Mutagenic Analysis of a DNA Translocating Tube’s Interior Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Phage Strains, and Plasmids
2.2. Second-Site Genetic Analyses
2.3. Media, Buffers, Phage Plating Assays, and Mutant H Containing Particle Preparation
2.4. Protein Electrophoresis, Rate Zonal Sedimentation, and Generation of ssDNA
2.5. Attachment, Eclipse, Coat Protein Quantification, and Burst Size Assays
2.6. Potassium Efflux Assays
2.7. Statistical Analysis of the K+ Efflux Data
2.8. Infected Cell Membrane Separations and qPCR
3. Results
3.1. Mutating Inward Facing Residues Results in Temperature-Dependent Phenotypes
3.2. Infectious Particles Containing Mutant H Proteins Are Produced at Restrictive Temperatures
3.3. Particles Containing Mutant H Proteins Do Not Efficiently Infect Cells at Restrictive Temperatures
3.4. Mutant H Proteins Do Not Alter Attachment or Eclipse Kinetics at Temperatures Where Infection Is Inhibited
3.5. Temperature-Sensitive H-Tubes Inefficiently Open Cytoplasmic Channels, Whereas Cold-Sensitive H Proteins Open Cytoplasmic Channels but Inefficiently Transport DNA
3.6. Second-Site Genetic Analysis of Temperature-Dependent H Mutants
4. Discussion
4.1. Additional Glutamines, H-Tube Structure, and Defective Function
4.2. Glutamine Removal, Tube Structure, and Defective Function
4.3. The Function of the Amide and Guanidium Lined Surface
4.4. Synergistic Effects and Compensatory Mechanisms
4.5. Relationship to Other Phage Systems
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evilevitch, A. Physical evolution of pressure-driven viral infection. Biophys. J. 2013, 104, 2113–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molineux, I.J.; Panja, D. Popping the cork: Mechanisms of phage genome ejection. Nat. Rev. Microbiol. 2013, 11, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Aksyuk, A.A.; Leiman, P.G.; Kurochkina, L.P.; Shneider, M.M.; Kostyuchenko, V.A.; Mesyanzhinov, V.V.; Rossmann, M.G. The tail sheath structure of bacteriophage T4: A molecular machine for infecting bacteria. EMBO J. 2009, 28, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Fokine, A.; Rossmann, M.G. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage 2014, 4, e28281. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Margolin, W.; Molineux, I.J.; Liu, J. The bacteriophage t7 virion undergoes extensive structural remodeling during infection. Science 2013, 339, 576–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumby, N.; Reimer, K.; Mengin-Lecreulx, D.; Davidson, A.R.; Maxwell, K.L. The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol. Microbiol. 2015, 96, 437–447. [Google Scholar] [CrossRef]
- Jin, Y.; Sdao, S.M.; Dover, J.A.; Porcek, N.B.; Knobler, C.M.; Gelbart, W.M.; Parent, K.N. Bacteriophage P22 ejects all of its internal proteins before its genome. Virology 2015, 485, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Dent, K.C.; Thompson, R.; Barker, A.M.; Hiscox, J.A.; Barr, J.N.; Stockley, P.G.; Ranson, N.A. The asymmetric structure of an icosahedral virus bound to its receptor suggests a mechanism for genome release. Structure 2013, 21, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Krahn, P.M.; O’Callaghan, R.J.; Paranchych, W. Stages in phage R17 infection. VI. Injection of A protein and RNA into the host cell. Virology 1972, 47, 628–637. [Google Scholar] [CrossRef]
- Toropova, K.; Stockley, P.G.; Ranson, N.A. Visualising a viral RNA genome poised for release from its receptor complex. J. Mol. Biol. 2011, 408, 408–419. [Google Scholar] [CrossRef]
- Russel, M.; Model, P. Filamentous Phage. In The Bacteriophages, 2nd ed.; Calendar, R., Ed.; Oxford Press: London, UK, 2006; pp. 146–160. [Google Scholar]
- Bennett, N.J.; Gagic, D.; Sutherland-Smith, A.J.; Rakonjac, J. Characterization of a dual-function domain that mediates membrane insertion and excision of Ff filamentous bacteriophage. J. Mol. Biol. 2011, 411, 972–985. [Google Scholar] [CrossRef] [PubMed]
- Bennett, N.J.; Rakonjac, J. Unlocking of the filamentous bacteriophage virion during infection is mediated by the C domain of pIII. J. Mol. Biol. 2006, 356, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Roznowski, A.P.; Tokuda, J.M.; Klose, T.; Mauney, A.; Pollack, L.; Fane, B.A.; Rossmann, M.G. Structural changes of tailless bacteriophage PhiX174 during penetration of bacterial cell walls. Proc. Natl. Acad. Sci. USA 2017, 114, 13708–13713. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Young, L.N.; Zhang, X.; Boudko, S.P.; Fokine, A.; Zbornik, E.; Roznowski, A.P.; Molineux, I.J.; Rossmann, M.G.; Fane, B.A. Icosahedral bacteriophage PhiX174 forms a tail for DNA transport during infection. Nature 2014, 505, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Cherwa, J.E., Jr.; Organtini, L.J.; Ashley, R.E.; Hafenstein, S.L.; Fane, B.A. In Vitro Assembly of the oX174 Procapsid from External Scaffolding Protein Oligomers and Early Pentameric Assembly Intermediates. J. Mol. Biol. 2011, 412, 387–396. [Google Scholar] [CrossRef]
- Dokland, T.; Bernal, R.A.; Burch, A.; Pletnev, S.; Fane, B.A.; Rossmann, M.G. The role of scaffolding proteins in the assembly of the small, single-stranded DNA virus phiX174. J. Mol. Biol. 1999, 288, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Dokland, T.; McKenna, R.; Ilag, L.L.; Bowman, B.R.; Incardona, N.L.; Fane, B.A.; Rossmann, M.G. Structure of a viral procapsid with molecular scaffolding. Nature 1997, 389, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ilag, L.L.; Olson, N.H.; Dokland, T.; Music, C.L.; Cheng, R.H.; Bowen, Z.; McKenna, R.; Rossmann, M.G.; Baker, T.S.; Incardona, N.L. DNA packaging intermediates of bacteriophage phi X174. Structure 1995, 3, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Novak, C.R.; Fane, B.A. The functions of the N terminus of the phiX174 internal scaffolding protein, a protein encoded in an overlapping reading frame in a two scaffolding protein system. J. Mol. Biol. 2004, 335, 383–390. [Google Scholar] [CrossRef]
- Azuma, J.; Morita, J.; Komano, T. Process of attachment of phi X174 parental DNA to the host cell membrane. J. Biochem. 1980, 88, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Mano, Y.; Sakai, H.; Komano, T. Growth and DNA synthesis of bacteriophage phi x174 in a dnaP mutant of Escherichia coli. J. Virol. 1979, 30, 650–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, Y.; Nagata, T.; Schwarz, W.; Wada, C.; Yura, T. Novel dnaG mutation in a dnaP mutant of Escherichia coli. J. Bacteriol. 1985, 162, 830–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepard, W.; Cruse, W.B.; Fourme, R.; de la Fortelle, E.; Prange, T. A zipper-like duplex in DNA: The crystal structure of d(GCGAAAGCT) at 2.1 A resolution. Structure 1998, 6, 849–861. [Google Scholar] [CrossRef]
- Luscombe, N.M.; Laskowski, R.A.; Thornton, J.M. Amino acid-base interactions: A three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 2001, 29, 2860–2874. [Google Scholar] [CrossRef] [Green Version]
- Luscombe, N.M.; Thornton, J.M. Protein-DNA interactions: Amino acid conservation and the effects of mutations on binding specificity. J. Mol. Biol. 2002, 320, 991–1009. [Google Scholar] [CrossRef]
- Mandel-Gutfreund, Y.; Schueler, O.; Margalit, H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: In search of common principles. J. Mol. Biol. 1995, 253, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M. A framework for the DNA-protein recognition code of the probe helix in transcription factors: The chemical and stereochemical rules. Structure 1994, 2, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Conley, M.J.; McElwee, M.; Azmi, L.; Gabrielsen, M.; Byron, O.; Goodfellow, I.G.; Bhella, D. Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fane, B.A.; Hayashi, M. Second-site suppressors of a cold-sensitive prohead accessory protein of bacteriophage phi X174. Genetics 1991, 128, 663–671. [Google Scholar]
- Fane, B.A.; Head, S.; Hayashi, M. Functional relationship between the J proteins of bacteriophages phi X174 and G4 during phage morphogenesis. J. Bacteriol. 1992, 174, 2717–2719. [Google Scholar] [CrossRef] [Green Version]
- Roznowski, A.P.; Fane, B.A. Structure-Function Analysis of the varphiX174 DNA-Piloting Protein Using Length-Altering Mutations. J. Virol. 2016, 90, 7956–7966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burch, A.D.; Ta, J.; Fane, B.A. Cross-functional analysis of the Microviridae internal scaffolding protein. J. Mol. Biol. 1999, 286, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, E.B.; Knuff, C.J.; Fane, B.A. Conformational Switch-Defective øX174 Internal Scaffolding Proteins Kinetically Trap Assembly Intermediates before Procapsid Formation. J. Virol. 2012, 86, 9911–9918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, A.; Fane, B.A. Identification of an interacting coat-external scaffolding protein domain required for both the initiation of phiX174 procapsid morphogenesis and the completion of DNA packaging. J. Virol. 2005, 79, 6751–6756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherwa, J.E., Jr.; Sanchez-Soria, P.; Wichman, H.A.; Fane, B.A. Viral adaptation to an antiviral protein enhances the fitness level to above that of the uninhibited wild type. J. Virol. 2009, 83, 11746–11750. [Google Scholar] [CrossRef] [Green Version]
- Hafenstein, S.L.; Chen, M.; Fane, B.A. Genetic and functional analyses of the oX174 DNA binding protein: The effects of substitutions for amino acid residues that spatially organize the two DNA binding domains. Virology 2004, 318, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Roznowski, A.P.; Young, R.J.; Love, S.D.; Andromita, A.A.; Guzman, V.A.; Wilch, M.H.; Block, A.; McGill, A.; Lavelle, M.; Romanova, A.; et al. Recessive Host Range Mutants and Unsusceptible Cells That Inactivate Virions without Genome Penetration: Ecological and Technical Implications. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Morein, S.; Henricson, D.; Rilfors, L. Separation of inner and outer membrane vesicles from Escherichia coli in self-generating Percoll gradients. Anal. Biochem. 1994, 216, 47–51. [Google Scholar] [CrossRef]
- Karkhanis, Y.D.; Zeltner, J.Y.; Jackson, J.J.; Carlo, D.J. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Anal. Biochem. 1978, 85, 595–601. [Google Scholar] [CrossRef]
- Rokyta, D.R.; Burch, C.L.; Caudle, S.B.; Wichman, H.A. Horizontal gene transfer and the evolution of microvirid coliphage genomes. J. Bacteriol. 2006, 188, 1134–1142. [Google Scholar] [CrossRef] [Green Version]
- Simossis, V.A.; Heringa, J. PRALINE: A multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res. 2005, 33, W289–W294. [Google Scholar] [CrossRef] [PubMed]
- Simossis, V.A.; Kleinjung, J.; Heringa, J. Homology-extended sequence alignment. Nucleic Acids Res. 2005, 33, 816–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, L.N.; Hockenberry, A.M.; Fane, B.A. Mutations in the N terminus of the oX174 DNA pilot protein H confer defects in both assembly and host cell attachment. J. Virol. 2014, 88, 1787–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruboyianes, M.V.; Chen, M.; Dubrava, M.S.; Cherwa, J.E., Jr.; Fane, B.A. The expression of N-terminal deletion DNA pilot proteins inhibits the early stages of phiX174 replication. J. Virol. 2009, 83, 9952–9956. [Google Scholar] [CrossRef] [Green Version]
- Ilag, L.L.; McKenna, R.; Yadav, M.P.; BeMiller, J.N.; Incardona, N.L.; Rossmann, M.G. Calcium ion-induced structural changes in bacteriophage phi X174. J. Mol. Biol. 1994, 244, 291–300. [Google Scholar] [CrossRef]
- Boulanger, P.; Letellier, L. Ion channels are likely to be involved in the two steps of phage T5 DNA penetration into Escherichia coli cells. J. Biol. Chem. 1992, 267, 3168–3172. [Google Scholar]
- Keweloh, H.W.; Bakker, E.P. Increased permeability and subsequent resealing of the host cell membrane early after infection of Escherichia coli with bacteriophage T1. J. Bacteriol. 1984, 160, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Luria, S.E.; Delbruck, M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics 1943, 28, 491–511. [Google Scholar] [PubMed]
- Fane, B.A.; Shien, S.; Hayashi, M. Second-site suppressors of a cold-sensitive external scaffolding protein of bacteriophage phi X174. Genetics 1993, 134, 1003–1011. [Google Scholar]
- Gordon, E.B.; Fane, B.A. The effects of an early conformational switch defect during øX174 morphogenesis are belatedly manifested late in the assembly pathway. J. Virol. 2013, 87, 2518–2525. [Google Scholar] [CrossRef] [Green Version]
- Floor, E. Interaction of morphogenetic genes of bacteriophage T4. J. Mol. Biol. 1970, 47, 293–306. [Google Scholar] [CrossRef]
- Sternberg, N. A genetic analysis of bacteriophage lambda head assembly. Virology 1976, 71, 568–582. [Google Scholar] [CrossRef]
- Van Valen, D.; Wu, D.; Chen, Y.J.; Tuson, H.; Wiggins, P.; Phillips, R. A single-molecule Hershey-Chase experiment. Curr. Biol. 2012, 22, 1339–1343. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.R.; Molineux, I.J. Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli. J. Bacteriol. 1995, 177, 4066–4076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanni, Y.T. First-step-transfer deoxyribonucleic acid of bacteriophage T5. Bacteriol. Rev. 1968, 32, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Lanni, Y.T. DNA transfer from phage T5 to host cells: Dependence on intercurrent protein synthesis. Proc. Natl. Acad. Sci. USA 1965, 53, 969–973. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, B.A.; Studier, F.W. Entry of bacteriophage T7 DNA into the cell and escape from host restriction. J. Bacteriol. 1988, 170, 2095–2105. [Google Scholar] [CrossRef] [Green Version]
Position 1 | Sequence 2 | Name 3 |
---|---|---|
151 | QKELTKMQLDN | Hendecad 1 |
162 | QKEIAEMQNET | Hendecad 2 |
173 | QKEIAGIQSAT | Hendecad 3 |
184 | SRQNTKDQVYA | Transition |
195 | QNEMLAY | Heptad 1 |
202 | QQKESTA | Heptad 2 |
209 | RVASIME | Heptad 3 |
216 | NTNLSKQ | Heptad 4 |
223 | QQVSEIM | Heptad 5 |
230 | RQMLTQA | Heptad 6 |
237 | QTAGQYF | Heptad 7 |
244 | TNDQIKE | Heptad 8 |
251 | MTRKVSA | Heptad 9 |
258 | EVDLVHQ | Heptad 10 |
265 | QTQNQRY | Heptad 11 |
Efficiency or Plating (EOP 1) | |||
---|---|---|---|
Expressed H Gene | 22 °C | 37 °C | 42 °C |
Wild-Type | 1.0 | 1.0 | 1.0 |
None | <1.3 × 10−4 | <9.0 × 10−5 | <4 × 10−5 |
T244Q | 0.3 2 | 1.0 | 0.5 |
M251Q | <1.3 × 10−4 | 1.9 | 0.7 |
K254Q | 0.7 | 1.0 | 0.5 |
E258Q | 0.8 | 2.8 | 0.6 |
T244Q/M251Q | <1.3 × 10−4 | 0.7 | 0.8 |
Wild Type | 1.0 | 1.0 | 1.0 |
None | <4.1 × 10−5 | 1.3 × 10−6 | <1.5 × 10−6 |
Q241S | 0.1 | 0.8 | 0.7 |
Q247S | 0.1 | 0.9 | 0.6 |
Q265S | 0.4 | 0.8 | 0.5 |
Q241S/Q247S | <4.1 × 10−5 | 0.6 | 0.5 2 |
Synthesis Temperature | Expressed Gene | Specific Infectivity | |
---|---|---|---|
Raw S.I. 2 | Wild-Type Normalized 3 | ||
22 °C | Wild-Type | 2.6 (±0.5) × 1012 | 1.0 (±0) |
None | 3.3 (±1.6) × 108 | 1.3 (±0.7) × 10−4 | |
T244Q | 1.0 (±0.1) × 1012 | 0.4 (±0.1) | |
M251Q | 8.5 (±1.3) × 1011 | 0.4 (±0.1) | |
T244Q/M251Q | 1.7 (±0.4) × 1011 | 7.0 (±2.5) × 10−2 | |
37 °C | Wild-Type | 6.9 (±0.7) × 1011 | 1.0 (±0) |
None | 3.1 (±1.1) × 108 | 4.3 (±1.3) × 10−4 | |
T244Q | 1.8 (±0.2) × 1011 | 0.3 (±0.02) | |
M251Q | 2.0 (±0.3) × 1011 | 0.3 (±0.1) | |
T244Q/M251Q | 4.6 (±0.7) × 1010 | 6.7 (±1.3) × 10−2 | |
22 °C | Wild-Type | 3.3 (±0.2) × 1012 | 1.0 (±0) |
None | 4.5 (±1.7) × 108 | 1.4 (±0.5) × 10−4 | |
Q241S/Q247S | 2.9 (±0.9) × 1011 | 8.8 (±2.9) × 10−2 | |
33 °C | Wild-Type | 1.2 (±0.3) × 1012 | 1.0 (±0) |
None | 2.0 (±1.3) × 106 | 1.6 (±0.8) × 10−6 | |
Q241S/ Q247S | 2.4 (±0.5) × 1010 | 1.9 (±0.3) × 10−2 | |
42 °C | Wild-Type | 5.8 (±0.2) × 1011 | 1.0 (±0) |
None | 1.6 (±1.4) × 106 | 2.8 (±2.3) × 10−6 | |
Q241S/Q247S | 1.2 (±0.4) × 1010 | 2.1 (±0.8) × 10−2 |
Strain b | Independent Isolations c | EOP a | ||
---|---|---|---|---|
22 °C | 33/37 °C | 42 °C | ||
Wild Type | NA d | 0.2 | 1.0 | 0.7 |
cs(H)T244Q | NA | 4.8 × 10−2 | 1.0 | 1.0 |
su(H)-F H73Y/cs(H)T244Q | 2 | 0.3 | 1.0 | 1.2 |
su(H)-F Y158H/cs(H)T244Q | 3 | 0.2 | 1.0 | 0.7 |
su(H)-F T204I/cs(H)T244Q | 1 | 0.2 | 1.0 | 1.3 |
su(H)-F M330I/cs(H)T244Q | 1 | 0.3 | 1.0 | 0.9 |
su(H)-F R386H/cs(H)T244Q | 1 | 0.3 | 1.0 | 0.9 |
su(H)-H R185H/cs(H)T244Q | 1 | 1.0 | <6.4 × 10−5 | <6.4 × 10−5 |
su(H)-H A194S/cs(H)T244Q | 1 | 0.2 | 1.0 | 1.0 |
cs(H)M251Q | NA | 2.6 × 10−2 | 1.0 | 1.0 |
su(H)-F T100A/cs(H)M251Q | 1 | 0.1 | 1.0 | 1.6 |
su(H)-F Y158H/cs(H)M251Q | 1 | 0.3 | 1.0 | 1.2 |
su(H)-F T204I/cs(H)M251Q | 1 | 0.2 | 1.0 | 1.1 |
su(H)-F L319F/cs(H)M251Q | 1 | 0.1 | 1.0 | 0.6 |
su(H)-F M330I/cs(H)M251Q | 2 | 0.3 | 1.0 | 0.8 |
su(H)-F V333F/cs(H)M251Q | 1 | 0.1 | 1.0 | 1.2 |
su(H)-F R386H/cs(H)M251Q | 1 | 0.1 | 1.0 | 0.7 |
su(H)-H E197D/cs(H)M251Q | 1 | 0.4 | 1.0 | 1.1 |
su(H)-H M198V/cs(H)M251Q | 1 | 0.5 | 1.0 | 0.9 |
cs(H)T244Q/M251Q | NA | <9.5 × 10−6 | 1.0 | 1.2 |
su(H)-H M198I/cs(H)T244Q/M251Q | 1 | 0.1 | 1.0 | 1.2 |
su(H)-H M198V/cs(H)T244Q/M251Q | 2 | 0.2 | 1.0 | 0.9 |
su(H)-F T204I/cs(H)T244Q/M251Q | SD d | <1.9 × 10−3 | 1.0 | <1.9 × 10−3 |
su(H)-F M330I/cs(H)T244Q/M251Q | SD d | <6.9 × 10−6 | 1.0 | 0.5 |
su(H)-F R386H/cs(H)T244Q/M251Q | SD d | <6.0 × 10−6 | 1.0 | 1.0 |
cs|ts(H)Q241S/Q247S | NA | <2.5 × 10−4 | 1.0 | <2.5 × 10−4 |
su(H)-H N216D/cs|ts(H)Q241S/Q247S | 1 | <0.2 | 1.0 | 0.8 |
su(H)-H T234I/cs|ts(H)Q241S/Q247S | 2 | <0.05 | 1.0 | 0.9 |
su(H)-H A239V/cs|ts(H)Q241S/Q247S | 1 | <1.8 × 10−5 | 1.0 | 0.3 |
su(H)-H Q235K/cs|ts(H)Q241S/Q247S | 1 | <0.2 | 1.0 | 2.2 |
su(H)-H F243L/cs|ts(H)Q241S/Q247S | 3 | <8.0 × 10−4 | 1.0 | 0.6 |
su(H)-H Q247L/cs|ts(H)Q241S/Q247S | 8 | <1.0 × 10−4 | 1.0 | 1.2 |
su(H)-H V255I/cs|ts(H)Q241S/Q247S | 1 | <2.0 × 10−3 | 1.0 | 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roznowski, A.P.; Fisher, J.M.; Fane, B.A. Mutagenic Analysis of a DNA Translocating Tube’s Interior Surface. Viruses 2020, 12, 670. https://doi.org/10.3390/v12060670
Roznowski AP, Fisher JM, Fane BA. Mutagenic Analysis of a DNA Translocating Tube’s Interior Surface. Viruses. 2020; 12(6):670. https://doi.org/10.3390/v12060670
Chicago/Turabian StyleRoznowski, Aaron P., Julia M. Fisher, and Bentley A. Fane. 2020. "Mutagenic Analysis of a DNA Translocating Tube’s Interior Surface" Viruses 12, no. 6: 670. https://doi.org/10.3390/v12060670