 | 1.2370 | 0.6813 | 2.2461 | ||
| Mature adults (≥40 years) | 3.20(11/344) | 0.017 | 2.5695 | 1.1559 | 5.7122 | ||
| Health DistrictPari | St. George | 0.95(36/3796) | 16.633 | Ref | 1.0 | NA | NA |
| St. David | 1.20(17/1414) | 0.417 | 1.2773 | 0.6959 | 2.2515 | ||
| St. Andrew | 1.94(44/2265) | 0.001 | 2.0672 | 1.3267 | 3.2419 | ||
| St. Patrick | 2.18(27/1241) | 0.001 | 2.3259 | 1.3915 | 3.8417 | ||
| St. John/St. Mark | 1.5(12/802) | 0.179 | 1.6005 | 0.7914 | 3.0100 | ||
| Carriacou | 2.00(9/449) | 0.049 | 2.1643 | 0.9666 | 4.3428 | ||
| Year | 2015 | 0.84(8/958) | 16.164 | Ref | 1.0 | NA | NA |
| 2016 | 2.58(27/1047) | 0.003 | 3.0981 | 1.4586 | 7.3978 | ||
| 2017 | 1.71(17/993) | 0.085 | 2.0461 | 0.8987 | 5.0911 | ||
| 2018 | 1.36(17/1251) | 0.249 | 1.6185 | 0.7113 | 4.0255 | ||
| 2019 | 1.22(16/1313) | 0.377 | 1.4502 | 0.6301 | 3.6306 | ||
| 2020 | 1.73(18/1039) | 0.077 | 2.0698 | 0.9186 | 5.1193 | ||
| 2021 | 1.31(11/841) | 0.328 | 1.5650 | 0.6233 | 4.1161 | ||
| 2022 | 0.86(8/934) | 0.959 | 1.0259 | 0.3700 | 2.8444 | ||
| 2023 | 1.30(12/920) | 0.322 | 1.5587 | 0.6351 | 4.0478 | ||
| 2024 | 1.64(11/671) | 0.137 | 1.9677 | 0.7831 | 5.1784 | ||
| Variable | Level | p-Value | Odds Ratio | 95% CI | |
|---|---|---|---|---|---|
| Age group | Adolescents (<20 years) | Ref | 1.0 | NA | NA |
| Younger adults (20–29 years) | 0.760 | 1.18 | 0.390 | 3.460 | |
| Older adults (30–39 years) | 0.628 | 1.31 | 0.440 | 3.870 | |
| Mature adults (≥40 years) | 0.150 | 2.46 | 0.720 | 8.340 | |
| Year | 2015 | Ref | 1.0 | NA | NA |
| 2016 | 0.316 | 2.31 | 0.450 | 11.800 | |
| 2017 | 0.510 | 1.76 | 0.340 | 9.360 | |
| 2018 | 0.965 | 0.96 | 0.190 | 4.910 | |
| 2019 | 0.687 | 1.41 | 0.280 | 7.090 | |
| 2020 | 0.775 | 1.28 | 0.250 | 6.570 | |
| 2021 | 0.826 | 1.21 | 0.230 | 6.280 | |
| 2022 | 0.591 | 0.61 | 0.120 | 3.090 | |
| 2023 | 0.765 | 1.30 | 0.260 | 6.570 | |
| 2024 | 0.800 | 1.25 | 0.240 | 6.440 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, S.-A.N.; Richards, C.; Yakubu, Y.; Malur, A.; Frame, T. Antenatal Screening for HTLV-1 and -2 Among Pregnant Women in Grenada: Combined Seroprevalence, Trends, and Public Health Implications (2015–2024). Viruses 2025, 17, 1514. https://doi.org/10.3390/v17111514
Joseph S-AN, Richards C, Yakubu Y, Malur A, Frame T. Antenatal Screening for HTLV-1 and -2 Among Pregnant Women in Grenada: Combined Seroprevalence, Trends, and Public Health Implications (2015–2024). Viruses. 2025; 17(11):1514. https://doi.org/10.3390/v17111514
Chicago/Turabian StyleJoseph, Sherry-Ann N., Christine Richards, Yusuf Yakubu, Achut Malur, and Tonia Frame. 2025. "Antenatal Screening for HTLV-1 and -2 Among Pregnant Women in Grenada: Combined Seroprevalence, Trends, and Public Health Implications (2015–2024)" Viruses 17, no. 11: 1514. https://doi.org/10.3390/v17111514
APA StyleJoseph, S.-A. N., Richards, C., Yakubu, Y., Malur, A., & Frame, T. (2025). Antenatal Screening for HTLV-1 and -2 Among Pregnant Women in Grenada: Combined Seroprevalence, Trends, and Public Health Implications (2015–2024). Viruses, 17(11), 1514. https://doi.org/10.3390/v17111514

