Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = proliferation of benthic cyanobacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2525 KiB  
Article
Environmental Factors Impacting the Development of Toxic Cyanobacterial Proliferations in a Central Texas Reservoir
by Katherine A. Perri, Brent J. Bellinger, Matt P. Ashworth and Schonna R. Manning
Toxins 2024, 16(2), 91; https://doi.org/10.3390/toxins16020091 - 6 Feb 2024
Cited by 1 | Viewed by 2476
Abstract
Cyanobacterial harmful algal proliferations (cyanoHAPs) are increasingly associated with dog and livestock deaths when benthic mats break free of their substrate and float to the surface. Fatalities have been linked to neurotoxicosis from anatoxins, potent alkaloids produced by certain genera of filamentous cyanobacteria. [...] Read more.
Cyanobacterial harmful algal proliferations (cyanoHAPs) are increasingly associated with dog and livestock deaths when benthic mats break free of their substrate and float to the surface. Fatalities have been linked to neurotoxicosis from anatoxins, potent alkaloids produced by certain genera of filamentous cyanobacteria. After numerous reports of dog illnesses and deaths at a popular recreation site on Lady Bird Lake, Austin, Texas in late summer 2019, water and floating mat samples were collected from several sites along the reservoir. Water quality parameters were measured and mat samples were maintained for algal isolation and DNA identification. Samples were also analyzed for cyanobacterial toxins using LC-MS. Dihydroanatoxin-a was detected in mat materials from two of the four sites (0.6–133 ng/g wet weight) while water samples remained toxin-free over the course of the sampling period; no other cyanobacterial toxins were detected. DNA sequencing analysis of cyanobacterial isolates yielded a total of 11 genera, including Geitlerinema, Tyconema, Pseudanabaena, and Phormidium/Microcoleus, taxa known to produce anatoxins, including dihydroanatoxin, among other cyanotoxins. Analyses indicate that low daily upriver dam discharge, higher TP and NO3 concentrations, and day of the year were the main parameters associated with the presence of toxic floating cyanobacterial mats. Full article
(This article belongs to the Special Issue Analysis, Detection, and Effect of Algal Toxins in Fresh Waters)
Show Figures

Figure 1

24 pages, 20765 KiB  
Article
Limnofasciculus baicalensis gen. et sp. nov. (Coleofasciculaceae, Coleofasciculales): A New Genus of Cyanobacteria Isolated from Sponge Fouling in Lake Baikal, Russia
by Ekaterina Sorokovikova, Irina Tikhonova, Peter Evseev, Andrey Krasnopeev, Igor Khanaev, Sergey Potapov, Anna Gladkikh, Ivan Nebesnykh and Olga Belykh
Microorganisms 2023, 11(7), 1779; https://doi.org/10.3390/microorganisms11071779 - 9 Jul 2023
Cited by 2 | Viewed by 2294
Abstract
The proliferation of benthic cyanobacteria has been observed in Lake Baikal since 2011 and is a vivid manifestation of the ecological crisis occurring in the littoral zone. The cyanobacterium Symplocastrum sp. has formed massive fouling on all types of benthic substrates, including endemic [...] Read more.
The proliferation of benthic cyanobacteria has been observed in Lake Baikal since 2011 and is a vivid manifestation of the ecological crisis occurring in the littoral zone. The cyanobacterium Symplocastrum sp. has formed massive fouling on all types of benthic substrates, including endemic Baikal sponges. The strain BBK-W-15 (=IPPAS B-2062T), which was isolated from sponge fouling in 2015, was used for further taxonomic determination. A polyphasic approach revealed that it is a cryptic taxon of cyanobacteria. Morphological evaluation of the strain indicated the presence of cylindrical filaments with isodiametric cells enclosed in individual sheaths and coleodesmoid false branching. Strain ultrastructure (fascicular thylakoids and type C cell division) is characteristic of the Microcoleaceae and Coleofasciculaceae families. An integrated analysis that included 16S rRNA gene phylogeny, conserved protein phylogeny and whole-genome comparisons indicated the unique position of BBK-W-15, thus supporting the proposed delineation of the new genus Limnofasciculus. Through characterisation by morphology, 16S, ITS and genomic analysis, a new cyanobacterium of the family Coleofasciculaceae Limnofasciculus baicalensis gen. et sp. nov. was described. Full article
(This article belongs to the Special Issue Genomics and Metabolomics of Cyanobacteria)
Show Figures

Figure 1

15 pages, 9209 KiB  
Article
Gloeotrichia cf. natans (Cyanobacteria) in the Continuous Permafrost Zone of Buotama River, Lena Pillars Nature Park, in Yakutia (Russia)
by Viktor Gabyshev, Denis Davydov, Anna Vilnet, Sergey Sidelev, Ekaterina Chernova, Sophia Barinova, Olga Gabysheva and Zoya Zhakovskaya
Water 2023, 15(13), 2370; https://doi.org/10.3390/w15132370 - 27 Jun 2023
Cited by 4 | Viewed by 2459
Abstract
As global climate change continues and the vegetation period lengthens, the importance of research into cyanobacterial recruitment biomass and associated toxin risks is growing. While most studies focus on planktonic cyanobacteria causing blooms, benthic cyanobacteria have been less explored. This study reports for [...] Read more.
As global climate change continues and the vegetation period lengthens, the importance of research into cyanobacterial recruitment biomass and associated toxin risks is growing. While most studies focus on planktonic cyanobacteria causing blooms, benthic cyanobacteria have been less explored. This study reports for the first time on the mass proliferation of benthic epilithic macrocolonies of cyanobacteria, Gloeotrichia cf. natans, in water bodies located in a region with continuous permafrost in Yakutia, North-East Russia. The study characterizes the environmental conditions of its habitat, including the chemical composition of the water, which expands our understanding of this species’ ecology. Cyanotoxins (microcystins, cylindrospermopsin, saxitoxins, and anatoxin-a) were not detected in the biomass of Gloeotrichia cf. natans using liquid chromatography–mass spectrometry and PCR methods. Full article
(This article belongs to the Special Issue Advances and Challenges of Lake Biodiversity)
Show Figures

Figure 1

18 pages, 5213 KiB  
Article
Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages
by Peter Evseev, Irina Tikhonova, Andrei Krasnopeev, Ekaterina Sorokovikova, Anna Gladkikh, Oleg Timoshkin, Konstantin Miroshnikov and Olga Belykh
Viruses 2023, 15(2), 442; https://doi.org/10.3390/v15020442 - 5 Feb 2023
Cited by 6 | Viewed by 2573
Abstract
Cyanobacterial expansion is harmful to the environment, the ecology of Lake Baikal and the economy of nearby regions and can be dangerous to people and animals. Since 2011, the process of colonisation of the lake with potentially toxic cyanobacteria belonging to the genus [...] Read more.
Cyanobacterial expansion is harmful to the environment, the ecology of Lake Baikal and the economy of nearby regions and can be dangerous to people and animals. Since 2011, the process of colonisation of the lake with potentially toxic cyanobacteria belonging to the genus Tychonema has continued. An understanding of the mechanism of successful expansion of Tychonema requires scrutiny of biological and genomic features. Tychonema sp. BBK16 was isolated from the coastal zone of Lake Baikal. The morphology of BBK16 biofilm was studied with light, scanning electron and confocal microscopy. The biofilm is based on filaments of cyanobacteria, which are intertwined like felt; there are also dense fascicles of rope-like twisted filaments that impart heterogeneity to the surface of the biofilm. Genome sequencing, intergenomic comparisons and phylogenetic analyses indicated that Tychonema sp. BBK16 represent a new species related to planktic cyanobacterium Tychonema bourrellyi, isolated from Alpine lentic freshwater. Genome investigation revealed the genes possibly responsible for the mixotrophic lifestyle. The presence of CRISPR-Cas and restriction modification defence mechanisms allowed to suggest the existence of phages infecting Tychonema sp. BBK16. Analysis of CRISPR spacers and prophage-derived regions allowed to suggest related cyanophages. Genomic analysis supported the assumption that mobile elements and horizontal transfer participate in shaping the Tychonema sp. BBK16 genome. The findings of the current research suggest that the aptitude of Tychonema sp. BBK16 for biofilm formation and, possibly, its mixotrophic lifestyle provide adaptation advantages that lead to the successful expansion of this cyanobacterium in the Baikal’s conditions of freshwater lake environments. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

2 pages, 208 KiB  
Abstract
Are Cyanobacteria an Overlooked Risk for Ecosystems and Visitors in Spanish National Parks?
by Albano Diez-Chiappe, Samuel Cirés, Felipe Bolgenhagen, María de los Ángeles Muñoz-Martín, Ana Justel, Antonio Quesada and Elvira Perona
Biol. Life Sci. Forum 2022, 14(1), 25; https://doi.org/10.3390/blsf2022014025 - 21 Jul 2022
Viewed by 1101
Abstract
Potentially toxic cyanobacterial communities are prolific in freshwater ecosystems and in national parks where vulnerable fauna tend to be found. This study focuses on the proliferation of toxic cyanobacteria and the risks they represent in the rivers and reservoirs of two Spanish national [...] Read more.
Potentially toxic cyanobacterial communities are prolific in freshwater ecosystems and in national parks where vulnerable fauna tend to be found. This study focuses on the proliferation of toxic cyanobacteria and the risks they represent in the rivers and reservoirs of two Spanish national parks. As far as we know, this is the first time that an ecological, taxonomical and toxicological characterization of planktonic and benthic cyanotoxin-producing cyanobacteria is carried out in this type of protected areas in Spain. Our results, obtained during 2021 sampling campaigns, have confirmed the occurrence of cyanobacteria in these ecosystems and assessed the risks of these cyanobacteria to these ecosystems. An alarming occurrence of benthic mats, dominated mainly by Phormidium autumnale (also called Microcoleus autumnalis), a potentially anatoxin producer, has been observed in rivers from Sierra de Guadarrama National Park. In reservoirs from Monfragüe National Park, the planktonic communities have been dominated by Microcystis, Aphanizomenom, Arthrospira and Planktothrix. Genetic screening by PCR and sequencing have confirmed the presence of cyanotoxin biosynthesis genes (mcyE, anaF and sxtA) in all communities studied. The relationship among community diversity, the presence/concentration of cyanotoxins (microcystins, saxitoxins and anatoxins) and the environmental parameters measured is discussed. These results will contribute to preparing protocols for evaluating and managing the potential risk to visitors to, workers in and fauna of these protected ecosystems. Full article
16 pages, 1779 KiB  
Article
Effects of Light and Temperature on the Metabolic Profiling of Two Habitat-Dependent Bloom-Forming Cyanobacteria
by Bijayalaxmi Mohanty, Seyed Mohammad Majedi, Shruti Pavagadhi, Shu Harn Te, Chek Yin Boo, Karina Yew-Hoong Gin and Sanjay Swarup
Metabolites 2022, 12(5), 406; https://doi.org/10.3390/metabo12050406 - 29 Apr 2022
Cited by 19 | Viewed by 3234
Abstract
Rapid proliferation of cyanobacteria in both benthic and suspended (planktonic) habitats is a major threat to environmental safety, as they produce nuisance compounds such as cytotoxins and off-flavors, which degrade the safety and quality of water supplies. Temperature and light irradiance are two [...] Read more.
Rapid proliferation of cyanobacteria in both benthic and suspended (planktonic) habitats is a major threat to environmental safety, as they produce nuisance compounds such as cytotoxins and off-flavors, which degrade the safety and quality of water supplies. Temperature and light irradiance are two of the key factors in regulating the occurrence of algal blooms and production of major off-flavors. However, the role of these factors in regulating the growth and metabolism is poorly explored for both benthic and planktonic cyanobacteria. To fill this gap, we studied the effects of light and temperature on the growth and metabolic profiling of both benthic (Hapalosiphon sp. MRB220) and planktonic (Planktothricoides sp. SR001) environmental species collected from a freshwater reservoir in Singapore. Moreover, this study is the first report on the metabolic profiling of cyanobacteria belonging to two different habitats in response to altered environmental conditions. The highest growth rate of both species was observed at the highest light intensity (100 μmol photons/m²/s) and at a temperature of 33 °C. Systematic metabolite profiling analysis suggested that temperature had a more profound effect on metabolome of the Hapalosiphon, whereas light had a greater effect in the case of Planktothricoides. Interestingly, Planktothricoides sp. SR001 showed a specialized adaptation mechanism via biosynthesis of arginine, and metabolism of cysteine and methionine to survive and withstand higher temperatures of 38 °C and higher. Hence, the mode of strategies for coping with different light and temperature conditions was correlated with the growth and alteration in metabolic activities for physiological and ecological adaptations in both species. In addition, we putatively identified a number of unique metabolites with a broad range of antimicrobial activities in both species in response to both light and temperature. These metabolites could play a role in the dominant behavior of these species in suppressing competition during bloom formation. Overall, this study elucidated novel insights into the effects of environmental factors on the growth, metabolism, and adaptation strategies of cyanobacteria from two different habitats, and could be useful in controlling their harmful effects on human health and environmental concerns. Full article
(This article belongs to the Special Issue Metabolic Functionality of Microorganisms under Dynamic Environments)
Show Figures

Figure 1

12 pages, 2936 KiB  
Article
Flexibility of Microcystis Overwintering Strategy in Response to Winter Temperatures
by Pei Cai, Qijia Cai, Feng He, Yuhong Huang, Cuicui Tian, Xingqiang Wu, Chunbo Wang and Bangding Xiao
Microorganisms 2021, 9(11), 2278; https://doi.org/10.3390/microorganisms9112278 - 1 Nov 2021
Cited by 18 | Viewed by 2544
Abstract
Microcystis is one of the most common bloom-forming cyanobacteria in freshwater ecosystems throughout the world. However, the underlying life history mechanism and distinct temporal dynamics (inter- and intra-annual) of Microcystis populations in different geographical locations and lakes remain unclear but is critical information [...] Read more.
Microcystis is one of the most common bloom-forming cyanobacteria in freshwater ecosystems throughout the world. However, the underlying life history mechanism and distinct temporal dynamics (inter- and intra-annual) of Microcystis populations in different geographical locations and lakes remain unclear but is critical information needed for the development of robust prediction, prevention, and management strategies. Perennial observations indicate that temperature may be the key factor driving differences in the overwintering strategy. This study quantitatively compared the overwintering abilities of Microcystis aeruginosa (Ma) in both the water column and sediments under a gradient of overwintering water temperatures (i.e., 4, 8, and 12 °C) using the death and proliferation rates of Ma. The results show that the dynamics of the Microcystis overwintering strategy were significantly affected by water temperatures. At 4 and 8 °C, Ma mainly overwintered in sediments and disappeared from the water column after exposure to low temperatures for a long duration, although some Microcystis cells can overwinter in the water column for short durations at low temperatures. At 12 °C, most Ma can overwinter in the water column. Rising temperatures promoted the proliferation of pelagic Ma but accelerated the death of benthic Ma. With warmer winter temperatures, pelagic Microcystis might become the primary inoculum sources in the spring. Our study highlights the overwintering strategy flexibility in explaining temporal dynamics differences of Microcystis among in geographical locations and should be considered in the context of global warming. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

41 pages, 1516 KiB  
Review
Cyanobacteria and Cyanotoxins in a Changing Environment: Concepts, Controversies, Challenges
by Ingrid Chorus, Jutta Fastner and Martin Welker
Water 2021, 13(18), 2463; https://doi.org/10.3390/w13182463 - 7 Sep 2021
Cited by 103 | Viewed by 10298
Abstract
Concern is widely being published that the occurrence of toxic cyanobacteria is increasing in consequence of climate change and eutrophication, substantially threatening human health. Here, we review evidence and pertinent publications to explore in which types of waterbodies climate change is likely to [...] Read more.
Concern is widely being published that the occurrence of toxic cyanobacteria is increasing in consequence of climate change and eutrophication, substantially threatening human health. Here, we review evidence and pertinent publications to explore in which types of waterbodies climate change is likely to exacerbate cyanobacterial blooms; whether controlling blooms and toxin concentrations requires a balanced approach of reducing not only the concentrations of phosphorus (P) but also those of nitrogen (N); how trophic and climatic changes affect health risks caused by toxic cyanobacteria. We propose the following for further discussion: (i) Climate change is likely to promote blooms in some waterbodies—not in those with low concentrations of P or N stringently limiting biomass, and more so in shallow than in stratified waterbodies. Particularly in the latter, it can work both ways—rendering conditions for cyanobacterial proliferation more favourable or less favourable. (ii) While N emissions to the environment need to be reduced for a number of reasons, controlling blooms can definitely be successful by reducing only P, provided concentrations of P can be brought down to levels sufficiently low to stringently limit biomass. Not the N:P ratio, but the absolute concentration of the limiting nutrient determines the maximum possible biomass of phytoplankton and thus of cyanobacteria. The absolute concentrations of N or P show which of the two nutrients is currently limiting biomass. N can be the nutrient of choice to reduce if achieving sufficiently low concentrations has chances of success. (iii) Where trophic and climate change cause longer, stronger and more frequent blooms, they increase risks of exposure, and health risks depend on the amount by which concentrations exceed those of current WHO cyanotoxin guideline values for the respective exposure situation. Where trophic change reduces phytoplankton biomass in the epilimnion, thus increasing transparency, cyanobacterial species composition may shift to those that reside on benthic surfaces or in the metalimnion, changing risks of exposure. We conclude that studying how environmental changes affect the genotype composition of cyanobacterial populations is a relatively new and exciting research field, holding promises for understanding the biological function of the wide range of metabolites found in cyanobacteria, of which only a small fraction is toxic to humans. Overall, management needs case-by-case assessments focusing on the impacts of environmental change on the respective waterbody, rather than generalisations. Full article
Show Figures

Figure 1

14 pages, 1602 KiB  
Article
Effects of Artificial Reefs on Phytoplankton Community Structure in Baiyangdian Lake, China
by Hao Zhu, Xingguo Liu, Shuiping Cheng and Jie Wang
Water 2021, 13(13), 1802; https://doi.org/10.3390/w13131802 - 29 Jun 2021
Cited by 10 | Viewed by 3363
Abstract
The habitat and feeding environment of freshwater fish in freshwater lakes have been destroyed, with the problem of miniaturization and simplification of catches being serious. An artificial reef is an effective technical measure to protect and proliferate offshore fishery resources, but little research [...] Read more.
The habitat and feeding environment of freshwater fish in freshwater lakes have been destroyed, with the problem of miniaturization and simplification of catches being serious. An artificial reef is an effective technical measure to protect and proliferate offshore fishery resources, but little research has been conducted on its application in freshwater lakes. A small artificial reef for freshwater lakes was designed according to the water depth of the lake and the habits of benthic fish. The artificial reef is composed of biomass modules, each of which is 900 × 120 mm. The community structure of phytoplankton around the artificial reef and its adjacent waters was studied. The results showed that 77 species from seven phyla were identified, with a high number of species from the Chlorophyceae. In terms of density composition, the density of cyanobacteria decreased month by month, while the phylum Chlorophyta and Cryptophyta increased first and then decreased. As for biomass composition, Chlorophyta and Cryptophyta increased first and then decreased. RDA analysis showed that water temperature, dissolved oxygen, and total phosphorus were the main influencing factors. To sum up, the artificial reef can improve the algae phase in the surrounding water column, inhibit the growth and reproduction of cyanobacteria to a certain extent, and have a significant enrichment and promotion effect on diatoms. Artificial fish reef affects the phytoplankton community structure of the surrounding water bodies mainly through the absorption of phosphorus nutrients. Artificial reefs can be popularized and applied in freshwater lakes to provide foraging and shelter for benthic fish in the lake. Full article
(This article belongs to the Special Issue Lake Ecology and Restoration)
Show Figures

Figure 1

17 pages, 5986 KiB  
Article
Assessment of the Chemical Diversity and Potential Toxicity of Benthic Cyanobacterial Blooms in the Lagoon of Moorea Island (French Polynesia)
by Isabelle Bonnard, Louis Bornancin, Klervi Dalle, Mireille Chinain, Mayalen Zubia, Bernard Banaigs and Mélanie Roué
J. Mar. Sci. Eng. 2020, 8(6), 406; https://doi.org/10.3390/jmse8060406 - 4 Jun 2020
Cited by 7 | Viewed by 3853
Abstract
In the last decades, an apparent increase in the frequency of benthic cyanobacterial blooms has occurred in coral reefs and tropical lagoons, possibly in part because of global change and anthropogenic activities. In the frame of the survey of marine benthic cyanobacteria proliferating [...] Read more.
In the last decades, an apparent increase in the frequency of benthic cyanobacterial blooms has occurred in coral reefs and tropical lagoons, possibly in part because of global change and anthropogenic activities. In the frame of the survey of marine benthic cyanobacteria proliferating in the lagoon of Moorea Island (French Polynesia), 15 blooms were collected, mainly involving three species—Anabaena sp.1, Lyngbya majuscula and Hydrocoleum majus-B. Their chemical fingerprints, obtained through high performance liquid chromatography combined with UV detection and mass spectrometry (HPLC-UV-MS) analyses, revealed a high extent of species-specificity. The chemical profile of Anabaena sp.1 was characterized by three major cyclic lipopeptides of the laxaphycin family, whereas the one of L. majuscula was characterized by a complex mixture including tiahuramides, trungapeptins and serinol-derived malyngamides. Toxicity screening analyses conducted on these cyanobacterial samples using Artemia salina and mouse neuroblastoma cell-based (CBA-N2a) cytotoxic assays failed to show any toxicity to a degree that would merit risk assessment with regard to public health. However, the apparently increasing presence of blooms of Lyngbya, Hydrocoleum, Anabaena or other benthic cyanobacteria on coral reefs in French Polynesia encourages the implementation of ad hoc monitoring programs for the surveillance of their proliferation and potential assessment of associated hazards. Full article
Show Figures

Figure 1

15 pages, 1652 KiB  
Article
Development and Application of a Quantitative PCR Assay to Assess Genotype Dynamics and Anatoxin Content in Microcoleus autumnalis-Dominated Mats
by Laura T. Kelly, Susanna A. Wood, Tara G. McAllister and Ken G. Ryan
Toxins 2018, 10(11), 431; https://doi.org/10.3390/toxins10110431 - 26 Oct 2018
Cited by 18 | Viewed by 4118
Abstract
Microcoleus is a filamentous cyanobacteria genus with a global distribution. Some species form thick, cohesive mats over large areas of the benthos in rivers and lakes. In New Zealand Microcoleus autumnalis is an anatoxin producer and benthic proliferations are occurring in an increasing [...] Read more.
Microcoleus is a filamentous cyanobacteria genus with a global distribution. Some species form thick, cohesive mats over large areas of the benthos in rivers and lakes. In New Zealand Microcoleus autumnalis is an anatoxin producer and benthic proliferations are occurring in an increasing number of rivers nationwide. Anatoxin content in M. autumnalis-dominated mats varies spatially and temporally, making understanding and managing proliferations difficult. In this study a M. autumnalis-specific TaqMan probe quantitative PCR (qPCR) assay targeting the anaC gene was developed. The assay was assessed against 26 non-M. autumnalis species. The assay had a detection range over seven orders of magnitude, with a limit of detection of 5.14 × 10−8 ng μL−1. The anaC assay and a cyanobacterial specific 16S rRNA qPCR were then used to determine toxic genotype proportions in 122 environmental samples collected from 19 sites on 10 rivers in New Zealand. Anatoxin contents of the samples were determined using LC-MS/MS and anatoxin quota per toxic cell calculated. The percentage of toxic cells ranged from 0 to 30.3%, with significant (p < 0.05) differences among rivers. The anatoxin content in mats had a significant relationship with the percentage of toxic cells (R2 = 0.38, p < 0.001), indicating that changes in anatoxin content in M. autumnalis-dominated mats are primarily related to the dominance of toxic strains. When applied to more extensive samples sets the assay will enable new insights into how biotic and abiotic parameters influence genotype composition, and if applied to RNA assist in understanding anatoxin production. Full article
Show Figures

Figure 1

13 pages, 293 KiB  
Article
Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation
by Viviana R. Lopes and Vitor M. Vasconcelos
Mar. Drugs 2011, 9(5), 790-802; https://doi.org/10.3390/md9050790 - 10 May 2011
Cited by 14 | Viewed by 8617
Abstract
Understanding potential biochemical interactions and effects among cyanobacteria and other organisms is one of the main keys to a better knowledge of microbial population structuring and dynamics. In this study, the effects of cyanobacteria from benthos and plankton of estuaries on other cyanobacteria [...] Read more.
Understanding potential biochemical interactions and effects among cyanobacteria and other organisms is one of the main keys to a better knowledge of microbial population structuring and dynamics. In this study, the effects of cyanobacteria from benthos and plankton of estuaries on other cyanobacteria and green algae growth were evaluated. To understand how the estuarine cyanobacteria might influence the dynamics of phytoplankton, experiments were carried out with the freshwater species Microcystis aeruginosa and Chlorella sp., and the marine Synechocystis salina and Nannochloropsis sp. exposed to aqueous and organic (70% methanol) crude extracts of cyanobacteria for 96 h. The most pronounced effect observed was the growth stimulation. Growth inhibition was also observed for S. salina and M. aeruginosa target-species at the highest and lowest concentrations of cyanobacterial extracts. The methanolic crude extract of Phormidium cf. chalybeum LEGE06078 was effective against S. salina growth in a concentration-dependent manner after 96 h-exposure. All of the cyanobacterial isolates showed some bioactivity on the target-species growth, i.e., inhibitory or stimulating effects. These results indicate that the analyzed cyanobacterial isolates can potentially contribute to blooms’ proliferation of other cyanobacteria and to the abnormal growth of green algae disturbing the dynamic of estuarine phytoplankton communities. Since estuaries are transitional ecosystems, the benthic and picoplanktonic estuarine cyanobacteria can change both freshwater and marine phytoplankton succession, competition and bloom formation. Furthermore, a potential biotechnological application of these isolates as a tool to control cyanobacteria and microalgae proliferation can be feasible. This work is the first on the subject of growth responses of photoautotrophs to cyanobacteria from Atlantic estuarine environments. Full article
Show Figures

Back to TopTop