From Mimivirus to Mirusvirus: The Quest for Hidden Giants
Abstract
:1. The Maturing Field of Virology
2. The Discovery of Giant Viruses: Defying Conventional Wisdom
Year | Discovery-Proposals | Notes |
---|---|---|
2001 | Viral eukaryogenesis hypothesis | First proposal of the viral eukaryogenesis hypothesis, suggesting that viruses could have significantly contributed to the emergence of modern eukaryotes, particularly through the formation of the nucleus [18,19]. |
2003 | Mimivirus | First giant virus characterized, with a ~1.2 Mb dsDNA genome packed into a ~700 nm capsid (including fibrils) [20]. Its discovery sparked an intense and fruitful search for related giant viruses. They all belong to the Nucleocytoviricota phylum, which encompasses several families of large and giant dsDNA viruses infecting the entire eukaryotic diversity [25,26]. |
2008 | Virophages | Small viruses that coinfect their host alongside a mimivirus-like virus, often hindering the latter’s replication [32]. Additional virophages were later discovered [34], and some have been found to integrate their host’s genome [35]. |
2010 | Virocell concept | This concept describes a virus as several transient states: an extracellular particle, a genome, and an infected cell, or virocell [30]. |
2013–2014 | Pandoravirus Pithovirus | Pandoravirus and Pithovirus possess the largest viral genome (2.5 Mb for nearly 2500 proteins) and the largest viral particle (1.5 µm), respectively [22,24]. These sizes significantly overlap with those of small cellular organisms. |
2018 | Tupanvirus | A giant virus of the Imitervirales order that displays an exceptionally large set of translational apparatus proteins [23]. Remarkably, it has also odd particles: they are the only tailed giant viruses, a morphology reminiscent of some bacteriophages. |
2020 | Metagenomic abundance | Although several Nucleocytoviricota genomes had been characterized through metagenomics, two comprehensive surveys of environmental metagenomes produced many environmental genomes of these viruses, substantially increasing their known diversity [36,37]. These studies facilitate extensive genomic and genetic analyses. |
2023 | Mirusviruses | A search for Nucleocytoviricota and related viruses in oceanic metagenomes from the Tara Oceans expedition revealed an entire new group of viruses: the mirusviruses [38]. These viruses have evolutionary relationships with both herpesviruses, with which they share the genes related to the capsid formation, and giant viruses. |
3. Changing Paradigms
4. Giant Viruses and the Viral Eukaryogenesis Hypothesis
5. Giant Viruses Are Everywhere
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ivanosky, D. Über Die Mosaikkrankheit Der Tabakspflanze. St. Petersb. Acad. Imp. Sci. Bul. 1892, 35, 67–70. [Google Scholar]
- Beijerinck, M.W. Über Ein Contagium Vivum Fluidum Als Ursache Der Fleckenkrankheit Der Tabaksblätter. In Verhandelingen der Koninklyke Akademie van Wettenschappen te Amsterdam; Nabu Press: Charleston, SC, USA, 1898. [Google Scholar]
- Stanley, W.M. Isolation of a Crystalline Protein Possessing the Properties of Tobacco-Mosaic Virus. Science 1935, 81, 644–645. [Google Scholar] [CrossRef] [PubMed]
- Kausche, G.A.; Pfankuch, E.; Ruska, H. Die Sichtbarmachung von Pflanzlichem Virus Im Übermikroskop. Naturwissenschaften 1939, 27, 292–299. [Google Scholar] [CrossRef]
- Stanier, R.Y.; Niel, C.B. The Concept of a Bacterium. Archiv. Mikrobiol. 1962, 42, 17–35. [Google Scholar] [CrossRef]
- Woese, C.R.; Fox, G.E. Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms. Proc. Natl. Acad. Sci. USA 1977, 74, 5088–5090. [Google Scholar] [CrossRef] [PubMed]
- Prangishvili, D.; Forterre, P.; Garrett, R.A. Viruses of the Archaea: A Unifying View. Nat. Rev. Microbiol. 2006, 4, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Bergh, Ø.; Børsheim, K.Y.; Bratbak, G.; Heldal, M. High Abundance of Viruses Found in Aquatic Environments. Nature 1989, 340, 467–468. [Google Scholar] [CrossRef]
- Hendrix, R.W.; Smith, M.C.M.; Burns, R.N.; Ford, M.E.; Hatfull, G.F. Evolutionary Relationships among Diverse Bacteriophages and Prophages: All the World’s a Phage. Proc. Natl. Acad. Sci. USA 1999, 96, 2192–2197. [Google Scholar] [CrossRef] [PubMed]
- Mushegian, A.R. Are There 1031 Virus Particles on Earth, or More, or Fewer? J. Bacteriol. 2020, 202, e00052-20. [Google Scholar] [CrossRef]
- López-García, P.; Gutiérrez-Preciado, A.; Krupovic, M.; Ciobanu, M.; Deschamps, P.; Jardillier, L.; López-Pérez, M.; Rodríguez-Valera, F.; Moreira, D. Metagenome-Derived Virus-Microbe Ratios across Ecosystems. ISME J. 2023. [Google Scholar] [CrossRef]
- Forterre, P.; Soler, N.; Krupovic, M.; Marguet, E.; Ackermann, H.-W. Fake Virus Particles Generated by Fluorescence Microscopy. Trends Microbiol. 2013, 21, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus Taxonomy: The Database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; Curtis Hendrickson, R.; et al. Recent Changes to Virus Taxonomy Ratified by the International Committee on Taxonomy of Viruses (2022). Arch. Virol. 2022, 167, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Forterre, P. The Origin of DNA Genomes and DNA Replication Proteins. Curr. Opin. Microbiol. 2002, 5, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, L.P.; DeFilippis, V.R. A Hypothesis for DNA Viruses as the Origin of Eukaryotic Replication Proteins. J. Virol. 2000, 74, 7079–7084. [Google Scholar] [CrossRef]
- Forterre, P. Displacement of Cellular Proteins by Functional Analogues from Plasmids or Viruses Could Explain Puzzling Phylogenies of Many DNA Informational Proteins. Mol. Microbiol. 1999, 33, 457–465. [Google Scholar] [CrossRef]
- Takemura, M. Poxviruses and the Origin of the Eukaryotic Nucleus. J. Mol. Evol. 2001, 52, 419–425. [Google Scholar] [CrossRef]
- Bell, P.J.L. Viral Eukaryogenesis: Was the Ancestor of the Nucleus a Complex DNA Virus? J. Mol. Evol. 2001, 53, 251–256. [Google Scholar] [CrossRef]
- Scola, B.L.; Audic, S.; Robert, C.; Jungang, L.; De Lamballerie, X.; Drancourt, M.; Birtles, R.; Claverie, J.-M.; Raoult, D. A Giant Virus in Amoebae. Science 2003, 299, 2033. [Google Scholar] [CrossRef]
- Raoult, D.; Audic, S.; Robert, C.; Abergel, C.; Renesto, P.; Ogata, H.; La Scola, B.; Suzan, M.; Claverie, J.-M. The 1.2-Megabase Genome Sequence of Mimivirus. Science 2004, 306, 1344–1350. [Google Scholar] [CrossRef]
- Philippe, N.; Legendre, M.; Doutre, G.; Couté, Y.; Poirot, O.; Lescot, M.; Arslan, D.; Seltzer, V.; Bertaux, L.; Bruley, C.; et al. Pandoraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes. Science 2013, 341, 281–286. [Google Scholar] [CrossRef]
- Abrahão, J.; Silva, L.; Silva, L.S.; Khalil, J.Y.B.; Rodrigues, R.; Arantes, T.; Assis, F.; Boratto, P.; Andrade, M.; Kroon, E.G.; et al. Tailed Giant Tupanvirus Possesses the Most Complete Translational Apparatus of the Known Virosphere. Nat. Commun. 2018, 9, 749. [Google Scholar] [CrossRef] [PubMed]
- Legendre, M.; Bartoli, J.; Shmakova, L.; Jeudy, S.; Labadie, K.; Adrait, A.; Lescot, M.; Poirot, O.; Bertaux, L.; Bruley, C.; et al. Thirty-Thousand-Year-Old Distant Relative of Giant Icosahedral DNA Viruses with a Pandoravirus Morphology. Proc. Natl. Acad. Sci. USA 2014, 111, 4274–4279. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Varsani, A.; Wolf, Y.I.; Yutin, N.; Zerbini, F.M.; Kuhn, J.H. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol. Mol. Biol. Rev. 2020, 84, e00061-19. [Google Scholar] [CrossRef] [PubMed]
- Iyer, L.M.; Balaji, S.; Koonin, E.V.; Aravind, L. Evolutionary Genomics of Nucleo-Cytoplasmic Large DNA Viruses. Virus Res. 2006, 117, 156–184. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-W.; Yang, C.-L.; Kao, T.-T.; Wang, T.-H.; Lai, M.-W.; Ku, C. Host Range and Coding Potential of Eukaryotic Giant Viruses. Viruses 2020, 12, 1337. [Google Scholar] [CrossRef]
- Moreira, D.; López-García, P. Ten Reasons to Exclude Viruses from the Tree of Life. Nat. Rev. Microbiol. 2009, 7, 306–311. [Google Scholar] [CrossRef]
- Claverie, J.-M.; Ogata, H.; Audic, S.; Abergel, C.; Suhre, K.; Fournier, P.-E. Mimivirus and the Emerging Concept of “Giant” Virus. Virus Res. 2006, 117, 133–144. [Google Scholar] [CrossRef]
- Forterre, P. Giant Viruses: Conflicts in Revisiting the Virus Concept. Intervirology 2010, 53, 362–378. [Google Scholar] [CrossRef]
- Claverie, J.-M.; Abergel, C. Mimivirus: The Emerging Paradox of Quasi-Autonomous Viruses. Trends Genet. 2010, 26, 431–437. [Google Scholar] [CrossRef]
- La Scola, B.; Desnues, C.; Pagnier, I.; Robert, C.; Barrassi, L.; Fournous, G.; Merchat, M.; Suzan-Monti, M.; Forterre, P.; Koonin, E.; et al. The Virophage as a Unique Parasite of the Giant Mimivirus. Nature 2008, 455, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Pearson, H. “Virophage” Suggests Viruses Are Alive. Nature 2008, 454, 677. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.G. The Virophage Family Lavidaviridae. Curr. Issues Mol. Biol. 2021, 40, 1–24. [Google Scholar] [CrossRef]
- Fischer, M.G.; Hackl, T. Host Genome Integration and Giant Virus-Induced Reactivation of the Virophage Mavirus. Nature 2016, 540, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Schulz, F.; Roux, S.; Paez-Espino, D.; Jungbluth, S.; Walsh, D.A.; Denef, V.J.; McMahon, K.D.; Konstantinidis, K.T.; Eloe-Fadrosh, E.A.; Kyrpides, N.C.; et al. Giant Virus Diversity and Host Interactions through Global Metagenomics. Nature 2020, 578, 432–436. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Martinez-Gutierrez, C.A.; Weinheimer, A.R.; Aylward, F.O. Dynamic Genome Evolution and Complex Virocell Metabolism of Globally-Distributed Giant Viruses. Nat. Commun. 2020, 11, 1710. [Google Scholar] [CrossRef]
- Gaïa, M.; Meng, L.; Pelletier, E.; Forterre, P.; Vanni, C.; Fernandez-Guerra, A.; Jaillon, O.; Wincker, P.; Ogata, H.; Krupovic, M.; et al. Mirusviruses Link Herpesviruses to Giant Viruses. Nature 2023, 616, 783–789. [Google Scholar] [CrossRef]
- Boyer, M.; Madoui, M.-A.; Gimenez, G.; La Scola, B.; Raoult, D. Phylogenetic and Phyletic Studies of Informational Genes in Genomes Highlight Existence of a 4th Domain of Life Including Giant Viruses. PLoS ONE 2010, 5, e15530. [Google Scholar] [CrossRef]
- Williams, T.A.; Embley, T.M.; Heinz, E. Informational Gene Phylogenies Do Not Support a Fourth Domain of Life for Nucleocytoplasmic Large DNA Viruses. PLoS ONE 2011, 6, e21080. [Google Scholar] [CrossRef]
- Moreira, D.; López-García, P. Evolution of Viruses and Cells: Do We Need a Fourth Domain of Life to Explain the Origin of Eukaryotes? Phil. Trans. R. Soc. B 2015, 370, 20140327. [Google Scholar] [CrossRef]
- Colson, P.; Levasseur, A.; La Scola, B.; Sharma, V.; Nasir, A.; Pontarotti, P.; Caetano-Anollés, G.; Raoult, D. Ancestrality and Mosaicism of Giant Viruses Supporting the Definition of the Fourth TRUC of Microbes. Front. Microbiol. 2018, 9, 2668. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M. Origins and Evolution of Viruses of Eukaryotes: The Ultimate Modularity. Virology 2015, 479–480, 2–25. [Google Scholar] [CrossRef]
- Koonin, E.V.; Yutin, N. Evolution of the Large Nucleocytoplasmic DNA Viruses of Eukaryotes and Convergent Origins of Viral Gigantism. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2019; Volume 103, pp. 167–202. ISBN 978-0-12-817722-8. [Google Scholar]
- Woo, A.C.; Gaia, M.; Guglielmini, J.; Da Cunha, V.; Forterre, P. Phylogeny of the Varidnaviria Morphogenesis Module: Congruence and Incongruence With the Tree of Life and Viral Taxonomy. Front. Microbiol. 2021, 12, 704052. [Google Scholar] [CrossRef]
- Guglielmini, J.; Woo, A.C.; Krupovic, M.; Forterre, P.; Gaia, M. Diversification of Giant and Large Eukaryotic DsDNA Viruses Predated the Origin of Modern Eukaryotes. Proc. Natl. Acad. Sci. USA 2019, 116, 19585–19592. [Google Scholar] [CrossRef]
- Raoult, D.; Forterre, P. Redefining Viruses: Lessons from Mimivirus. Nat. Rev. Microbiol. 2008, 6, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Forterre, P.; Krupovic, M.; Prangishvili, D. Cellular Domains and Viral Lineages. Trends Microbiol. 2014, 22, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Forterre, P. To Be or Not to Be Alive: How Recent Discoveries Challenge the Traditional Definitions of Viruses and Life. Stud. Hist. Philos. Sci. Part C Stud. Hist. Philos. Biol. Biomed. Sci. 2016, 59, 100–108. [Google Scholar] [CrossRef]
- Krupovic, M.; Yutin, N.; Koonin, E. Evolution of a Major Virion Protein of the Giant Pandoraviruses from an Inactivated Bacterial Glycoside Hydrolase. Virus Evol. 2020, 6, veaa059. [Google Scholar] [CrossRef]
- Lwoff, A. Principles of Classification and Nomenclature of Viruses. Nature 1967, 215, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Bândea, C. A New Theory on the Origin and the Nature of Viruses. J. Theor. Biol. 1983, 105, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Claverie, J.-M. Viruses Take Center Stage in Cellular Evolution. Genome Biol. 2006, 7, 110. [Google Scholar] [CrossRef]
- Lwoff, A. Interaction among Virus, Cell, and Organism. Available online: https://www.nobelprize.org/prizes/medicine/1965/lwoff/lecture/ (accessed on 24 July 2023).
- Forterre, P. Manipulation of Cellular Syntheses and the Nature of Viruses: The Virocell Concept. C. R. Chim. 2011, 14, 392–399. [Google Scholar] [CrossRef]
- Howard-Varona, C.; Roux, S.; Bowen, B.P.; Silva, L.P.; Lau, R.; Schwenck, S.M.; Schwartz, S.; Woyke, T.; Northen, T.; Sullivan, M.B.; et al. Protist Impacts on Marine Cyanovirocell Metabolism. ISME Commun. 2022, 2, 94. [Google Scholar] [CrossRef]
- Rosenwasser, S.; Ziv, C.; Creveld, S.G.V.; Vardi, A. Virocell Metabolism: Metabolic Innovations During Host–Virus Interactions in the Ocean. Trends Microbiol. 2016, 24, 821–832. [Google Scholar] [CrossRef]
- Carvunis, A.-R.; Rolland, T.; Wapinski, I.; Calderwood, M.A.; Yildirim, M.A.; Simonis, N.; Charloteaux, B.; Hidalgo, C.A.; Barbette, J.; Santhanam, B.; et al. Proto-Genes and de Novo Gene Birth. Nature 2012, 487, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, J.A.; Wanjiru, B.M.; Brant, A.T.; Saelao, P.; Begun, D.J.; Jones, C.D. De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-Coding Sequences. PLoS Genet. 2013, 9, e1003860. [Google Scholar] [CrossRef]
- Forterre, P. Darwin’s Goldmine Is Still Open: Variation and Selection Run the World. Front. Cell. Infect. Microbiol. 2012, 2, 106. [Google Scholar] [CrossRef] [PubMed]
- Suzan-Monti, M.; Scola, B.L.; Barrassi, L.; Espinosa, L.; Raoult, D. Ultrastructural Characterization of the Giant Volcano-like Virus Factory of Acanthamoeba Polyphaga Mimivirus. PLoS ONE 2007, 2, e328. [Google Scholar] [CrossRef]
- Netherton, C.; Moffat, K.; Brooks, E.; Wileman, T. A Guide to Viral Inclusions, Membrane Rearrangements, Factories, and Viroplasm Produced During Virus Replication. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2007; Volume 70, pp. 101–182. ISBN 978-0-12-373728-1. [Google Scholar]
- Netherton, C.L.; Wileman, T. Virus Factories, Double Membrane Vesicles and Viroplasm Generated in Animal Cells. Curr. Opin. Virol. 2011, 1, 381–387. [Google Scholar] [CrossRef]
- Mutsafi, Y.; Shimoni, E.; Shimon, A.; Minsky, A. Membrane Assembly during the Infection Cycle of the Giant Mimivirus. PLoS Pathog. 2013, 9, e1003367. [Google Scholar] [CrossRef]
- Novoa, R.R.; Calderita, G.; Arranz, R.; Fontana, J.; Granzow, H.; Risco, C. Virus Factories: Associations of Cell Organelles for Viral Replication and Morphogenesis. Biol. Cell 2005, 97, 147–172. [Google Scholar] [CrossRef] [PubMed]
- Abergel, C.; Legendre, M.; Claverie, J.-M. The Rapidly Expanding Universe of Giant Viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol. Rev. 2015, 39, 779–796. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, Y.G.; Klose, T.; Rossmann, M.; McPherson, A. Morphogenesis of Mimivirus and Its Viral Factories: An Atomic Force Microscopy Study of Infected Cells. J. Virol. 2013, 87, 11200–11213. [Google Scholar] [CrossRef] [PubMed]
- Brandes, N.; Linial, M. Giant Viruses—Big Surprises. Viruses 2019, 11, 404. [Google Scholar] [CrossRef]
- Yutin, N.; Koonin, E.V. Hidden Evolutionary Complexity of Nucleo-Cytoplasmic Large DNA Viruses of Eukaryotes. Virol. J. 2012, 9, 161. [Google Scholar] [CrossRef]
- Yoshikawa, G.; Blanc-Mathieu, R.; Song, C.; Kayama, Y.; Mochizuki, T.; Murata, K.; Ogata, H.; Takemura, M. Medusavirus, a Novel Large DNA Virus Discovered from Hot Spring Water. J. Virol. 2019, 93, e02130-18. [Google Scholar] [CrossRef]
- Benarroch, D.; Qiu, Z.R.; Schwer, B.; Shuman, S. Characterization of a Mimivirus RNA Cap Guanine-N2 Methyltransferase. RNA 2009, 15, 666–674. [Google Scholar] [CrossRef]
- Decroly, E.; Ferron, F.; Lescar, J.; Canard, B. Conventional and Unconventional Mechanisms for Capping Viral MRNA. Nat. Rev. Microbiol. 2012, 10, 51–65. [Google Scholar] [CrossRef]
- Karki, S.; Aylward, F.O. Resolving Ancient Gene Transfers Clarifies the Early Co-Evolution of Eukaryotes and Giant Viruses. bioRxiv 2023. [Google Scholar] [CrossRef]
- Bell, P.J. Evidence Supporting a Viral Origin of the Eukaryotic Nucleus. Virus Res. 2020, 289, 198168. [Google Scholar] [CrossRef]
- Da Cunha, V.; Gaia, M.; Ogata, H.; Jaillon, O.; Delmont, T.O.; Forterre, P. Giant Viruses Encode Actin-Related Proteins. Mol. Biol. Evol. 2022, 39, msac022. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, J.; Gaia, M.; Da Cunha, V.; Criscuolo, A.; Krupovic, M.; Forterre, P. Viral Origin of Eukaryotic Type IIA DNA Topoisomerases. Virus Evol. 2022, 8, veac097. [Google Scholar] [CrossRef]
- Irwin, N.A.T.; Pittis, A.A.; Richards, T.A.; Keeling, P.J. Systematic Evaluation of Horizontal Gene Transfer between Eukaryotes and Viruses. Nat. Microbiol. 2021, 7, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Weinheimer, A.R.; Martinez-Gutierrez, C.A.; Aylward, F.O. Widespread Endogenization of Giant Viruses Shapes Genomes of Green Algae. Nature 2020, 588, 141–145. [Google Scholar] [CrossRef]
- Chaikeeratisak, V.; Nguyen, K.; Khanna, K.; Brilot, A.F.; Erb, M.L.; Coker, J.K.C.; Vavilina, A.; Newton, G.L.; Buschauer, R.; Pogliano, K.; et al. Assembly of a Nucleus-like Structure during Viral Replication in Bacteria. Science 2017, 355, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, S.D.; Nieweglowska, E.S.; Govindarajan, S.; Leon, L.M.; Berry, J.D.; Tiwari, A.; Chaikeeratisak, V.; Pogliano, J.; Agard, D.A.; Bondy-Denomy, J. A Bacteriophage Nucleus-like Compartment Shields DNA from CRISPR Nucleases. Nature 2020, 577, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Wolff, G.; Zheng, S.; Koster, A.J.; Snijder, E.J.; Bárcena, M. A Molecular Pore Spans the Double Membrane of the Coronavirus Replication Organelle. Science 2020, 369, 1395–1398. [Google Scholar] [CrossRef]
- Koonin, E.V.; Yutin, N. Nucleo-cytoplasmic Large DNA Viruses (NCLDV) of Eukaryotes. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; ISBN 978-0-470-01617-6. [Google Scholar]
- Pagnier, I.; Reteno, D.-G.I.; Saadi, H.; Boughalmi, M.; Gaia, M.; Slimani, M.; Ngounga, T.; Bekliz, M.; Colson, P.; Raoult, D.; et al. A Decade of Improvements in Mimiviridae and Marseilleviridae Isolation from Amoeba. Intervirology 2013, 56, 354–363. [Google Scholar] [CrossRef]
- Schulz, F.; Alteio, L.; Goudeau, D.; Ryan, E.M.; Yu, F.B.; Malmstrom, R.R.; Blanchard, J.; Woyke, T. Hidden Diversity of Soil Giant Viruses. Nat. Commun. 2018, 9, 4881. [Google Scholar] [CrossRef]
- Bäckström, D.; Yutin, N.; Jørgensen, S.L.; Dharamshi, J.; Homa, F.; Zaremba-Niedwiedzka, K.; Spang, A.; Wolf, Y.I.; Koonin, E.V.; Ettema, T.J.G. Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support Independent Origins of Viral Gigantism. mBio 2019, 10, e02497-18. [Google Scholar] [CrossRef]
- Larsen, J.B.; Larsen, A.; Bratbak, G.; Sandaa, R.-A. Phylogenetic Analysis of Members of the Phycodnaviridae Virus Family, Using Amplified Fragments of the Major Capsid Protein Gene. Appl. Environ. Microbiol. 2008, 74, 3048–3057. [Google Scholar] [CrossRef]
- Hingamp, P.; Grimsley, N.; Acinas, S.G.; Clerissi, C.; Subirana, L.; Poulain, J.; Ferrera, I.; Sarmento, H.; Villar, E.; Lima-Mendez, G.; et al. Exploring Nucleo-Cytoplasmic Large DNA Viruses in Tara Oceans Microbial Metagenomes. ISME J. 2013, 7, 1678–1695. [Google Scholar] [CrossRef] [PubMed]
- Mihara, T.; Koyano, H.; Hingamp, P.; Grimsley, N.; Goto, S.; Ogata, H. Taxon Richness of “Megaviridae” Exceeds Those of Bacteria and Archaea in the Ocean. Microbes Environ. 2018, 33, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hingamp, P.; Watai, H.; Endo, H.; Yoshida, T.; Ogata, H. Degenerate PCR Primers to Reveal the Diversity of Giant Viruses in Coastal Waters. Viruses 2018, 10, 496. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Endo, H.; Gotoh, Y.; Watai, H.; Ogawa, N.; Blanc-Mathieu, R.; Yoshida, T.; Ogata, H. The Earth Is Small for “Leviathans”: Long Distance Dispersal of Giant Viruses across Aquatic Environments. Microb. Environ. 2019, 34, 334–339. [Google Scholar] [CrossRef]
- Endo, H.; Blanc-Mathieu, R.; Li, Y.; Salazar, G.; Henry, N.; Labadie, K.; De Vargas, C.; Sullivan, M.B.; Bowler, C.; Wincker, P.; et al. Biogeography of Marine Giant Viruses Reveals Their Interplay with Eukaryotes and Ecological Functions. Nat. Ecol. Evol. 2020, 4, 1639–1649. [Google Scholar] [CrossRef]
- Short, S.M.; Suttle, C.A. Sequence Analysis of Marine Virus Communities Reveals That Groups of Related Algal Viruses Are Widely Distributed in Nature. Appl. Environ. Microbiol. 2002, 68, 1290–1296. [Google Scholar] [CrossRef]
- Short, S.M.; Staniewski, M.A.; Chaban, Y.V.; Long, A.M.; Wang, D. Diversity of Viruses Infecting Eukaryotic Algae. Curr. Issues Mol. Biol. 2020, 39, 29–62. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Ke, F.; Gui, L.; Zhao, Z. Recent Insights into Aquatic Viruses: Emerging and Reemerging Pathogens, Molecular Features, Biological Effects, and Novel Investigative Approaches. Water Biol. Secur. 2022, 1, 100062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaïa, M.; Forterre, P. From Mimivirus to Mirusvirus: The Quest for Hidden Giants. Viruses 2023, 15, 1758. https://doi.org/10.3390/v15081758
Gaïa M, Forterre P. From Mimivirus to Mirusvirus: The Quest for Hidden Giants. Viruses. 2023; 15(8):1758. https://doi.org/10.3390/v15081758
Chicago/Turabian StyleGaïa, Morgan, and Patrick Forterre. 2023. "From Mimivirus to Mirusvirus: The Quest for Hidden Giants" Viruses 15, no. 8: 1758. https://doi.org/10.3390/v15081758
APA StyleGaïa, M., & Forterre, P. (2023). From Mimivirus to Mirusvirus: The Quest for Hidden Giants. Viruses, 15(8), 1758. https://doi.org/10.3390/v15081758