Development and Evaluation of a Sensitive Bacteriophage-Based MRSA Diagnostic Screen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Bacteriophage Source and Stock Preparation
2.3. Engineering of Luciferase Reporter Phage Recombinants
2.4. In Vitro Phage Detection Assays—Sensitivity, Inclusivity and MSSA Exclusivity
2.5. In Vitro Phage Detection Assay—Non-Staphylococcus aureus Exclusivity and Bacterial Interference
2.6. Nasal Swab Phage Detection—Endogenous Samples, MRSA Spike and Autoluminescence
3. Results
3.1. Sensitivity and Inclusivity of the MRSA Screen In Vitro
3.2. Exclusivity and Specificity of the MRSA Screen In Vitro
3.3. Screen Performance among Circulating Staphylococcus aureus Clinical Isolates In Vitro
3.4. Specificity and Screen Performance with Human Nasal Swabs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kodikara, C.P.; Crew, H.H.; Stewart, G.S. Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol. Lett. 1991, 67, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Loessner, M.J.; Rudolf, M.; Scherer, S. Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods. Appl. Environ. Microbiol. 1997, 63, 2961–2965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schofield, D.A.; Sharp, N.J.; Westwater, C. Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage 2012, 2, 105–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, W.R., Jr.; Barletta, R.G.; Udani, R.; Chan, J.; Kalkut, G.; Sosne, G.; Kieser, T.; Sarkis, G.J.; Hatfull, G.F.; Bloom, B.R. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 1993, 260, 819–822. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.P.; Unch, J.; Binkowski, B.F.; Valley, M.P.; Butler, B.L.; Wood, M.G.; Otto, P.; Zimmerman, K.; Vidugiris, G.; Machleidt, T.; et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 2012, 7, 1848–1857. [Google Scholar] [CrossRef]
- Zhang, D.; Coronel-Aguilera, C.P.; Romero, P.L.; Perry, L.; Minocha, U.; Rosenfield, C.; Gehring, A.G.; Paoli, G.C.; Bhunia, A.K.; Applegate, B. The Use of a Novel NanoLuc -Based Reporter Phage for the Detection of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 33235. [Google Scholar] [CrossRef] [Green Version]
- Hinkley, T.C.; Garing, S.; Singh, S.; Le Ny, A.M.; Nichols, K.P.; Peters, J.E.; Talbert, J.N.; Nugen, S.R. Reporter bacteriophage T7NLC utilizes a novel NanoLuc::CBM fusion for the ultrasensitive detection of Escherichia coli in water. Analyst 2018, 143, 4074–4082. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.J.; Kaye, K.S.; Chen, L.F.; Schmader, K.E.; Choi, Y.; Sloane, R.; Sexton, D.J. Clinical and financial outcomes due to methicillin resistant Staphylococcus aureus surgical site infection: A multi-center matched outcomes study. PLoS ONE 2009, 4, e8305. [Google Scholar] [CrossRef] [Green Version]
- von Eiff, C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med. 2001, 344, 11–16. [Google Scholar] [CrossRef]
- Davis, K.A.; Stewart, J.J.; Crouch, H.K.; Florez, C.E.; Hospenthal, D.R. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin. Infect. Dis. 2004, 39, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, H.F.; Vos, M.C.; Ott, A.; van Belkum, A.; Voss, A.; Kluytmans, J.A.; van Keulen, P.H.; Vandenbroucke-Grauls, C.M.; Meester, M.H.; Verbrugh, H.A. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 2004, 364, 703–705. [Google Scholar] [CrossRef]
- Kalra, L.; Camacho, F.; Whitener, C.J.; Du, P.; Miller, M.; Zalonis, C.; Julian, K.G. Risk of methicillin-resistant Staphylococcus aureus surgical site infection in patients with nasal MRSA colonization. Am. J. Infect. Control 2013, 41, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Pofahl, W.E.; Goettler, C.E.; Ramsey, K.M.; Cochran, M.K.; Nobles, D.L.; Rotondo, M.F. Active surveillance screening of MRSA and eradication of the carrier state decreases surgical-site infections caused by MRSA. J. Am. Coll. Surg. 2009, 208, 981–986, discussion 986–988. [Google Scholar] [CrossRef]
- Polisena, J.; Chen, S.; Cimon, K.; McGill, S.; Forward, K.; Gardam, M. Clinical effectiveness of rapid tests for methicillin resistant Staphylococcus aureus (MRSA) in hospitalized patients: A systematic review. BMC Infect. Dis. 2011, 11, 336. [Google Scholar] [CrossRef] [Green Version]
- Wolk, D.M.; Picton, E.; Johnson, D.; Davis, T.; Pancholi, P.; Ginocchio, C.C.; Finegold, S.; Welch, D.F.; de Boer, M.; Fuller, D.; et al. Multicenter evaluation of the Cepheid Xpert methicillin-resistant Staphylococcus aureus (MRSA) test as a rapid screening method for detection of MRSA in nares. J. Clin. Microbiol. 2009, 47, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Peterson, L.R.; Liesenfeld, O.; Woods, C.W.; Allen, S.D.; Pombo, D.; Patel, P.A.; Mehta, M.S.; Nicholson, B.; Fuller, D.; Onderdonk, A. Multicenter evaluation of the LightCycler methicillin-resistant Staphylococcus aureus (MRSA) advanced test as a rapid method for detection of MRSA in nasal surveillance swabs. J. Clin. Microbiol. 2010, 48, 1661–1666. [Google Scholar] [CrossRef] [Green Version]
- Turlej, A.; Hryniewicz, W.; Empel, J. Staphylococcal cassette chromosome mec (Sccmec) classification and typing methods: An overview. Pol. J. Microbiol. 2011, 60, 95–103. [Google Scholar] [CrossRef]
- Yarbrough, M.L.; Warren, D.K.; Allen, K.; Burkholder, D.; Daum, R.; Donskey, C.; Knaack, D.; LaMarca, A.; May, L.; Miller, L.G.; et al. Multicenter Evaluation of the Xpert MRSA NxG Assay for Detection of Methicillin-Resistant Staphylococcus aureus in Nasal Swabs. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [Green Version]
- Jacqmin, H.; Schuermans, A.; Desmet, S.; Verhaegen, J.; Saegeman, V. Performance of three generations of Xpert MRSA in routine practice: Approaching the aim? Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1363–1365. [Google Scholar] [CrossRef]
- Laurent, C.; Bogaerts, P.; Schoevaerdts, D.; Denis, O.; Deplano, A.; Swine, C.; Struelens, M.J.; Glupczynski, Y. Evaluation of the Xpert MRSA assay for rapid detection of methicillin-resistant Staphylococcus aureus from nares swabs of geriatric hospitalized patients and failure to detect a specific SCCmec type IV variant. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 995–1002. [Google Scholar] [CrossRef]
- Garcia-Alvarez, L.; Holden, M.T.; Lindsay, H.; Webb, C.R.; Brown, D.F.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Wassenberg, M.W.; Kluytmans, J.A.; Box, A.T.; Bosboom, R.W.; Buiting, A.G.; van Elzakker, E.P.; Melchers, W.J.; van Rijen, M.M.; Thijsen, S.F.; Troelstra, A.; et al. Rapid screening of methicillin-resistant Staphylococcus aureus using PCR and chromogenic agar: A prospective study to evaluate costs and effects. Clin. Microbiol. Infect. 2010, 16, 1754–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra-Kumar, S.; Abrahantes, J.C.; Sabiiti, W.; Lammens, C.; Vercauteren, G.; Ieven, M.; Molenberghs, G.; Aerts, M.; Goossens, H.; Team, M.W.S. Evaluation of chromogenic media for detection of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2010, 48, 1040–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, D.R.; Newton, D.W.; Ledeboer, N.A.; Buchan, B.; Young, C.; Clark, A.E.; Connoly, J.; Wolk, D.M. Multicenter Evaluation of MRSASelect II Chromogenic Agar for Identification of Methicillin-Resistant Staphylococcus aureus from Wound and Nasal Specimens. J. Clin. Microbiol. 2016, 54, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, J.F.; Riebe, K.M.; Hall, G.S.; Wilson, D.; Whittier, S.; Palavecino, E.; Ledeboer, N.A. Spectra MRSA, a new chromogenic agar medium to screen for methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2010, 48, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Vandersteegen, K.; Mattheus, W.; Ceyssens, P.J.; Bilocq, F.; De Vos, D.; Pirnay, J.P.; Noben, J.P.; Merabishvili, M.; Lipinska, U.; Hermans, K.; et al. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS ONE 2011, 6, e24418. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, T.; Mirrett, S.; Reller, L.B.; Price, C.; Qi, C.; Weinstein, M.P.; Kirn, T.J. Controlled multicenter evaluation of a bacteriophage-based method for rapid detection of Staphylococcus aureus in positive blood cultures. J. Clin. Microbiol. 2013, 51, 1226–1230. [Google Scholar] [CrossRef] [Green Version]
- Loessner, M.J.; Rees, C.E.; Stewart, G.S.; Scherer, S. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Appl. Environ. Microbiol. 1996, 62, 1133–1140. [Google Scholar] [CrossRef] [Green Version]
- Born, Y.; Fieseler, L.; Thony, V.; Leimer, N.; Duffy, B.; Loessner, M.J. Engineering of Bacteriophages Y2::dpoL1-C and Y2::luxAB for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutiba-Ben Boubaker, I.; Ben Abbes, R.; Ben Abdallah, H.; Mamlouk, K.; Mahjoubi, F.; Kammoun, A.; Hammami, A.; Ben Redjeb, S. Evaluation of a cefoxitin disk diffusion test for the routine detection of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2004, 10, 762–765. [Google Scholar] [CrossRef] [Green Version]
- Kriegeskorte, A.; Idelevich, E.A.; Schlattmann, A.; Layer, F.; Strommenger, B.; Denis, O.; Paterson, G.K.; Holmes, M.A.; Werner, G.; Becker, K. Comparison of Different Phenotypic Approaches To Screen and Detect mecC-Harboring Methicillin-Resistant Staphylococcus aureus. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.J.; Fernandes, L.A.; Collignon, P.; Australian Group on Antimicrobial, R. Cefoxitin resistance as a surrogate marker for the detection of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2005, 55, 506–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sa-Leao, R.; Santos Sanches, I.; Dias, D.; Peres, I.; Barros, R.M.; de Lencastre, H. Detection of an archaic clone of Staphylococcus aureus with low-level resistance to methicillin in a pediatric hospital in Portugal and in international samples: Relics of a formerly widely disseminated strain? J. Clin. Microbiol. 1999, 37, 1913–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Haddad, L.; Ben Abdallah, N.; Plante, P.L.; Dumaresq, J.; Katsarava, R.; Labrie, S.; Corbeil, J.; St-Gelais, D.; Moineau, S. Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain. PLoS ONE 2014, 9, e102600. [Google Scholar] [CrossRef] [Green Version]
- O’Flaherty, S.; Ross, R.P.; Meaney, W.; Fitzgerald, G.F.; Elbreki, M.F.; Coffey, A. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl. Environ. Microbiol. 2005, 71, 1836–1842. [Google Scholar] [CrossRef] [Green Version]
- Lehman, S.M.; Mearns, G.; Rankin, D.; Cole, R.A.; Smrekar, F.; Branston, S.D.; Morales, S. Design and Preclinical Development of a Phage Product for the Treatment of Antibiotic-Resistant Staphylococcus aureus Infections. Viruses 2019, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Rakieten, M.L.; Rakieten, T.L. Relationships between Staphylococci and Bacilli Belonging to the Subtilis Group as Shown by Bacteriophage Absorption. J. Bacteriol. 1937, 34, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Meredith, T.; Swoboda, J.; Walker, S. Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. Chem. Biol. 2010, 17, 1101–1110. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Wu, X.; Matzkin, G.L.; Khan, M.A.; Sakai, F.; Vidal, J.E. Streptococcus pneumoniae Eradicates Preformed Staphylococcus aureus Biofilms through a Mechanism Requiring Physical Contact. Front. Cell Infect. Microbiol. 2016, 6, 104. [Google Scholar] [CrossRef]
- Wu, X.; Gordon, O.; Jiang, W.; Antezana, B.S.; Angulo-Zamudio, U.A.; Del Rio, C.; Moller, A.; Brissac, T.; Tierney, A.R.P.; Warncke, K.; et al. Interaction between Streptococcus pneumoniae and Staphylococcus aureus Generates (.)OH Radicals That Rapidly Kill Staphylococcus aureus Strains. J. Bacteriol. 2019, 201. [Google Scholar] [CrossRef]
- Bogaert, D.; van Belkum, A.; Sluijter, M.; Luijendijk, A.; de Groot, R.; Rumke, H.C.; Verbrugh, H.A.; Hermans, P.W. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 2004, 363, 1871–1872. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Dagan, R.; Raz, M.; Carmeli, Y.; Shainberg, B.; Derazne, E.; Rahav, G.; Rubinstein, E. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in Children. JAMA 2004, 292, 716–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Cleef, B.A.; van Rijen, M.; Ferket, M.; Kluytmans, J.A. Self-sampling is appropriate for detection of Staphylococcus aureus: A validation study. Antimicrob. Resist. Infect. Control 2012, 1, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lautenbach, E.; Nachamkin, I.; Hu, B.; Fishman, N.O.; Tolomeo, P.; Prasad, P.; Bilker, W.B.; Zaoutis, T.E. Surveillance cultures for detection of methicillin-resistant Staphylococcus aureus: Diagnostic yield of anatomic sites and comparison of provider- and patient-collected samples. Infect. Control Hosp. Epidemiol. 2009, 30, 380–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorwitz, R.J.; Kruszon-Moran, D.; McAllister, S.K.; McQuillan, G.; McDougal, L.K.; Fosheim, G.E.; Jensen, B.J.; Killgore, G.; Tenover, F.C.; Kuehnert, M.J. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J. Infect. Dis. 2008, 197, 1226–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Pagnier, I.; Schuhen, B.; Wenzelburger, F.; Friedrich, A.W.; Kipp, F.; Peters, G.; von Eiff, C. Does nasal cocolonization by methicillin-resistant coagulase-negative staphylococci and methicillin-susceptible Staphylococcus aureus strains occur frequently enough to represent a risk of false-positive methicillin-resistant S. aureus determinations by molecular methods? J. Clin. Microbiol. 2006, 44, 229–231. [Google Scholar] [CrossRef] [Green Version]
- McMurray, C.L.; Hardy, K.J.; Calus, S.T.; Loman, N.J.; Hawkey, P.M. Staphylococcal species heterogeneity in the nasal microbiome following antibiotic prophylaxis revealed by tuf gene deep sequencing. Microbiome 2016, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Datta, R.; Huang, S.S. Risk of infection and death due to methicillin-resistant Staphylococcus aureus in long-term carriers. Clin. Infect. Dis. 2008, 47, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Warnke, P.; Devide, A.; Weise, M.; Frickmann, H.; Schwarz, N.G.; Schaffler, H.; Ottl, P.; Podbielski, A. Utilizing Moist or Dry Swabs for the Sampling of Nasal MRSA Carriers? An In Vivo and In Vitro Study. PLoS ONE 2016, 11, e0163073. [Google Scholar] [CrossRef] [Green Version]
- Mermel, L.A.; Cartony, J.M.; Covington, P.; Maxey, G.; Morse, D. Methicillin-resistant Staphylococcus aureus colonization at different body sites: A prospective, quantitative analysis. J. Clin. Microbiol. 2011, 49, 1119–1121. [Google Scholar] [CrossRef] [Green Version]
- White, A. Relation between quantitative nasal cultures and dissemination of staphylococci. J. Lab. Clin. Med. 1961, 58, 273–277. [Google Scholar]
- Deghorain, M.; Van Melderen, L. The Staphylococci phages family: An overview. Viruses 2012, 4, 3316–3335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moller, A.G.; Lindsay, J.A.; Read, T.D. Determinants of Phage Host Range in Staphylococcus Species. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, G.; Corrigan, R.M.; Winstel, V.; Goerke, C.; Grundling, A.; Peschel, A. Wall teichoic Acid-dependent adsorption of staphylococcal siphovirus and myovirus. J. Bacteriol. 2011, 193, 4006–4009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Gerlach, D.; Du, X.; Larsen, J.; Stegger, M.; Kuhner, P.; Peschel, A.; Xia, G.; Winstel, V. An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci. Rep. 2015, 5, 17219. [Google Scholar] [CrossRef]
- Weidenmaier, C.; Kokai-Kun, J.F.; Kristian, S.A.; Chanturiya, T.; Kalbacher, H.; Gross, M.; Nicholson, G.; Neumeister, B.; Mond, J.J.; Peschel, A. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 2004, 10, 243–245. [Google Scholar] [CrossRef]
- Baur, S.; Rautenberg, M.; Faulstich, M.; Grau, T.; Severin, Y.; Unger, C.; Hoffmann, W.H.; Rudel, T.; Autenrieth, I.B.; Weidenmaier, C. A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog. 2014, 10, e1004089. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.; Singh, A.K.; Santa Maria, J.P., Jr.; Kim, Y.; Brown, S.; Swoboda, J.G.; Mylonakis, E.; Wilkinson, B.J.; Walker, S. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem. Biol. 2011, 6, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Farha, M.A.; Leung, A.; Sewell, E.W.; D’Elia, M.A.; Allison, S.E.; Ejim, L.; Pereira, P.M.; Pinho, M.G.; Wright, G.D.; Brown, E.D. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to beta-lactams. ACS Chem. Biol. 2013, 8, 226–233. [Google Scholar] [CrossRef]
- Kohler, T.; Weidenmaier, C.; Peschel, A. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J. Bacteriol. 2009, 191, 4482–4484. [Google Scholar] [CrossRef] [Green Version]
- Weidenmaier, C.; Peschel, A.; Xiong, Y.Q.; Kristian, S.A.; Dietz, K.; Yeaman, M.R.; Bayer, A.S. Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J. Infect. Dis. 2005, 191, 1771–1777. [Google Scholar] [CrossRef] [Green Version]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [Green Version]
Strain ID 1 | SCCmec 2 | PFGE 2 | # of Positive 3 Control | # of Positive 3 Selective | LoD 4 | ||||
---|---|---|---|---|---|---|---|---|---|
10 | 100 | 1000 | 10 | 100 | 1000 | CFU | |||
BAA-44 | I | Iberian | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-41 | II | USA 100 | 2/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 100 |
BAA-1761 | II | USA 100 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-1720 | II | USA 200 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
33592 | III | ST239 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-1717 | IV | USA 300 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-1683 | IV | USA 400 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-1707 | IV | USA 400 | 2/3 | 3/3 | 3/3 | 0/3 | 3/3 | 3/3 | 100 |
BAA-1763 | IV | USA 500 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-1754 | IV | USA 600 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-1768 | IV | USA 800 | 3/3 | 3/3 | 3/3 | 2/3 | 3/3 | 3/3 | 100 |
BAA-1747 | IV | USA 1000 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-1764 | IV | USA 1100 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-1766 | V | USA 700 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-2094 | V | WA-MRSA | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
BAA-42 | VI | USA 800 | 2/3 | 3/3 | 3/3 | 0/3 | 0/3 | 3/3 | 1000 |
BAA-2313 | XI | CC130 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 10 |
Total number of positives (%): | 48/51 (94.1) | 51/51 (100) | 51/51 (100) | 44/51 (86.3) | 48/51 (94.1) | 51/51 (100) |
Strain ID 1 | Type | # of Positive 2 Control | # of Positive 2 Selective | ||||
---|---|---|---|---|---|---|---|
100 | 1000 | 10000 | 100 | 1000 | 10000 | ||
6538 | MSSA | 3/3 | 3/3 | 3/3 | 0/3 | 0/3 | 0/3 |
12600 | MSSA | 3/3 | 3/3 | 3/3 | 0/3 | 1/3 | 1/3 |
14775 | MSSA | 3/3 | 3/3 | 3/3 | 0/3 | 0/3 | 0/3 |
25923 | MSSA | 3/3 | 3/3 | 3/3 | 0/3 | 0/3 | 0/3 |
29213 | MSSA | 3/3 | 3/3 | 3/3 | 0/3 | 0/3 | 0/3 |
Total number of positives (%): | 15/15 (100) | 15/15 (100) | 15/15 (100) | 0/15 (0.0) | 1/15 (6.7) | 1/15 (6.7) |
Genus | Species | Strain ID 1 | Exclusivity 3 (Competitor Only) | Bacterial Interference 4 (Competitor + MRSA) | ||
---|---|---|---|---|---|---|
Control | Selective | Control | Selective | |||
Staphylococcus | epidermidis | 14990 | Negative | Negative | Positive | Positive |
700583 | Positive | Negative | Positive | Positive | ||
haemolyticus | 29970 | Positive | Negative | Positive | Positive | |
700564 | Negative | Negative | Positive | Positive | ||
hominis | 27844 | Negative | Negative | Positive | Positive | |
lugdunensis | 49576 | Negative | Negative | Positive | Positive | |
saprophyticus | 15305 | Positive | Negative | Positive | Positive | |
warneri | 49454 | Positive | Negative | Positive | Positive | |
Bacillus | licheniformis | 9789 | Negative | Negative | Positive | Positive |
pumilus | 700814 | Positive | Negative | Positive | Positive | |
subtilis | 6051 | Positive | Negative | Positive | Positive | |
Citrobacter | braaki | 51113 | Negative | Negative | Positive | Positive |
freundii | 8090 | Negative | Negative | Positive | Positive | |
koseri | 25408 | Negative | Negative | Positive | Positive | |
Enterococcus | faecalis | 19433 | Negative | Negative | Positive | Positive |
faecium | 19434 | Negative | Negative | Positive | Positive | |
Klebsiella | oxytoca | 43165 | Negative | Negative | Positive | Positive |
pneumoniae | 4352 | Negative | Negative | Positive | Positive | |
Listeria | innocua | 51742 | Negative | Negative | Positive | Positive |
ivanovii | 19119 | Negative | Negative | Positive | Positive | |
monocytogenes | 19115 | Negative | Negative | Positive | Positive | |
welshimeri | 35897 | Negative | Negative | Positive | Positive | |
Proteus | mirabilis | 43071 | Negative | Negative | Positive | Positive |
vulgaris | 33420 | Negative | Negative | Positive | Positive | |
Shigella | flexneri | 12022 | Negative | Negative | Positive | Positive |
sonnei | 9290 | Negative | Negative | Positive | Positive | |
Streptococcus | pneumoniae | 6303 | Negative | Negative | Negative | Positive |
pyogenes | 12202 | Negative | Negative | Positive | Positive | |
Acinetobacter | baumannii | 19606 | Negative | Negative | Positive | Positive |
Edwardsiella | tarda | 15947 | Negative | Negative | Positive | Positive |
Enterobacter | kobei | BAA-260 | Negative | Negative | Positive | Positive |
Escherichia | coli | 25922 | Negative | Negative | Positive | Positive |
Hafnia | alvei | 13337 | Negative | Negative | Positive | Positive |
Moraxella | catarrhalis | 25238 | Negative | Negative | Positive | Positive |
Morganella | morganii | 25830 | Negative | Negative | Positive | Positive |
Pluralibacter | gergoviae | 33028 | Negative | Negative | Positive | Positive |
Pseudomonas | aeruginosa | 27853 | Negative | Negative | Positive | Positive |
Salmonella | enterica | S492 | Negative | Negative | Positive | Positive |
Serratia | marcescens | 13880 | Negative | Negative | Positive | Positive |
Yersinia | enterocolitica | 23715 | Negative | Negative | Positive | Positive |
Total number of positives 2 (%): | 6/40 (15.0) | 0/40 (0.0) | 39/40 (97.5) | 40/40 (100) |
Clinical MRSA | Clinical MSSA | |||||
---|---|---|---|---|---|---|
CFU 2 | Control | Selective | CFU 3 | Control | Selective | |
Number of positives 1 (%): | 50 | 388/390 (99.5) | 381/390 (97.7) | 500 | 122/123 (99.2) | 8/123 (6.5) |
5000 | 122/123 (99.2) | 21/123 (17.1) |
Endogenous Nasal Samples 2 (Elutant Only) | Detection in Nasal Matrix 3 (Elutant + MRSA) | ||||
---|---|---|---|---|---|
Control | Selective | Reference 4 | Control | Selective | |
Number of positives 1 (%): | 36/40 (90.0) | 4/40 (10.0) | 0/40 (0.0) | 40/40 (100) | 40/40 (100) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, M.; Hahn, W.; Bailey, B.; Hall, A.; Rodriguez, G.; Zahn, H.; Eisenberg, M.; Erickson, S. Development and Evaluation of a Sensitive Bacteriophage-Based MRSA Diagnostic Screen. Viruses 2020, 12, 631. https://doi.org/10.3390/v12060631
Brown M, Hahn W, Bailey B, Hall A, Rodriguez G, Zahn H, Eisenberg M, Erickson S. Development and Evaluation of a Sensitive Bacteriophage-Based MRSA Diagnostic Screen. Viruses. 2020; 12(6):631. https://doi.org/10.3390/v12060631
Chicago/Turabian StyleBrown, Matthew, Wendy Hahn, Bryant Bailey, Alex Hall, Gema Rodriguez, Henriett Zahn, Marcia Eisenberg, and Stephen Erickson. 2020. "Development and Evaluation of a Sensitive Bacteriophage-Based MRSA Diagnostic Screen" Viruses 12, no. 6: 631. https://doi.org/10.3390/v12060631