Year-Round Influenza a Virus Surveillance in Mallards (Anas platyrhynchos) Reveals Genetic Persistence During the Under-Sampled Spring Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Influenza A Virus Testing
2.3. Phylogenetic Analysis
2.4. Statistical Analysis
3. Results
3.1. Sample Collection
3.2. Prevelance
3.3. Phylogenetic Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Olsen, B.; Munster, V.J.; Wallensten, A.; Waldenstrom, J.; Osterhaus, A.D.; Fouchier, R.A. Global patterns of influenza a virus in wild birds. Science 2006, 312, 384–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaoka, Y.; Krauss, S.; Webster, R.G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 1989, 63, 4603–4608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garten, R.J.; Davis, C.T.; Russell, C.A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W.M.; Xu, X.; Skepner, E.; Deyde, V.; et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009, 325, 197–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, R.G.; Shortridge, K.F.; Kawaoka, Y. Influenza: Interspecies transmission and emergence of new pandemics. FEMS Immunol. Med. Microbiol. 1997, 18, 275–279. [Google Scholar] [CrossRef]
- Fries, A.C.; Nolting, J.M.; Danner, A.; Webster, R.G.; Bowman, A.S.; Krauss, S.; Slemons, R.D. Evidence for the circulation and inter-hemispheric movement of the H14 subtype influenza A virus. PLoS ONE 2013, 8, e59216. [Google Scholar] [CrossRef] [Green Version]
- Ramey, A.M.; Pearce, J.M.; Flint, P.L.; Ip, H.S.; Derksen, D.V.; Franson, J.C.; Petrula, M.J.; Scotton, B.D.; Sowl, K.M.; Wege, M.L.; et al. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: Examining the evidence through space and time. Virology 2010, 401, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Prosser, D.J.; Cui, P.; Takekawa, J.Y.; Tang, M.; Hou, Y.; Collins, B.M.; Yan, B.; Hill, N.J.; Li, T.; Li, Y. Wild bird migration across the Qinghai-Tibetan plateau: A transmission route for highly pathogenic H5N1. PLoS ONE 2011, 6, e17622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easterday, B.C.; Trainer, D.O.; Tumova, B.; Pereira, H.G. Evidence of infection with influenza viruses in migratory waterfowl. Nature 1968, 219, 523–524. [Google Scholar] [CrossRef] [PubMed]
- Nolting, J.M.; Fries, A.C.; Gates, R.J.; Bowman, A.S.; Slemons, R.D. Influenza A viruses from overwintering and spring-migrating waterfowl in the Lake Erie Basin, United States. Avian Dis. 2015, 60, 241–244. [Google Scholar] [CrossRef]
- Smith, G.J. The US Geological Survey Bird Banding Laboratory: An Integrated Scientific Program Supporting Research and Conservation of North American Birds; 2331-1258; US Geological Surey: Reston, VA, USA, 2013. [Google Scholar]
- Ferro, P.J.; El-Attrache, J.; Fang, X.; Rollo, S.N.; Jester, A.; Merendino, T.; Peterson, M.J.; Lupiani, B. Avian influenza surveillance in hunter-harvested waterfowl from the Gulf Coast of Texas (November 2005–January 2006). J. Wildl. Dis. 2008, 44, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Ramey, A.M.; Walther, P.; Link, P.; Poulson, R.L.; Wilcox, B.R.; Newsome, G.; Spackman, E.; Brown, J.D.; Stallknecht, D.E. Optimizing Surveillance for South American Origin Influenza A Viruses Along the United States Gulf Coast Through Genomic Characterization of Isolates from Blue-winged Teal (Anas discors). Transbound. Emerg. Dis. 2016, 63, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winker, K.; Spackman, E.; Swayne, D.E. Rarity of influenza A virus in spring shorebirds, southern Alaska. Emerg. Infect. Dis. 2008, 14, 1314. [Google Scholar] [CrossRef] [PubMed]
- Maxted, A.M.; Luttrell, M.P.; Goekjian, V.H.; Brown, J.D.; Niles, L.J.; Dey, A.D.; Kalasz, K.S.; Swayne, D.E.; Stallknecht, D.E. Avian influenza virus infection dynamics in shorebird hosts. J. Wildl. Dis. 2012, 48, 322–334. [Google Scholar] [CrossRef]
- Carter, D.; Link, P.; Walther, P.; Ramey, A.; Stallknecht, D.; Poulson, R. Influenza A Prevalence and Subtype Diversity in Migrating Teal Sampled Along the United States Gulf Coast. Avian Dis. 2019, 63, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Nolting, J.M.; Lauterbach, S.E.; Slemons, R.D.; Bowman, A.S. Identifying Gaps in Wild Waterfowl Influenza A Surveillance in Ohio, United States. Avian Dis. 2019, 63, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Fries, A.C.; Nolting, J.M.; Bowman, A.S.; Lin, X.; Halpin, R.A.; Wester, E.; Fedorova, N.; Stockwell, T.B.; Das, S.R.; Dugan, V.G.; et al. Spread and persistence of influenza A viruses in waterfowl hosts in the North American Mississippi migratory flyway. J. Virol. 2015, 89, 5371–5381. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.D.; Goekjian, G.; Poulson, R.; Valeika, S.; Stallknecht, D.E. Avian influenza virus in water: Infectivity is dependent on pH, salinity and temperature. Vet. Microbiol. 2009, 136, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Keeler, S.P.; Dalton, M.S.; Cressler, A.M.; Berghaus, R.D.; Stallknecht, D.E. Abiotic factors affecting the persistence of avian influenza virus in surface waters of waterfowl habitats. Appl. Environ. Microbiol. 2014, 80, 2910–2917. [Google Scholar] [CrossRef] [Green Version]
- Stallknecht, D.E.; Shane, S.M.; Kearney, M.T.; Zwank, P.J. Persistence of avian influenza viruses in water. Avian Dis. 1990, 34, 406–411. [Google Scholar] [CrossRef]
- Lebarbenchon, C.; Yang, M.; Keeler, S.P.; Ramakrishnan, M.A.; Brown, J.D.; Stallknecht, D.E.; Sreevatsan, S. Viral replication, persistence in water and genetic characterization of two influenza A viruses isolated from surface lake water. PLoS ONE 2011, 6, e26566. [Google Scholar] [CrossRef] [PubMed]
- Spackman, E.; Senne, D.A.; Myers, T.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.K.; Lee, C.K.; Loh, T.P.; Tang, J.W.-T.; Chiu, L.; Tambyah, P.A.; Sethi, S.K.; Koay, E.S.-C. Diagnostic testing for pandemic influenza in Singapore: A novel dual-gene quantitative real-time RT-PCR for the detection of influenza A/H1N1/2009. J. Mol. Diagn. 2010, 12, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Aevermann, B.D.; Anderson, T.K.; Burke, D.F.; Dauphin, G.; Gu, Z.; He, S.; Kumar, S.; Larsen, C.N.; Lee, A.J.; et al. Influenza Research Database: An integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017, 45, D466–D474. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [Green Version]
- Deliberto, T.J.; Swafford, S.R.; Nolte, D.L.; Pedersen, K.; Lutman, M.W.; Schmit, B.B.; Baroch, J.A.; Kohler, D.J.; Franklin, A. Surveillance for highly pathogenic avian influenza in wild birds in the USA. Integr. Zool. 2009, 4, 426–439. [Google Scholar] [CrossRef] [Green Version]
- Fouchier, R.A.; Munster, V.J. Epidemiology of low pathogenic avian influenza viruses in wild birds. Rev. Sci. Tech. 2009, 28, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Runstadler, J.; Happ, G.; Slemons, R.; Sheng, Z.-M.; Gundlach, N.; Petrula, M.; Senne, D.; Nolting, J.; Evers, D.; Modrell, A. Using RRT-PCR analysis and virus isolation to determine the prevalence of avian influenza virus infections in ducks at Minto Flats State Game Refuge, Alaska, during August 2005. Arch. Virol. 2007, 152, 1901–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinshaw, V.S.; Wood, J.; Webster, R.; Deibel, R.; Turner, B. Circulation of influenza viruses and paramyxoviruses in waterfowl originating from two different areas of North America. Bull. World Health Organ. 1985, 63, 711. [Google Scholar] [PubMed]
- Hanson, B.A.; Stallknecht, D.E.; Swayne, D.E.; Lewis, L.A.; Senne, D.A. Avian influenza viruses in Minnesota ducks during 1998–2000. Avian Dis. 2003, 47 (Suppl. 3), 867–871. [Google Scholar] [CrossRef] [PubMed]
- Wallensten, A.; Munster, V.J.; Latorre-Margalef, N.; Brytting, M.; Elmberg, J.; Fouchier, R.A.; Fransson, T.; Haemig, P.D.; Karlsson, M.; Lundkvist, Å. Surveillance of influenza virus A in migratory waterfowl in Northern Europe. Emerg. Infect. Dis. 2007, 13, 404. [Google Scholar] [CrossRef]
- Hill, N.J.; Ma, E.J.; Meixell, B.W.; Lindberg, M.S.; Boyce, W.M.; Runstadler, J.A. Transmission of influenza reflects seasonality of wild birds across the annual cycle. Ecol. Lett. 2016, 19, 915–925. [Google Scholar] [CrossRef]
- Stallknecht, D.E.; Kearney, M.T.; Shane, S.M.; Zwank, P.J. Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Dis. 1990, 34, 412–418. [Google Scholar] [CrossRef]
- Brown, J.D.; Swayne, D.E.; Cooper, R.J.; Burns, R.E.; Stallknecht, D.E. Persistence of H5 and H7 avian influenza viruses in water. Avian Dis. 2007, 51 (Suppl. 1), 285–289. [Google Scholar] [CrossRef]
- Numberger, D.; Dreier, C.; Vullioud, C.; Gabriel, G.; Greenwood, A.D.; Grossart, H.-P. Recovery of influenza A viruses from lake water and sediments by experimental inoculation. PLoS ONE 2019, 14, e0218882. [Google Scholar]
- Densmore, C.L.; Iwanowicz, D.D.; McLaughlin, S.M.; Ottinger, C.A.; Spires, J.E.; Iwanowicz, L.R. Influenza A Virus Detected in Native Bivalves in Waterfowl Habitat of the Delmarva Peninsula, USA. Microorganisms 2019, 7, 334. [Google Scholar] [CrossRef] [Green Version]
- Krauss, S.; Walker, D.; Pryor, S.P.; Niles, L.; Chenghong, L.; Hinshaw, V.S.; Webster, R.G. Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis. 2004, 4, 177–189. [Google Scholar] [CrossRef]
- Stallknecht, D.E.; Luttrell, M.P.; Poulson, R.; Goekjian, V.; Niles, L.; Dey, A.; Krauss, S.; Webster, R.G. Detection of avian influenza viruses from shorebirds: evaluation of surveillance and testing approaches. J. Wildl. Dis. 2012, 48, 382–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, S.; Webster, R.G. Avian influenza virus surveillance and wild birds: past and present. Avian Dis. 2010, 54 (Suppl. 1), 394–398. [Google Scholar] [CrossRef] [PubMed]
- Runstadler, J.; Hill, N.; Hussein, I.T.; Puryear, W.; Keogh, M. Connecting the study of wild influenza with the potential for pandemic disease. Infect. Genet. Evol. 2013, 17, 162–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Season | |||||
---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | ||
Pure Subtypes | H1N1 | 3 | 5 | 1 | |
H1N2 | 1 | 1 | |||
H1N8 | 12 | ||||
H3N1 | 1 | ||||
H3N2 | 10 | 1 | |||
H3N8 | 1 | 51 | 1 | ||
H4N5 | 1 | ||||
H4N6 | 4 | ||||
H5N2 | 2 | ||||
H6N1 | 4 | ||||
H6N8 | 1 | ||||
H7N1 | 1 | ||||
H8N4 | 1 | ||||
H10N1 | 2 | ||||
H10N4 | 1 | ||||
H10N7 | 3 | 1 | 1 | ||
H10N8 | 2 | ||||
H11N2 | 1 | ||||
H11N3 | 2 | ||||
H11N9 | 1 | ||||
H12N5 | 1 | ||||
Mixed Subtypes | H1N1,3 | 1 | |||
H1,3N2,8 | 1 | ||||
H1,3N8 | 1 | ||||
H3N1,8 | 2 | ||||
H3,4N2,8 | 1 | ||||
H3,4N3,6,8 | 1 | ||||
H3,4N8 | 1 | ||||
H3,5N2,8 | 1 | ||||
H6,11N1,9 | 1 | ||||
TOTAL | 11 | 93 | 21 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauterbach, S.E.; McBride, D.S.; Shirkey, B.T.; Nolting, J.M.; Bowman, A.S. Year-Round Influenza a Virus Surveillance in Mallards (Anas platyrhynchos) Reveals Genetic Persistence During the Under-Sampled Spring Season. Viruses 2020, 12, 632. https://doi.org/10.3390/v12060632
Lauterbach SE, McBride DS, Shirkey BT, Nolting JM, Bowman AS. Year-Round Influenza a Virus Surveillance in Mallards (Anas platyrhynchos) Reveals Genetic Persistence During the Under-Sampled Spring Season. Viruses. 2020; 12(6):632. https://doi.org/10.3390/v12060632
Chicago/Turabian StyleLauterbach, Sarah E., Dillon S. McBride, Brendan T. Shirkey, Jacqueline M. Nolting, and Andrew S. Bowman. 2020. "Year-Round Influenza a Virus Surveillance in Mallards (Anas platyrhynchos) Reveals Genetic Persistence During the Under-Sampled Spring Season" Viruses 12, no. 6: 632. https://doi.org/10.3390/v12060632