Sindbis Virus–Host Interactions in Human Neuroblastoma Cells: Implications for Viral Pathogenesis and Replication
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus and Cell Line
2.2. TCID50 Assay for Virus Titration
2.3. Viral RNA Isolation, Quantitative Reverse Transcription (RT-qPCR) and Copy Number Determination
2.4. UV-C Inactivation of SINV and Testing Its Infectivity
2.5. Identification of Viral Replication and Apoptotic Markers by Immunofluorescence
2.6. Total RNA Isolation, cDNA Synthesis and qPCR-Based Quantification of Immunological Markers Expression
2.7. Statistical Analyses
3. Results
3.1. SINV Infection Results in Marked Morphological Alteration in SH-SY5Y Cells
3.2. Sindbis Virus Replication Dynamics Are Strongly Influenced by Initial MOI
3.3. Detection of dsRNA in SH-SY5Y Cells as an Indicator of Viral Replication
3.4. SINV Inactivation Was Successful upon 3 × 15 and 3 × 30 s UV-C Exposure
3.5. Apoptotic Pathway Is Induced to SINV Infection
3.6. Early Induction of PRRs Genes mRNA upon SINV Infection
3.7. Induction of Inflammatory, -Antiviral, and -Regulator Genes mRNA upon SINV Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ab | Antibody |
BSA | Bovine serum albumin |
BSL-2 | Biosafety level-2 |
CHIKV | Chikungunya virus |
CK | Cytokine |
CNS | Central nervous system |
CPE | Cytopathic effect |
DC | Dendritic cell |
dsRNA | Double-stranded RNA |
FFU | Focus-Forming Unit |
hpi | Hour of post infection |
IFN | Interferon |
IRF | Interferon regulatory factor |
ISG | Interferon stimulated gene |
MDA5 | Melanoma differentiation-associated protein 5 |
MEM | Minimum Essential Media |
NK | Natural killer |
PAMP | Pathogen-associated molecular pattern |
PBS | Phosphate buffered saline |
PRR | Pattern recognition receptor |
RIG | Retinoic acid-inducible gene |
RLR | RIG-I-like receptor |
SINV | Sindbis virus |
ssRNA | Single-stranded RNA |
TCID50 | Tissue culture infectious dose 50 |
TLR | Toll-like receptor |
UV | Ultraviolet radiation |
Wnt | Wingless related integration site |
References
- Carpentier, K.S.; Morrison, T.E. Innate immune control of alphavirus infection. Curr. Opin. Virol. 2018, 28, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Rulli, N.E.; Melton, J.; Wilmes, A.; Ewart, G.; Mahalingam, S. The molecular and cellular aspects of arthritis due to alphavirus infections: Lesson learned from Ross River virus. Ann. N. Y. Acad. Sci. 2007, 1102, 96–108. [Google Scholar] [CrossRef]
- Adouchief, S.; Smura, T.; Sane, J.; Vapalahti, O.; Kurkela, S. Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis. Rev. Med. Virol. 2016, 26, 221–241. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Recognition of viruses by innate immunity. Immunol. Rev. 2007, 220, 214–224. [Google Scholar] [CrossRef]
- Guerrero-Arguero, I.; Tellez-Freitas, C.M.; Weber, K.S.; Berges, B.K.; Robison, R.A.; Pickett, B.E. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J. Gen. Virol. 2021, 102, 8. [Google Scholar] [CrossRef]
- Lum, F.M.; Ng, L.F. Cellular and molecular mechanisms of chikungunya pathogenesis. Antiviral. Res. 2015, 120, 165–174. [Google Scholar] [CrossRef]
- Lombardi Pereira, A.P.; Suzukawa, H.T.; do Nascimento, A.M.; Bufalo Kawassaki, A.C.; Basso, C.R.; Dos Santos, D.P.; Damasco, K.F.; Machado, L.F.; Amarante, M.K.; Ehara Watanabe, M.A. An overview of the immune response and Arginase I on CHIKV immunopathogenesis. Microb. Pathog. 2019, 135, 103581. [Google Scholar] [CrossRef]
- Anderson, D.; Neri, J.I.C.F.; Souza, C.R.M.; Valverde, J.G.; De Araújo, J.M.G.; Nascimento, M.D.S.B.; Branco, R.C.C.; Arrais, N.M.R.; Lassmann, T.; Blackwell, J.M.; et al. Zika Virus Changes Methylation of Genes Involved in Immune Response and Neural Development in Brazilian Babies Born with Congenital Microcephaly. J. Infect. Dis. 2021, 223, 435–440. [Google Scholar] [CrossRef]
- Lewis, J.; Wesselingh, S.L.; Griffin, D.E.; Hardwick, J.M. Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J. Virol. 1996, 70, 1828–1835. [Google Scholar] [CrossRef]
- Cheng, E.H.; Kirsch, D.G.; Clem, R.J.; Ravi, R.; Kastan, M.B.; Bedi, A.; Ueno, K.; Hardwick, J.M. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997, 278, 1966–1968. [Google Scholar] [CrossRef]
- Lundstrom, K. Alphavirus-Based Vaccines. Methods Mol. Biol. 2017, 1581, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Valero, Y.; Mokrani, D.; Chaves-Pozo, E.; Arizcun, M.; Oumouna, M.; Meseguer, J.; Esteban, M.Á.; Cuesta, A. Vaccination with UV-inactivated nodavirus partly protects European sea bass against infection, while inducing few changes in immunity. Dev. Comp. Immunol. 2018, 86, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Sane, J.; Kurkela, S.; Levanov, L.; Nikkari, S.; Vaheri, A.; Vapalahti, O. Development and evaluation of a real-time RT-PCR assay for Sindbis virus detection. J. Virol. Methods 2012, 179, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Kopasz, Z.; Leiner, K.; Papp, H.; Lőrincz, E.; Sipos-Szabó, L.; Bodó, K.; Szabó, E.; Madai, M.; Zana, B.; Bajusz, D.; et al. Novel semisynthetic glycopeptide antibiotics with antiviral activity against Zika virus and other emerging viruses. Eur. J. Med. Chem. 2025. under review. [Google Scholar]
- Bodó, K.; Boros, Á.; Rumpler, É.; Molnár, L.; Böröcz, K.; Németh, P.; Engelmann, P. Identification of novel lumbricin homologues in Eisenia andrei earthworms. Dev. Comp. Immunol. 2019, 90, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Bodó, K.; Kellermayer, Z.; László, Z.; Boros, Á.; Kokhanyuk, B.; Németh, P.; Engelmann, P. Injury-Induced Innate Immune Response During Segment Regeneration of the Earthworm, Eisenia andrei. Int. J. Mol. Sci. 2021, 22, 2363. [Google Scholar] [CrossRef]
- Jansen, S.; Lühken, R.; Helms, M.; Pluskota, B.; Pfitzner, W.P.; Oerther, S.; Becker, N.; Schmidt-Chanasit, J.; Heitmann, A. Vector Competence of Mosquitoes from Germany for Sindbis Virus. Viruses 2022, 14, 2644. [Google Scholar] [CrossRef]
- Hesson, J.C.; Lundin, E.; Lundkvist, Å.; Lundström, J.O. Surveillance of mosquito vectors in Southern Sweden for Flaviviruses and Sindbis virus. Infect. Ecol. Epidemiol. 2019, 9, 1698903. [Google Scholar] [CrossRef]
- Ziegler, U.; Fischer, D.; Eiden, M.; Reuschel, M.; Rinder, M.; Müller, K.; Schwehn, R.; Schmidt, V.; Groschup, M.H.; Keller, M. Sindbis virus- a wild bird associated zoonotic arbovirus circulates in Germany. Vet. Microbiol. 2019, 239, 108453. [Google Scholar] [CrossRef]
- Lundström, J.O.; Hesson, J.C.; Schäfer, M.L.; Östman, Ö.; Semmler, T.; Bekaert, M.; Weidmann, M.; Lundkvist, Å.; Pfeffer, M. Sindbis virus polyarthritis outbreak signalled by virus prevalence in the mosquito vectors. PLoS Negl. Trop. Dis. 2019, 13, e0007702. [Google Scholar] [CrossRef]
- Kimura, T.; Griffin, D.E. Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus. Virology 2003, 311, 28–39. [Google Scholar] [CrossRef]
- Bergqvist, J.; Forsman, O.; Larsson, P.; Näslund, J.; Lilja, T.; Engdahl, C.; Lindström, A.; Gylfe, Å.; Ahlm, C.; Evander, M.; et al. Detection and isolation of Sindbis virus from mosquitoes captured during an outbreak in Sweden, 2013. Vector Borne Zoonotic Dis. 2015, 2, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Uejio, C.K.; Kemp, A.; Comrie, A.C. Climatic controls on West Nile virus and Sindbis virus transmission and outbreaks in South Africa. Vector. Borne Zoonotic Dis. 2012, 2, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Suvanto, M.T.; Uusitalo, R.; Otte Im Kampe, E.; Vuorinen, T.; Kurkela, S.; Vapalahti, O.; Dub, T.; Huhtamo, E.; Korhonen, E.M. Sindbis virus outbreak and evidence for geographical expansion in Finland, 2021. Eurosurveillance 2022, 31, 2200580. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-López, R.; Ruiz-López, M.J.; Ledesma, J.; Magallanes, S.; Nieto, C.; Ruiz, S.; Sanchez-Peña, C.; Ameyugo, U.; Camacho, J.; Varona, S.; et al. First isolation of the Sindbis virus in mosquitoes from southwestern Spain reveals a new recent introduction from Africa. One Health 2024, 20, 100947. [Google Scholar] [CrossRef]
- Mathew, A.M.; Mun, A.B.; Balakrishnan, A. Ultraviolet Inactivation of Chikungunya Virus. Intervirology 2018, 61, 36–41. [Google Scholar] [CrossRef]
- Gracheva, A.V.; Korchevaya, E.R.; Ammour, Y.I.; Smirnova, D.I.; Sokolova, O.S.; Glukhov, G.S.; Moiseenko, A.V.; Zubarev, I.V.; Samoilikov, R.V.; Leneva, I.A.; et al. Immunogenic properties of SARS-CoV-2 inactivated by ultraviolet light. Arch. Virol. 2022, 167, 2181–2191. [Google Scholar] [CrossRef]
- Griffin, D.E.; Hardwick, J.M. Regulators of apoptosis on the road to persistent alphavirus infection. Annu. Rev. Microbiol. 1997, 51, 565–592. [Google Scholar] [CrossRef]
- Nava, V.E.; Rosen, A.; Veliuona, M.A.; Clem, R.J.; Levine, B.; Hardwick, J.M. Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J. Virol. 1998, 72, 452–459. [Google Scholar] [CrossRef]
- Salah-eldin, A.; Inoue, S.; Tsuda, M.; Matsuura, A. Abnormal intracellular localization of Bax with a normal membrane anchor domain in human lung cancer cell lines. Jpn. J. Cancer Res. 2000, 91, 1269–1277. [Google Scholar] [CrossRef]
- Hoetelmans, R.; van Slooten, H.J.; Keijzer, R.; Erkeland, S.; van de Velde, C.J.; Dierendonck, J.H. Bcl-2 and Bax proteins are present in interphase nuclei of mammalian cells. Cell Death Differ. 2000, 7, 384–392. [Google Scholar] [CrossRef]
- Crawford, J.M.; Buechlein, A.M.; Moline, D.A.; Rusch, D.B.; Hardy, R.W. Host Derivation of Sindbis Virus Influences Mammalian Type I Interferon Response to Infection. Viruses 2023, 15, 1685. [Google Scholar] [CrossRef]
- Caglioti, C.; Lalle, E.; Castilletti, C.; Carletti, F.; Capobianchi, M.R.; Bordi, L. Chikungunya virus infection: An overview. New Microbiol. 2013, 36, 211–227. [Google Scholar] [PubMed]
- Kedzierski, L.; Tan, A.E.Q.; Foo, I.J.H.; Nicholson, S.E.; Fazakerley, J.K. Suppressor of Cytokine Signalling 5 (SOCS5) Modulates Inflammatory Responses during Alphavirus Infection. Viruses 2022, 14, 2476. [Google Scholar] [CrossRef] [PubMed]
- Rowell, J.F.; Griffin, D.E. The inflammatory response to nonfatal Sindbis virus infection of the nervous system is more severe in SJL than in BALB/c mice and is associated with low levels of IL-4 mRNA and high levels of IL-10-producing CD4+ T cells. J. Immunol. 1999, 162, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Bodó, K.; Boros, Á.; da Costa, C.B.; Tolnai, G.; Rumpler, É.; László, Z.; Nagyeri, G.; Németh, P.; Kille, P.; Molnár, L.; et al. A novel beta-catenin homologue from the earthworm Eisenia andrei: Identification and characterization during embryonic development, segment regeneration, and immune response. Int. J. Biol. Macromol. 2025, 306, 141397. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ghosh, S.; Datey, A.; Mahish, C.; Chattopadhyay, S.; Chattopadhyay, S. Chikungunya virus perturbs the Wnt/β-catenin signaling pathway for efficient viral infection. J. Virol. 2023, 97, e0143023. [Google Scholar] [CrossRef]
- Hillesheim, A.; Nordhoff, C.; Boergeling, Y.; Ludwig, S.; Wixler, V. β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response but is suppressed by influenza A virus-induced RIG-I/NF-κB signaling. Cell Commun. Signal. 2014, 12, 29. [Google Scholar] [CrossRef]
- Jimenez, O.A.; Narasipura, S.D.; Barbian, H.J.; Albalawi, Y.A.; Seaton, M.S.; Robinson, K.F.; Al-Harthi, L. β-Catenin Restricts Zika Virus Internalization by Downregulating Axl. J. Virol. 2021, 95, e0070521. [Google Scholar] [CrossRef]
- Jackson, A.C.; Moench, T.R.; Trapp, B.D.; Griffin, D.E. Basis of neurovirulence in Sindbis virus encephalomyelitis of mice. Lab. Investig. 1988, 58, 503–509. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodó, K.; Kopasz, Z.; Nyári, V.; Leiner, K.; Engelmann, P.; Zana, B.; Hetényi, R.; Hanna, D.; Bányai, K.; Madai, M.; et al. Sindbis Virus–Host Interactions in Human Neuroblastoma Cells: Implications for Viral Pathogenesis and Replication. Viruses 2025, 17, 1346. https://doi.org/10.3390/v17101346
Bodó K, Kopasz Z, Nyári V, Leiner K, Engelmann P, Zana B, Hetényi R, Hanna D, Bányai K, Madai M, et al. Sindbis Virus–Host Interactions in Human Neuroblastoma Cells: Implications for Viral Pathogenesis and Replication. Viruses. 2025; 17(10):1346. https://doi.org/10.3390/v17101346
Chicago/Turabian StyleBodó, Kornélia, Zoltán Kopasz, Viktória Nyári, Krisztina Leiner, Péter Engelmann, Brigitta Zana, Roland Hetényi, Dániel Hanna, Krisztián Bányai, Mónika Madai, and et al. 2025. "Sindbis Virus–Host Interactions in Human Neuroblastoma Cells: Implications for Viral Pathogenesis and Replication" Viruses 17, no. 10: 1346. https://doi.org/10.3390/v17101346
APA StyleBodó, K., Kopasz, Z., Nyári, V., Leiner, K., Engelmann, P., Zana, B., Hetényi, R., Hanna, D., Bányai, K., Madai, M., Varga, G., & Kuczmog, A. (2025). Sindbis Virus–Host Interactions in Human Neuroblastoma Cells: Implications for Viral Pathogenesis and Replication. Viruses, 17(10), 1346. https://doi.org/10.3390/v17101346