Effect of Different Levels of Maternally Derived Genotype VII Newcastle Disease Virus-Specific Hemagglutination Inhibition Antibodies on Protection against Virulent Challenge in Chicks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Strain, Antigen and Antiserum
2.2. SPF Chicken Embryo
2.3. Experimental Birds
2.4. Experimental Design
2.4.1. Experiment 1
2.4.2. Experiment 2
2.4.3. Experiment 3
2.5. Virus Isolation
2.6. HA and HI Tests
2.7. Statistical Analysis
3. Results
3.1. Correlation between HI Antibody Levels in Chicks and Breeder Hens
3.2. Decaying Pattern of Maternally Derived HI Antibodies in Chicks
3.3. Protective Efficacy of Different Levels of Maternally Derived HI Antibodies against the Challenge with Virulent NDV
3.3.1. Clinical Signs and Gross Lesions
3.3.2. Virus Shedding
3.3.3. Serological Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Committee on Taxonomy of Viruses (ICTV). Current ICTV Taxonomy Release. Available online: https://ictv.global/taxonomy (accessed on 16 May 2023).
- World Organisation for Animal Health (WOAH). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2022. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.03.14_NEWCASTLE_DIS.pdf (accessed on 18 January 2022).
- Steward, M.; Vipond, I.B.; Millar, N.S.; Emmerson, P.T. RNA editing in Newcastle disease virus. J. Gen. Virol. 1993, 74, 2539–2547. [Google Scholar] [CrossRef]
- Dortmans, J.C.F.M.; Rottier, P.J.M.; Koch, G.; Peeters, B.P.H. The viral replication complex is associated with the virulence of Newcastle disease virus. J. Virol. 2010, 84, 10113–10120. [Google Scholar] [CrossRef] [PubMed]
- Mahon, P.J.; Mirza, A.M.; Iorio, R.M. Role of the two sialic acid binding sites on the Newcastle disease virus HN protein in triggering the interaction with the F protein required for the promotion of fusion. J. Virol. 2011, 85, 12079–12082. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Afonso, C.L.; Attrache, J.E.; Dorsey, K.M.; Courtney, S.C.; Guo, Z.J.; Kapczynski, D.R. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Dev. Comp. Immunol. 2013, 41, 505–513. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.X.; Brown, I.H.; Choi, K.S.; Chvala, I.; et al. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Genet. Evol. 2019, 74, 103917. [Google Scholar] [CrossRef]
- Gallili, G.E.; Ben-Nathan, D. Newcastle disease vaccines. Biotechnol. Adv. 1998, 16, 343–366. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Afonso, C.L.; Yu, Q.Z.; Miller, P.J. Newcastle disease vaccines—A solved problem or a continuous challenge? Vet. Microbiol. 2017, 206, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Wan, H.Q.; Ni, X.X.; Wu, Y.T.; Liu, W.B. Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985–2001. Arch. Virol. 2003, 148, 1387–1403. [Google Scholar] [CrossRef]
- Jeon, W.J.; Lee, E.K.; Lee, Y.J.; Jeong, O.M.; Kim, Y.J.; Kwon, J.H.; Choi, K.S. Protective efficacy of commercial inactivated Newcastle disease virus vaccines in chickens against a recent Korean epizootic strain. J. Vet. Sci. 2008, 9, 295–300. [Google Scholar] [CrossRef]
- Berhanu, A.; Ideris, A.; Omar, A.R.; Bejo, M.H. Molecular characterization of partial fusion gene and C-terminus extension length of haemagglutinin-neuraminidase gene of recently isolated Newcastle disease virus isolates in Malaysia. Virol. J. 2010, 7, 183. [Google Scholar] [CrossRef]
- Zhang, R.; Pu, J.; Su, J.L.; Zhao, J.X.; Wang, X.T.; Zhang, S.P.; Li, X.J.; Zhang, G.Z. Phylogenetic characterization of Newcastle disease virus isolated in the mainland of China during 2001–2009. Vet. Microbiol. 2010, 141, 246–257. [Google Scholar]
- Huang, Y.Y.; Yang, S.H.; Hu, B.X.; Xu, C.T.; Gao, D.D.; Zhu, M.L.; Huang, Q.H.; Zhang, L.; Wu, J.Q.; Zhang, X.M.; et al. Genetic, pathogenic and antigenic diversity of Newcastle disease viruses in Shandong Province, China. Vet. Microbiol. 2015, 180, 237–244. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Ramey, A.M.; Qiu, X.; Bahl, J.; Afonso, C.L. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). Infect. Genet. Evol. 2016, 39, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hu, S.L.; Xu, H.X.; Liu, J.J.; Zhao, Z.Z.; Wang, X.Q.; Liu, X.F. Characterization of virulent Newcastle disease viruses from vaccinated chicken flocks in Eastern China. BMC Vet. Res. 2016, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; King, D.J.; Afonso, C.L.; Suarez, D.L. Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine 2007, 25, 7238–7546. [Google Scholar] [CrossRef]
- Xu, M.; Chang, S.; Ding, Z.; Gao, H.W.; Wan, J.Y.; Liu, W.S.; Liu, L.N.; Gao, Y.; Xu, J. Genomic analysis of Newcastle disease virus strain NA-1 isolated from geese in China. Arch. Virol. 2008, 153, 1281–1289. [Google Scholar] [CrossRef]
- Hu, S.L.; Ma, H.L.; Wu, Y.T.; Liu, W.B.; Wang, X.Q.; Liu, Y.L.; Liu, X.F. A vaccine candidate of attenuated genotype VII Newcastle disease virus generated by reverse genetics. Vaccine 2009, 27, 904–910. [Google Scholar] [CrossRef]
- Miller, P.J.; Estevez, C.; Yu, Q.Z.; Suarez, D.L.; King, D.J. Comparison of viral shedding following vaccination with inactivated and live Newcastle disease vaccines formulated with wild-type and recombinant viruses. Avian Dis. 2009, 53, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Wajid, A.; Basharat, A.; Bibi, T.; Rehmani, S.F. Comparison of protection and viral shedding following vaccination with Newcastle disease virus strains of different genotypes used in vaccine formulation. Trop. Anim. Health Prod. 2018, 50, 1645–1651. [Google Scholar] [CrossRef]
- Reynolds, D.L.; Maraqa, A.D. Protective immunity against Newcastle disease: The role of antibodies specific to Newcastle disease virus polypeptides. Avian Dis. 2000, 44, 138–144. [Google Scholar] [CrossRef]
- Seal, B.S.; King, D.J.; Sellers, H.S. The avian response to Newcastle disease virus. Dev. Comp. Immunol. 2000, 24, 257–268. [Google Scholar] [CrossRef]
- Kapczynski, D.R.; King, D.J. Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commercially available Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak. Vaccine 2005, 23, 3424–3433. [Google Scholar]
- van Boven, M.; Bouma, A.; Fabri, T.H.F.; Katsma, E.; Hartog, L.; Koch, G. Herd immunity to Newcastle disease virus in poultry by vaccination. Avian Pathol. 2008, 37, 1–5. [Google Scholar] [CrossRef]
- Dortmans, J.C.F.M.; Venema-Kemper, S.; Peeters, B.P.H.; Koch, G. Field vaccinated chickens with low antibody titres show equally insufficient protection against matching and non-matching genotypes of virulent Newcastle disease virus. Vet. Microbiol. 2014, 172, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Dortmans, J.C.F.M.; Peeters, B.P.H.; Koch, G. Newcastle disease virus outbreaks: Vaccine mismatch or inadequate application? Vet. Microbiol. 2012, 160, 17–22. [Google Scholar] [CrossRef]
- Liu, M.; Shen, X.Y.; Li, J.M.; Yu, Y.; Fan, J.H.; Jia, X.B.; Dai, Y.B. Efficacy of Newcastle disease LaSota vaccine-induced hemagglutination inhibition antibodies against challenges with heterologous virulent strains of genotypes VII and IX. Vet. Immunol. Immunop. 2023, 259, 110591. [Google Scholar] [CrossRef]
- Liu, X.F.; Hu, S.L. Molecular epidemiology of Newcastle disease virus and new vaccine development in China. China Poult. 2010, 32, 1–4. [Google Scholar]
- Liu, M.M.; Cheng, J.L.; Yu, X.H.; Qin, Z.M.; Tian, F.L.; Zhang, G.Z. Generation by reverse genetics of an effective attenuated Newcastle disease virus vaccine based on a prevalent highly virulent Chinese strain. Biotechnol. Lett. 2015, 37, 1287–1296. [Google Scholar] [CrossRef]
- Cho, S.H.; Kwon, H.J.; Kim, T.E.; Kim, J.H.; Yoo, H.S.; Park, M.H.; Park, Y.H.; Kim, S.J. Characterization of a recombinant Newcastle disease virus vaccine strain. Clin. Vaccine Immunol. 2008, 15, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.M.; Zhao, J.; Xue, J.; Yang, Y.L.; Zhang, G.Z. Antigenic variation of LaSota and genotype VII Newcastle disease virus (NDV) and their efficacy against challenge with velogenic NDV. Vaccine 2017, 35, 27–32. [Google Scholar] [CrossRef]
- Sultan, H.A.; Talaat, S.; Elfeil, W.K.; Selim, K.; Kutkat, M.A.; Amer, S.A.; Choi, K.S. Protective efficacy of the Newcastle disease virus genotype VII-matched vaccine in commercial layers. Poult. Sci. 2020, 99, 1275–1286. [Google Scholar] [CrossRef]
- Hasselquist, D.; Nilsson, J.-A. Maternal transfer of antibodies in vertebrates: Trans-generational effects on offspring immunity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Mast, J.; Goddeeris, B.M. Development of immunocompetence of broiler chickens. Vet. Immunol. Immunopathol. 1999, 70, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Bari, A.S.M.; Giasudin, M.J.; Islam, R.M.; Sil, A.C. Evaluation of maternal and humoral immunity against Newcastle disease virus in chicken. Int. J. Poult. Sci. 2002, 1, 161–163. [Google Scholar]
- Grindstaff, J.L. Maternal antibodies reduce costs of an immune response during development. J. Exp. Biol. 2008, 211, 654–660. [Google Scholar] [CrossRef]
- Heeb, P.; Werner, I.; Kolliker, M.; Richner, H. Benefits of induced host responses against an ectoparasite. Proc. R. Soc. Lond. B Biol. Sci. 1998, 265, 51–56. [Google Scholar] [CrossRef]
- Lemke, H.; Tanasa, R.I.; Trad, A.; Lange, H. Benefits and burden of the maternally-mediated immunological imprinting. Autoimmun. Rev. 2009, 8, 394–399. [Google Scholar] [CrossRef]
- Westbury, H.A.; Parsons, G.; Allan, W.H. Comparison of the immunogenicity of Newcastle disease virus strains V4, Hitchner B1 and La Sota in chickens. 2. Tests in chickens with maternal antibody to the virus. Aust. Vet. J. 1984, 61, 10–13. [Google Scholar] [CrossRef]
- Saeed, Z.; Ahmad, S.; Rizvi, A.R.; Ajmal, M. Role of maternal antibody in determination of an effective Newcastle disease vaccination programme. Pak. J. Vet. Res. 1988, 1, 18–20. [Google Scholar]
- Giambrone, J.J.; Closser, J. Effect of breeder vaccination on immunization of progeny against Newcastle disease. Avian Dis. 1990, 34, 114–119. [Google Scholar] [CrossRef]
- van Eck, J.H.; van Wiltenburg, N.; Jaspers, D. An Ulster 2C strain derived Newcastle disease vaccine: Efficacy and excretion in maternally immune chickens. Avian Pathol. 1991, 20, 481–495. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Zhao, L.B.; Li, Q.F.; Yang, Z.Y.; Gao, L.T.; Dai, H.Y. Influence of maternal Newcastle disease antibodies on the efficiency of vaccine in chickens. Chin. J. Vet. Med. 2004, 40, 6–8. [Google Scholar]
- Rauw, F.; Gardin, Y.; Palya, V.; van Borm, S.; Gonze, M.; Lemaire, S.; van den Berg, T.; Lambrecht, B. Humoral, cell-mediated and mucosal immunity induced by oculo-nasal vaccination of one-day-old SPF and conventional layer chicks with two different live Newcastle disease vaccines. Vaccine 2009, 27, 3631–3642. [Google Scholar] [CrossRef] [PubMed]
- Lardinois, A.; Vandersleyen, O.; Steensels, M.; Desloges, N.; Mast, J.; van den Berg, T.; Lambrecht, B. Stronger interference of avian influenza virus-specific than Newcastle disease virus-specific maternally derived antibodies with a recombinant NDV-H5 vaccine. Avian Dis. 2016, 60, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Glezen, W. Effect of maternal antibodies on the infant immune response. Vaccine 2003, 21, 3389–3392. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.B.; Liu, M.; Cheng, X.; Shen, X.Y.; Wei, Y.Y.; Zhou, S.; Yu, S.Q.; Ding, C. Infectivity and pathogenicity of Newcastle disease virus strains of different avian origin and different virulence for mallard ducklings. Avian Dis. 2013, 57, 8–14. [Google Scholar] [CrossRef]
- Kramer, T.T.; Cho, H.C. Transfer of immunoglubulins and antibodies in the hen’s egg. Immunology 1970, 19, 157–167. [Google Scholar] [PubMed]
- Kowalczyk, K.; Daiss, J.; Halpern, J.; Roth, T.F. Quantitation of maternal-fetal IgG transport in the chicken. Immunology 1985, 54, 755–762. [Google Scholar]
- Tressler, R.L.; Roth, T.F. IgG receptors on the embryonic chick yolk sac. J. Biol. Chem. 1987, 262, 15406–15412. [Google Scholar] [CrossRef] [PubMed]
- West, A.P., Jr.; Herr, A.B.; Bjorkman, P.J. The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog. Immunity 2004, 20, 601–610. [Google Scholar] [CrossRef]
- Gharaibeh, S.; Mahmoud, K.; Al-Natour, M. Field evaluation of maternal antibody transfer to a group of pathogens in meat-type chickens. Poult. Sci. 2008, 87, 1550–1555. [Google Scholar] [CrossRef] [PubMed]
- Hamal, K.R.; Burgess, S.C.; Pevzner, I.Y.; Erf, G.F. Maternal antibody transfer from dams to their egg yolks, egg whites, and chicks in meat lines of chickens. Poult. Sci. 2006, 85, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, M.A.; Peters, S.O.; Ogunmodede, D.T.; Oni, O.O.; Ajayi, O.L.; Wheto, M.; Adebambo, O.A. Genotype effect on distribution pattern of maternally derived antibody against Newcastle disease in Nigerian local chickens. Trop. Anim. Health Prod. 2015, 47, 391–394. [Google Scholar] [CrossRef]
- Wang, X.L.; Liu, Y.H.; Wang, J.X.; Cui, Z.Z. The half-life of maternally derived antibodies against Newcastle disease virus in chicks. Swine Ind. Sci. 2004, 21, 54–55. [Google Scholar]
- Jalil, M.A.; Samad, M.A.; Islam, M.T. Evaluation of maternally derived antibodies against Newcastle disease virus and its effect on vaccination in broiler chicks. Bangl. J. Vet. Med. 2009, 7, 296–302. [Google Scholar] [CrossRef]
- Gharaibeh, S.; Mahmoud, K. Decay of maternal antibodies in broiler chickens. Poult. Sci. 2013, 92, 2333–2336. [Google Scholar] [CrossRef] [PubMed]
- Ecco, R.; Brown, C.; Susta, L.; Cagle, C.; Cornax, I.; Pantin-Jackwood, M.; Miller, P.J.; Afonso, C.L. In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin- embedded samples. Vet. Immunol. Immunopathol. 2011, 141, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Susta, L.; Jones, M.E.B.; Cattoli, G.; Cardenas-Garcia, S.; Miller, P.J.; Brown, C.C.; Afonso, C.L. Pathologic characterization of genotypes XIV and XVII Newcastle disease viruses and efficacy of classical vaccination on specific pathogen-free birds. Vet. Pathol. 2015, 52, 120–131. [Google Scholar] [CrossRef]
- Hu, Z.L.; Hu, J.; Hu, S.L.; Liu, X.W.; Wang, X.Q.; Zhu, J.; Liu, X.F. Strong innate immune response and cell death in chicken splenocytes infected with genotype VIId Newcastle disease virus. Virol. J. 2012, 9, 208. [Google Scholar] [CrossRef]
- Hu, Z.L.; Hu, J.; Hu, S.L.; Song, Q.Q.; Ding, P.Y.; Zhu, J.; Liu, X.W.; Wang, X.Q.; Liu, X.F. High levels of virus replication and an intense inflammatory response contribute to the severe pathology in lymphoid tissues caused by Newcastle disease virus genotype VIId. Arch. Virol. 2015, 160, 639–648. [Google Scholar] [CrossRef]
- Shen, X.Y.; Liu, M.; Li, J.M.; Dai, Y.B. Correlation between serum antibody level to Newcastle disease virus and protective efficacy against virulent challenge in vaccinated chicken. Chin. J. Anim. Infect. Dis. 2021, 1–9. [Google Scholar] [CrossRef]
- Jeurissen, S.H.M.; Boonstra-Blom, A.G.; Al-Garib, S.O.; Hartog, L.; Koch, G. Defence mechanisms against viral infection in poultry: A review. Vet. Q. 2000, 22, 204–208. [Google Scholar] [CrossRef] [PubMed]
Breeder Hen 1 | Chick at Hatching 2 | Transfer Rate of HI Antibodies (%) 4 | |||
---|---|---|---|---|---|
Number | Antibody Titer (log2) 3 | Number of Birds | Mean Antibody Titer (log2) | Lower than That of Hen (log2) | |
4878 | 7 | 7 | 5.7 ± 0.49 | 1.3 | 42.86 ± 12.20 |
4880 | 7 | 6 | 5.7 ± 0.52 | 1.3 | 41.67 ± 12.91 |
4905 | 8 | 7 | 6.4 ± 0.53 | 1.6 | 35.71 ± 13.36 |
4923 | 8 | 6 | 6.5 ± 0.55 | 1.5 | 37.50 ± 13.69 |
6691 | 8 | 7 | 6.9 ± 0.38 | 1.1 | 46.43 ± 9.45 |
4932 | 9 | 9 | 7.9 ± 0.33 | 1.1 | 47.22 ± 8.33 |
4910 | 11 | 8 | 9.5 ± 0.53 | 1.5 | 37.50 ± 13.36 |
4949 | 11 | 6 | 9.7 ± 0.52 | 1.3 | 41.67 ± 12.91 |
HI Titer Group (log2) | Age of Birds (Day) 1 | Number of Birds Challenged 2 | Survival Rate (%) 3 | Total Survival Rate (%) | Number of Birds with Neurologic Signs/Number of Surviving Birds |
---|---|---|---|---|---|
11 | 5 | 6 | 100 (6/6) 4 | 100 (6/6) a | 0/6 |
10 | 5 | 29 | 100 (29/29) | 100 (31/31) a | 0/31 |
10 | 2 | 100 (2/2) | |||
9 | 5 | 36 | 100 (36/36) | 100 (44/44) a | 1/44 |
10 | 8 | 100 (8/8) | |||
8 | 5 | 31 | 100 (31/31) | 98.3 (57/58) ab | 0/57 |
10 | 18 | 94.4 (17/18) | |||
15 | 9 | 100 (9/9) | |||
7 | 5 | 10 | 90.0 (9/10) | 95.7 (45/47) abc | 1/45 |
10 | 15 | 93.3 (14/15) | |||
15 | 22 | 100 (22/22) | |||
6 | 10 | 15 | 80.0 (12/15) | 86.7 (26/30) c | 0/26 |
15 | 15 | 93.3 (14/15) | |||
5 | 10 | 5 | 100 (5/5) | 89.5 (17/19) bc | 4/17 |
15 | 12 | 83.3 (10/12) | |||
20 | 2 | 100 (2/2) | |||
4 | 15 | 16 | 50.0 (8/16) | 50.0 (10/20) d | 3/10 |
20 | 4 | 50.0 (2/4) | |||
≤3 | 20 | 33 | 0 (0/33) | 0 (0/33) e | - 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Shen, X.; Yu, Y.; Li, J.; Fan, J.; Jia, X.; Dai, Y. Effect of Different Levels of Maternally Derived Genotype VII Newcastle Disease Virus-Specific Hemagglutination Inhibition Antibodies on Protection against Virulent Challenge in Chicks. Viruses 2023, 15, 1840. https://doi.org/10.3390/v15091840
Liu M, Shen X, Yu Y, Li J, Fan J, Jia X, Dai Y. Effect of Different Levels of Maternally Derived Genotype VII Newcastle Disease Virus-Specific Hemagglutination Inhibition Antibodies on Protection against Virulent Challenge in Chicks. Viruses. 2023; 15(9):1840. https://doi.org/10.3390/v15091840
Chicago/Turabian StyleLiu, Mei, Xinyue Shen, Yan Yu, Jianmei Li, Jianhua Fan, Xuebo Jia, and Yabin Dai. 2023. "Effect of Different Levels of Maternally Derived Genotype VII Newcastle Disease Virus-Specific Hemagglutination Inhibition Antibodies on Protection against Virulent Challenge in Chicks" Viruses 15, no. 9: 1840. https://doi.org/10.3390/v15091840