Neurological Findings in Children without Congenital Microcephaly Exposed to Zika Virus in Utero: A Case Series Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bick, J.; Nelson, C.A. Early Adverse Experiences and the Developing Brain. Neuropsychopharmacology 2016, 41, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.E.; Levitt, P.; Iii, C.A.N. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture. Child Dev. 2010, 81, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Georgieff, M.K.; Brunette, K.E.; Tran, P.V. Early life nutrition and neural plasticity. Dev. Psychopathol. 2015, 27, 411–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calado, A.M.; Pires, M.A. An Overview of Teratology. Methods Mol. Biol. 2018, L, 3–32. [Google Scholar] [CrossRef]
- Sadler, T.W.; Sadler, T.W. Birth defects and prenatal diagnosis. In Langman’s Medical Embryology, 13th ed.; Sadler, T.W., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2015. [Google Scholar]
- Coyne, C.B.; LaZear, H.M. Zika virus—Reigniting the TORCH. Nat. Rev. Genet. 2016, 14, 707–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Araújo, T.V.B.; Rodrigues, L.C.; Ximenes, R.A.; Miranda-Filho, D.D.B.; Montarroyos, U.R.; De Melo, A.P.L.; Valongueiro, S.; Albuquerque, M.F.P.M.; Souza, W.V.; Braga, C.; et al. Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: Preliminary report of a case-control study. Lancet Infect. Dis. 2016, 16, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Alves, L.V.; Paredes, C.E.; Silva, G.C.; Mello, J.G.; Alves, J.G. Neurodevelopment of 24 children born in Brazil with congenital Zika syndrome in 2015: A case series study. BMJ Open 2018, 8, e021304. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, M.; Feitosa, I.M.L.; Ribeiro, E.M.; Horovitz, D.D.G.; Pessoa, A.L.S.; França, G.V.A.; García-Alix, A.; Doriqui, M.J.R.; Wanderley, H.Y.C.; Sanseverino, M.V.T.; et al. The phenotypic spectrum of congenital Zika syndrome. Am. J. Med. Genet. Part A 2017, 173, 841–857. [Google Scholar] [CrossRef] [Green Version]
- Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.M.; Guimarães, K.P.; Benazzato, C.; Almeida, N.; Pignatari, F.B.R.G.C.; Romero, S.; et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nat. Cell Biol. 2016, 534, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Peçanha, P.M.; Júnior, S.C.D.S.M.; Pone, S.M.; Pone, M.V.D.S.; Vasconcelos, Z.; Zin, A.; Vilibor, R.H.H.; Costa, R.P.; Meio, M.D.B.B.; Nielsen-Saines, K.; et al. Neurodevelopment of children exposed intra-uterus by Zika virus: A case series. PLoS ONE 2020, 15, e0229434. [Google Scholar] [CrossRef] [Green Version]
- Faiçal, A.V.; De Oliveira, J.C.; Oliveira, J.V.V.; De Almeida, B.L.; Agra, I.A.; Alcantara, L.C.J.; Acosta, A.X.; De Siqueira, I.C. Neurodevelopmental delay in normocephalic children with in utero exposure to Zika virus. BMJ Paediatr. Open 2019, 3, e000486. [Google Scholar] [CrossRef] [PubMed]
- Gerzson, L.R.; De Almeida, C.S.; Da Silva, J.H.; Feitosa, M.M.A.; De Oliveira, L.N.; Schüler-Faccini, L. Neurodevelopment of Nonmicrocephalic Children, After 18 Months of Life, Exposed Prenatally to Zika Virus. J. Child Neurol. 2019, 35, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Cranston, J.S.; Tiene, S.F.; Nielsen-Saines, K.; Vasconcelos, Z.; Pone, M.V.; Pone, S.; Zin, A.; Salles, T.S.; Pereira, J.P.; Orofino, D.; et al. Association Between Antenatal Exposure to Zika Virus and Anatomical and Neurodevelopmental Abnormalities in Children. JAMA Netw. Open 2020, 3, e209303. [Google Scholar] [CrossRef] [PubMed]
- Muller, W.J.; Mulkey, S.B. Lessons about early neurodevelopment in children exposed to ZIKV in utero. Nat. Med. 2019, 25, 1192–1193. [Google Scholar] [CrossRef]
- Panchaud, A.; Stojanov, M.; Ammerdorffer, A.; Vouga, M.; Baud, D. Emerging Role of Zika Virus in Adverse Fetal and Neonatal Outcomes. Clin. Microbiol. Rev. 2016, 29, 659–694. [Google Scholar] [CrossRef] [Green Version]
- Brasil. Ministério da Saúde, Secretaria de Atenção à Saúde. Diretrizes de Estimulação Precoce: Crianças de Zero a 3 Anos Com Atraso no Desenvolvimento Neuropsicomotor; Ministério da Saúde do Brasi: Brasília, Brasil, 2016; p. 184. [Google Scholar]
- 68° Informe Epidemiológico. 12 January 2017, Febre do Zika Vírus. Available online: http://semsa.manaus.am.gov.br/semsa-divulga-novo-informe-sobre-o-zika-virus-2/ (accessed on 15 September 2017).
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef]
- Intergrowth-21ST. The International Fetal and Newborn Growth Consortium for the 21st Century. Available online: https://intergrowth21.tghn.org/ (accessed on 19 September 2017).
- Babson, S.G. Growth of low-birth-weight infants. J. Pediatr. 1970, 77, 11–18. [Google Scholar] [CrossRef]
- WHO Multicentre Growth Reference Study Group. Construction of the head circumference-for-age standards. In WHO Child Growth Standards: Head Circumference-for-Age, Arm Circumference-for-Age, Triceps Skinfold-for-Age and Subscapular Skinfold-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2007; p. 7. Available online: https://apps.who.int/iris/handle/10665/43706 (accessed on 29 August 2020).
- WHO Multicentre Growth Reference Study Group. Construction of the length/height-for-age standards. In WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006; p. 13. Available online: https://www.who.int/publications/i/item/924154693X (accessed on 29 August 2020).
- Funayama, C.A.R. Exame neurológico em crianças. Med. Ribeirao Preto. Online 1996, 29, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Prechtl, H.; Beintema, D. The Neurological Examination of the Full-Term Newborn Infant, 1st ed.; Heineman Medical Books Ltd: London, UK, 1964; p. 72. [Google Scholar]
- Funayama, C.A.R. Exame Neurológico na Criança; FUNPEC Editora: Ribeirão Preto, Brasil, 2004; pp. 51–67. [Google Scholar]
- Diament, A.J. Contribuição Para a Sistematização do Exame Neurológico de Crianças Normais no Primeiro ano de Vida; Tese de Livre Docência Faculdade de Medicina da Universidade de São Paulo: São Paulo, Brazil, 1967. [Google Scholar]
- Madaschi, V.; Mecca, T.P.; Macedo, E.C.; Paula, C.S. Bayley-III Scales of Infant and Toddler Development: Transcultural Adaptation and Psychometric Properties. Paid. Ribeirão Preto 2016, 26, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Bayley, N. Escalas de Desenvolvimento do Bebê e da Criança Pequena. Manual Técnico, 3rd ed.; Person Clinical Brasil: São Paulo, Brasil, 2018; pp. 107–115. [Google Scholar]
- Dick, G.W.A. Zika virus (II). Pathogenicity and physical properties. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 521–534. [Google Scholar] [CrossRef]
- MacNamara, F. Zika virus: A report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 1954, 48, 139–145. [Google Scholar] [CrossRef]
- Global Situation Report on Zika: 5 February. Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=11657:global-situation-report-zika-february-5th-2016&Itemid=41716&lang=fr (accessed on 18 August 2017).
- Nielsen-Saines, K.; Brasil, P.; Kerin, T.; Vasconcelos, Z.; Gabaglia, C.R.; Damasceno, L.; Pone, M.; De Carvalho, L.M.A.; Pone, S.M.; Zin, A.A.; et al. Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children. Nat. Med. 2019, 25, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.M. The Importance of Language-Learning Environments to Child Language Outcomes. Pediatric 2019, 144, e20192157. [Google Scholar] [CrossRef] [PubMed]
- Calle-Giraldo, J.P.; Rojas, C.A.; Hurtado, I.C.; Barco, C.; Libreros, D.; Sánchez, P.J.; López, P.; Arias, A.; Dávalos, D.M.; Lesmes, M.C.; et al. Outcomes of Congenital Zika Virus Infection During an Outbreak in Valle del Cauca, Colombia. Pediatr. Infect. Dis. J. 2019, 38, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Paixão, E.S.; Teixeira, M.G.; Costa, M.D.C.N.; Rodrigues, L.C. Dengue during pregnancy and adverse fetal outcomes: A systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 857–865. [Google Scholar] [CrossRef]
- Delicio, A.M.; Lajos, G.J.; Amaral, E.; Cavichiolli, F.; Polydoro, M.; Milanez, H. Adverse effects in children exposed to maternal HIV and antiretroviral therapy during pregnancy in Brazil: A cohort study. Reprod. Health 2018, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wedderburn, C.J.; Evans, C.; Yeung, S.; Gibb, D.M.; Donald, K.A.; Prendergast, A.J. Growth and Neurodevelopment of HIV-Exposed Uninfected Children: A Conceptual Framework. Curr. HIV/AIDS Rep. 2019, 16, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Krogh, K.A.; Green, M.V.; Thayer, S.A. HIV-1 Tat-induced changes in synaptically-driven network activity adapt during prolonged exposure. Curr. HIV Res. 2014, 12, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Abu-Raya, B.; Kollmann, T.R.; Marchant, A.; MacGillivray, D.M. The Immune System of HIV-Exposed Uninfected Infants. Front. Immunol. 2016, 7, 383. [Google Scholar] [CrossRef] [Green Version]
- Vianna, P.; Gomes, J.D.A.; Boquett, J.; Fraga, L.R.; Schuch, J.B.; Vianna, F.S.L.; Schuler-Faccini, L. Zika Virus as a Possible Risk Factor for Autism Spectrum Disorder: Neuroimmunological Aspects. Neuroimmunomodulation 2019, 25, 320–327. [Google Scholar] [CrossRef]
- Li, X.; Chauhan, A.; Sheikh, A.M.; Patil, S.; Chauhan, V.P.S.; Li, X.-M.; Ji, L.; Brown, T.W.; Malik, M. Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 2009, 207, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chegeni, T.N.; Sarvi, S.; Moosazadeh, M.; Hosseininejad, Z.; Sharif, M.; Amouei, A.; Daryani, A. Relationship between toxoplasmosis and autism: A systematic review and meta-analysis. Microb. Pathog. 2020, 147, 104434. [Google Scholar] [CrossRef]
- Spann, M.N.; Sourander, A.; Surcel, H.-M.; Hinkka-Yli-Salomäki, S.; Brown, A.S. Prenatal toxoplasmosis antibody and childhood autism. Autism Res. 2017, 10, 769–777. [Google Scholar] [CrossRef]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson, C.; Rosenberg, C.R.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States. MMWR. Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.E.; Durstenfeld, A.; Roehm, P.C. Viral Causes of Hearing Loss: A Review for Hearing Health Professionals. Trends Hear. 2014, 18, 233121651454136. [Google Scholar] [CrossRef]
- Gouveia, M.D.C.L.; Muniz, L.F.; Ferreira, T.S.; Santos, C.M.; Almeida, L.C.; Van Der Linden, V.; Ramos, R.C.; Rodrigues, L.C.; Neto, S.S.C. Hearing Loss in Infants with Microcephaly and Evidence of Congenital Zika Virus Infection—Brazil, November 2015–May. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 917–919. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, M.D.C.L.; Muniz, L.F.; Neto, S.D.S.C.; Van Der Linden, V.; Ramos, R.C.F. Sensorineural hearing loss in a case of congenital Zika virus. Braz. J. Otorhinolaryngol. 2020, 86, 513–515. [Google Scholar] [CrossRef] [Green Version]
- Zwaigenbaum, L.; Bauman, M.L.; Stone, W.L.; Yirmiya, N.; Estes, A.; Hansen, R.L.; McPartland, J.C.; Natowicz, M.R.; Choueiri, R.N.; Fein, D.; et al. Early Identification of Autism Spectrum Disorder: Recommendations for Practice and Research. Pediatric 2015, 136, S10–S40. [Google Scholar] [CrossRef] [Green Version]
- Krieger, F.V.; Leibenluft, E.; Stringaris, A.; Polanczyk, G.V. Irritability in children and adolescents: Past concepts, current debates, and future opportunities. Rev. Bras. Psiquiatr. 2013, 35, S32–S39. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.B.R.; Dias, L.B.; Pfeifer, L.I. Confiabilidade do Sistema de Classificação da Função Motora Grossa Ampliado e Revisto (GMFCS E & R) entre estudantes e profissionais de saúde no Brasil. Fisioter. Pesqui. 2016, 23, 142–147. [Google Scholar] [CrossRef] [Green Version]
Demographics, Pregnancy and Post-Natal Aspects | Typical NPMD n = 17 | Delayed NPMD n = 9 |
---|---|---|
Mother’s age mean ± SD (range) | 28 ± 5.4 (20–30) | 29.2 ± 8.18 (17–40) |
Maternal alcohol intake, n (%) | 1 (5.9%) | 1 (11.1%) |
Maternal tobacco intake, n (%) | 1 (5.9%) | 0 (0.0%) |
Maternal hypertensive disorder, n (%) | 3 (17.6%) | 1 (11.1%) |
Bleeding in the first gestational trimester, n (%) | 0 (0.0%) | 2 (22.2%) |
Maternal depression, n (%) | 0 (0.0%) | 1 (11.1%) |
Trimester of infection | ||
First, n (%) | 5 (29.4%) | 2 (22.2%) |
Second, n (%) | 6 (35.3%) | 6 (66.6%) |
Third, n (%) | 6 (35.3%) | 1 (11.1%) |
Coinfection, n (%) | 2 (11.7%) | 3 (33.3%) |
Gender | ||
Male, n (%) | 6 (35.3%) | 6 (66.6%) |
Female, n (%) | 11 (64.7%) | 3 (33.3%) |
Apgar 5′ (mean ± SD) | 9.7 ± 0.6 | 9.8 ± 0.3 |
Birthweight classification | ||
SGA, n (%) | 1 (5.9%) | 2 (22.2%) |
AGA, n (%) | 16 (94.1%) | 7 (77.7%) |
LGA, n (%) | 0 (0.0%) | 0 (0.0%) |
Dysmorphisms, n (%) | 2 (11.7%) | 4 (44.4%) |
Double misplaced hair whorls, n (%) | 0 (0.0%) | 2 (22.2%) |
Epicanthus, n (%) | 2 (11.7%) | 1 (11.1%) |
Flattened nasal base, n (%) | 0 (0.0%) | 1 (11.1%) |
Hyperchromic spots, n (%) | 0 (0.0%) | 1 (11.1%) |
Change in iris coloration, n (%) | 0 (0.0%) | 1 (11.1%) |
Neonatal jaundice, n (%) | 5 (29.4%) | 2 (22.2%) |
Neonatal sepsis, n (%) | 1 (5.9%) | 0 (0.0%) |
Ototoxic antibiotics in neonatal period, n (%) | 1 (5.9%) | 0 (0.0%) |
Exclusive breastfeeding at 6 months, n (%) | 17 (100%) | 8 (88.8%) |
ID | Gen | Coinfection | Current Age (Months) | HC at Birth (Z-Score) | Current HC (Z-Score) | HC Classification | Cognition Score (IC 95%) | Language Score (IC 95%) | Motor Skills SCORE (IC 95%) | BSID-III Result | Neurological Examination | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1° GT ZIKV | 1 | F | No | - | −0.83 | −0.47 | Normo | 105 (97–113) | 106 (98–113) | 97 (90–105) | Normal | Adequate |
2 | F | No | 40 | 0.08 | 1.07 | Normo | 115 (106–122) | 124 (115–130) | 133 (123–138) | Normal | Adequate | |
3 | F | No | 41 | −1.28 | 0.6 | Normo | 100 (92–108) | 115 (107–121) | 103 (95–110) | Normal | Adequate | |
4 | F | No | 42 | −0.78 | −0.07 | Normo | 95 (87–103) | 91 (84–99) | 133 (123–138) | Normal | Adequate | |
5 | F | No | 41 | −0.02 | −1.03 | Normo | 85 (78–94) | 79 (73–88) | 64 (59–75) | Delayed | Altered | |
6 | M | Dengue | 33 | 1.24 | 0.81 | Normo | 100 (92–108) | 112 (104–118) | 103 (95–110) | Normal | Adequate | |
7 | M | Toxoplasm. | 40 | 0.08 | −1.14 | Normo | 85 (78–94) | 71 (66–80) | 85 (79–94) | Delayed | Altered | |
Mean | - | - | - | 38.43 | −0.22 | −0.03 | - | 97.86 | 99.71 | 102.57 | - | - |
2° GT ZIKV | 8 | M | No | 25 | −0.78 | −0.08 | Normo | 105 (97–113) | 77 (71–86) | 91 (84–99) | Delayed | Adequate |
9 | F | No | 34 | 2 | −1.28 | Normo | 95 (87–103) | 89 (83–97) | 85 (79–94) | Normal | Altered | |
10 | M | No | 35 | −0.63 | −1.01 | Normo | 105 (97–113) | 112 (104–118) | 107 (99–114) | Normal | Adequate | |
11 | F | No | 36 | −1.62 | −1.67 | Normo | 100 (92–108) | 91 (84–99) | 82 (76–91) | Delayed | Adequate | |
12 | F | No | 37 | 1.11 | 1.18 | Normo | 100 (92–108) | 115 (107–121) | 107 (99–114) | Normal | Adequate | |
13 | M | No | 40 | 0.08 | −0.98 | Normo | 90 (83–99) | 77 (71–86) | 85 (79–94) | Delayed | Altered | |
14 | M | No | 40 | 2.16 | 1.94 | Macro resolved | 85 (78–94) | 71 (66–80) | 76 (70–86) | Delayed | Altered | |
15 | F | No | 41 | 0.22 | 0.69 | Normo | 105 (97–113) | 91 (84–99) | 97 (90–105) | Normal | Adequate | |
16 | F | No | 41 | 2.68 | 1.63 | Macro resolved | 115 (106–122) | 115 (107–121) | 103 (95–110) | Normal | Adequate | |
17 | M | HIV | 34 | 2.56 | 2.21 | Macro maintained | 90 (83–99) | 83 (77–91) | 73 (68–83) | Delayed | Altered | |
18 | M | Herpes | 38 | −2 | −0.16 | Normo | 80 (74–90) | 83 (77–91) | 85 (79–94) | Delayed | Adequate | |
19 | F | Dengue | 41 | 1.92 | 0.95 | Normo | 100 (92–108) | 106 (98–113) | 107 (99–114) | Adequate | Adequate | |
Mean | - | - | - | 36.83 | 0.64 | 0.29 | - | 98 | 95.6 | 93 | - | - |
3° GT ZIKV | 20 | F | No | 36 | 1.94 | 1.11 | Normo | 105 (97–113) | 109 (101–116) | 103 (95–110) | Adequate | Adequate |
21 | M | No | 37 | 1.43 | 1.41 | Normo | 105 (97–113) | 124 (115–130) | 103 (95–110) | Adequate | Adequate | |
22 | M | No | 38 | −0.27 | 0.11 | Normo | 90 (83–99) | 118 (110–124) | 91 (84–99) | Adequate | Altered | |
23 | F | No | 38 | 1.94 | 0.41 | Normo | 105 (97–113) | 121 (112–127) | 100 (92–108) | Adequate | Adequate | |
24 | F | No | 41 | 1.38 | 0.41 | Normo | 80 (74–90) | 53 (49–64) | 82 (76–91) | Delayed | Altered | |
25 | M | No | 41 | −0.78 | −0.25 | Normo | 130 (119–135) | 89 (83–97) | 107 (99–114) | Adequate | Adequate | |
26 | M | No | 42 | −0.78 | 1.02 | Normo | 90 (83–99) | 115 (107–121) | 97 (90–105) | Adequate | Adequate | |
Mean | - | - | - | 39.00 | 0.69 | 0.60 | - | 100.71 | 104.14 | 97.57 | - | - |
Total Mean | - | - | - | 37.85 | 0.43 | 0.29 | - | 98.46 | 97.58 | 96.12 | - | - |
Neurologic Examination, No. (%) | Typical NPMD 17 (65.4%) | Delayed NPMD 9 (34.6%) |
---|---|---|
Adequate 18 (69.3%) | 14 (82.3%) | 4 (44.4%) |
Altered 8 (30.7%) | ||
Irritability | 1 (5.8%) | 4 (44.4%) |
Impairment in joint attention | 1 (5.8%) | 6 (66.6%) |
Psychomotor agitation | 0 (0.0%) | 3 (33.3%) |
Congenital macrocephaly | ||
Resolved in the first year of age | 1 (5.8%) | 1 (11.1%) |
Maintained | 0 (0.0%) | 1 (11.1%) |
Motor deficit (hemiparesis) | 0 (0.0%) | 1 (11.1%) |
Impaired muscle tone | ||
Spastic hypertonia | 0 (0.0%) | 1 (11.1%) |
Hypotonia | 1 (5.8%) | 0 (0.0%) |
Increased deep tendon reflexes | 0 (0.0%) | 1 (11.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abtibol-Bernardino, M.R.; de Almeida Peixoto, L.d.F.A.; de Oliveira, G.A.; de Almeida, T.F.; Rodrigues, G.R.I.; Otani, R.H.; Soares Chaves, B.C.; de Souza Rodrigues, C.; de Andrade, A.B.C.A.; de Fatima Redivo, E.; et al. Neurological Findings in Children without Congenital Microcephaly Exposed to Zika Virus in Utero: A Case Series Study. Viruses 2020, 12, 1335. https://doi.org/10.3390/v12111335
Abtibol-Bernardino MR, de Almeida Peixoto LdFA, de Oliveira GA, de Almeida TF, Rodrigues GRI, Otani RH, Soares Chaves BC, de Souza Rodrigues C, de Andrade ABCA, de Fatima Redivo E, et al. Neurological Findings in Children without Congenital Microcephaly Exposed to Zika Virus in Utero: A Case Series Study. Viruses. 2020; 12(11):1335. https://doi.org/10.3390/v12111335
Chicago/Turabian StyleAbtibol-Bernardino, Marília Rosa, Lucíola de Fátima Albuquerque de Almeida Peixoto, Geruza Alfaia de Oliveira, Tatiane Freitas de Almeida, Gabriela Ribeiro Ivo Rodrigues, Rodrigo Haruo Otani, Beatriz Caroline Soares Chaves, Cristina de Souza Rodrigues, Anny Beatriz Costa Antony de Andrade, Elijane de Fatima Redivo, and et al. 2020. "Neurological Findings in Children without Congenital Microcephaly Exposed to Zika Virus in Utero: A Case Series Study" Viruses 12, no. 11: 1335. https://doi.org/10.3390/v12111335