Analysis of Whole-Genome Sequences of Infectious laryngotracheitis Virus Isolates from Poultry Flocks in Canada: Evidence of Recombination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. ILTV Propagation on CAM and LMH Cells
2.3. Viral DNA Purification from Homogenized LMH Cells and qPCR
2.4. Sample Submission for WGS and Genome Reconstruction
2.5. Genotyping Based on Complete ILTV Genome
2.6. Recombination Analysis
3. Results
3.1. Flock Background Information
3.2. ILTV Whole-Genome Sequences
3.3. Phylogenetic Analysis
3.4. Recombination Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Menendez, K.R.; García, M.; Spatz, S.; Tablante, N.L. Molecular epidemiology of infectious laryngotracheitis: A review. Avian Pathol. 2014, 43, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, S.C.; Giambrone, J.J. Infectious laryngotracheitis virus in chickens. World J. Virol. 2012, 1, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Hayles, L.B.; Macdonald, K.R.; Newby, W.C.; Wood, C.W.; Gilchrist, E.W.; MacNeill, A.C. Epizootiology of infectious laryngotracheitis in British Columbia 1971–1973. Can. Vet. J. 1976, 17, 101–108. [Google Scholar] [PubMed]
- Fuchs, W.; Veits, J.; Helferich, D.; Granzow, H.; Teifke, J.P.; Mettenleiter, T.C. Molecular biology of avian infectious laryngotracheitis virus. Vet. Res. 2007, 38, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Bagust, T. Laryngotracheitis (gallid-1) herpesvirus infection in the chicken 4. Latency establishment by wild and vaccine strains of ILT virus. Avian Pathol. 1986, 15, 581–595. [Google Scholar] [CrossRef]
- García, M.; Volkening, J.; Riblet, S.; Spatz, S. Genomic sequence analysis of the United States infectious laryngotracheitis vaccine strains chicken embryo origin (CEO) and tissue culture origin (TCO). Virology 2013, 440, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Bagust, T.J.; Johnson, M.A. Avian infectious laryngotracheitis: Virus-host interactions in relation to prospects for eradication. Avian Pathol. 1995, 24, 373–391. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Zavala, G. Commercial Vaccines and Vaccination Strategies Against Infectious Laryngotracheitis: What We Have Learned and Knowledge Gaps That Remain. Avian Dis. 2019, 63, 325–334. [Google Scholar] [CrossRef]
- Oldoni, I.; Garcia, M. Characterization of infectious laryngotracheitis virus isolates from the US by polymerase chain reaction and restriction fragment length polymorphism of multiple genome regions. Avian Pathol. 2007, 36, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Groves, P.J.; Williamson, S.L.; Sharpe, S.M.; Gerber, P.F.; Gao, Y.K.; Hirn, T.J.; Walkden-Brown, S. Uptake and spread of infectious laryngotracheitis vaccine virus within meat chicken flocks following drinking water vaccination. Vaccine 2019, 37, 5035–5043. [Google Scholar] [CrossRef]
- Maekawa, D.; Beltrán, G.; Riblet, S.M.; García, M. Protection Efficacy of a Recombinant Herpesvirus of Turkey Vaccine against Infectious Laryngotracheitis Virus Administered In Ovo to Broilers at Three Standardized Doses. Avian Dis. 2019, 63, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.S.; Barnes, H.J.; Smith, L. Increased virulence of modified live laryngotracheitis vaccine virus folliwing bird to bird passage. Avian Dis. 1991, 35, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Muylkens, B.; Farnir, F.; Meurens, F.; Schynts, F.; Vanderplasschen, A.; Georges, M.; Thiry, E. Coinfection with Two Closely Related Alphaherpesviruses Results in a Highly Diversified Recombination Mosaic Displaying Negative Genetic Interference. J. Virol. 2009, 83, 3127–3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loncoman, C.A.; Vaz, P.K.; Coppo, M.J.C.; Hartley, C.A.; Morera, F.J.; Browning, G.F.; Devlin, J.M. Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. Infect. Genet. Evol. 2017, 49, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W.; Devlin, J.M.; Markham, J.; Noormohammadi, A.H.; Browning, G.F.; Ficorilli, N.P.; Hartley, C.A.; Markham, P.F. Phylogenetic and Molecular Epidemiological Studies Reveal Evidence of Multiple Past Recombination Events between Infectious Laryngotracheitis Viruses. PLoS ONE 2013, 8, e55121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-W.; Markham, P.F.; Coppo, M.J.C.; Legione, A.R.; Markham, J.F.; Noormohammadi, A.H.; Browning, G.F.; Ficorilli, N.; Hartley, C.A.; Devlin, J.M. Attenuated Vaccines Can Recombine to Form Virulent Field Viruses. Science 2012, 337, 188. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, O.; Devlin, J.M.; Browning, G.F.; Vaz, P.K.; Thilakarathne, D.; Lee, S.-W.; Hartley, C.A. Genomic recombination between infectious laryngotracheitis vaccine strains occurs under a broad range of infection conditions in vitro and in ovo. PLoS ONE 2020, 15, e0229082. [Google Scholar] [CrossRef] [Green Version]
- Sanjuán, R.; Domingo, P. Genetic Diversity and Evolution of Viral Populations, in Reference Module in Life Sciences; Elsevier: Valencia, Spain, 2019. [Google Scholar]
- Loncoman, C.A.; Hartley, C.A.; Coppo, M.J.C.; Vaz, P.K.; Diaz-Méndez, A.; Browning, G.F.; García, M.; Spatz, S.; Devlin, J.M. Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome. Appl. Environ. Microbiol. 2017, 83, e01532-17. [Google Scholar] [CrossRef] [Green Version]
- Piccirillo, A.; Lavezzo, E.; Niero, G.; Moreno, A.; Massi, P.; Franchin, E.; Toppo, S.; Salata, C.; Palù, G. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy. PLoS ONE 2016, 11, e0149529. [Google Scholar] [CrossRef]
- Blacker, H.P.; Kirkpatrick, N.C.; Rubite, A.; O’Rourke, D.; Noormohammadi, A.H. Epidemiology of recent outbreaks of infectious laryngotracheitis in poultry in Australia. Aust. Vet. J. 2011, 89, 89–94. [Google Scholar] [CrossRef]
- Zhao, Y.; Kong, C.; Wang, Y. Multiple Comparison Analysis of Two New Genomic Sequences of ILTV Strains from China with Other Strains from Different Geographic Regions. PLoS ONE 2015, 10, e0132747. [Google Scholar] [CrossRef] [PubMed]
- La, T.-M.; Choi, E.-J.; Lee, J.-B.; Park, S.-Y.; Song, C.-S.; Choi, I.-S.; Lee, S.-W. Comparative genome analysis of Korean field strains of infectious laryngotracheitis virus. PLoS ONE 2019, 14, e0211158. [Google Scholar] [CrossRef]
- Norberg, P.; Depledge, D.P.; Kundu, S.; Atkinson, C.; Brown, J.; Haque, T.; Hussaini, Y.; MacMahon, E.; Molyneaux, P.; Papaevangelou, V.; et al. Recombination of Globally Circulating Varicella-Zoster Virus. J. Virol. 2015, 89, 7133–7146. [Google Scholar] [CrossRef] [Green Version]
- Morris, S. The Early History of Infectious Laryngotracheitis. Avian Dis. 1996, 40, 494–500. [Google Scholar]
- Barboza-Solis, C.; Contreras, A.P.; Palomino-Tapia, V.A.; Joseph, T.; King, R.; Ravi, M.; Peters, D.; Fonseca, K.; Gagnon, C.A.; Van Der Meer, F.; et al. Genotyping of Infectious Laryngotracheitis Virus (ILTV) Isolates from Western Canadian Provinces of Alberta and British Columbia Based on Partial Open Reading Frame (ORF) a and b. Animals 2020, 10, 1634. [Google Scholar] [CrossRef] [PubMed]
- Ojkic, D.; Swinton, J.; Vallieres, M.; Martin, E.; Shapiro, J.; Sanei, B.; Binnington, B. Characterization of field isolates of infectious laryngotracheitis virus from Ontario. Avian Pathol. 2006, 35, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Callison, S.; Riblet, S.; Oldoni, I.; Sun, S.; Zavala, G.; Williams, S.; Resurreccion, R.; Spackman, E.; García, M. Development and validation of a real-time Taqman® PCR assay for the detection and quantitation of infectious laryngotracheitis virus in poultry. J. Virol. Methods 2007, 139, 31–38. [Google Scholar] [CrossRef]
- Cunningham, C.H. A Laboratory Guide in Virology, 7th ed.; University of Georgia: Athens, GA, USA, 1973. [Google Scholar]
- Thapa, S.; Nagy, E.; Abdul-Careem, M. In ovo delivery of toll-like receptor 2 ligand, lipoteichoic acid induces pro-inflammatory mediators reducing post-hatch infectious laryngotracheitis virus infection. Vet. Immunol. Immunopathol. 2015, 164, 170–178. [Google Scholar] [CrossRef]
- Abdul-Cader, M.S.; Amarasinghe, A.; Palomino-Tapia, V.; Ahmed-Hassan, H.; Bakhtawar, K.; Nagy, E.; Sharif, S.; Gomis, S.; Abdul-Careem, M.F. In ovo CpG DNA delivery increases innate and adaptive immune cells in respiratory, gastrointestinal and immune systems post-hatch correlating with lower infectious laryngotracheitis virus infection. PLoS ONE 2018, 13, e0193964. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.P.; Lemey, P.; Lott, M.; Moulton, V.; Posada, D.; Lefeuvre, P. RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26, 2462–2463. [Google Scholar] [CrossRef] [PubMed]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-Length Human Immunodeficiency Virus Type 1 Genomes from Subtype C-Infected Seroconverters in India, with Evidence of Intersubtype Recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Rybicki, E. DP: Detection of recombination amongst aligned sequences. Bioinformatics 2000, 16, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Padidam, M.; Sawyer, S.; Fauquet, C.M. Possible emergence of new geminiviruses by frequent recombination. Virology 1999, 265, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Maynard Smith, J. Analyzing the mosaic structure of genes. J. Mol. Evol. 1992, 34, 126–129. [Google Scholar]
- Posada, D.; Crandall, K.A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. USA 2001, 98, 13757–13762. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, M.J.; Armstrong, J.S.; Gibbs, A.J. Sister-scanning: A Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 2000, 16, 573–582. [Google Scholar] [CrossRef]
- Boni, M.F.; Posada, D.; Feldman, M.W. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 2007, 176, 1035–1047. [Google Scholar] [CrossRef] [Green Version]
- Chacón, J.L.; Núñez, L.F.N.; Vejarano, M.P.; Parra, S.H.S.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P. Persistence and spreading of field and vaccine strains of infectious laryngotracheitis virus (ILTV) in vaccinated and unvaccinated geographic regions, in Brazil. Trop. Anim. Health Prod. 2015, 47, 1101–1108. [Google Scholar] [CrossRef]
- Ou, S.-C.; Giambrone, J.J.; Macklin, K.S. Detection of infectious laryngotracheitis virus from darkling beetles and their immature stage (lesser mealworms) by quantitative polymerase chain reaction and virus isolation. J. Appl. Poult. Res. 2012, 21, 33–38. [Google Scholar] [CrossRef]
- Johnson, Y.J.; Colby, M.M.; Tablante, N.L.; Hegngi, F.N.; Salem, M.; Gedamu, M.; Pope, C. Application of commercial and backyard poultry geographic information system databases for the identification of risk factors for clinical Infectious laryngotracheitis in a cluster of cases on Delmarva Peninsula. Int. J. Poult. Sci. 2004, 3, 201–205. [Google Scholar]
- Previdelli, R.L.; Bertzbach, L.D.; Wight, D.J.; Vychodil, T.; You, Y.; Arndt, S.; Kaufer, B.B. The Role of Marek’s Disease Virus UL12 and UL29 in DNA Recombination and the Virus Lifecycle. Viruses 2019, 11, 111. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Li, J.; Peng, P.; Nie, J.; Luo, J.; Cao, Y.; Xue, C. Genomic analysis of a Chinese MDV strain derived from vaccine strain CVI988 through recombination. Infect. Genet. Evol. 2020, 78, 104045. [Google Scholar] [CrossRef]
- Casto, A.M.; Roychoudhury, P.; Xie, H.; Selke, S.; Perchetti, G.A.; Wofford, H.; Huang, M.-L.; Verjans, G.M.G.M.; Gottlieb, G.S.; Wald, A.; et al. Large, Stable, Contemporary Interspecies Recombination Events in Circulating Human Herpes Simplex Viruses. J. Infect. Dis. 2019, 221, 1271–1279. [Google Scholar] [CrossRef] [Green Version]
- Cudini, J.; Roy, S.; Houldcroft, C.J.; Bryant, J.M.; Depledge, D.P.; Tutill, H.; Veys, P.; Williams, R.; Worth, A.J.J.; Tamuri, A.U.; et al. Human cytomegalovirus haplotype reconstruction reveals high diversity due to superinfection and evidence of within-host recombination. Proc. Natl. Acad. Sci. USA 2019, 116, 5693–5698. [Google Scholar] [CrossRef] [Green Version]
- Norberg, P.; Kasubi, M.J.; Haarr, L.; Bergström, T.; Liljeqvist, J.-A. Divergence and Recombination of Clinical Herpes Simplex Virus Type 2 Isolates. J. Virol. 2007, 81, 13158–13167. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Province | Age (Weeks) | Breed | Type | Flock Size | ILT Vaccine Used | Morbidity # of Birds | Mortality # of Birds | Year |
---|---|---|---|---|---|---|---|---|---|
#1990662 | Quebec | 4 days | - | Broiler | 19,700 females | No | - | - | 2017 |
#2154822 | Quebec | 8 | Ross | Broiler | 6400 | Recombinant | 3000 | 400 | 2018 |
#2175807 | Quebec | - | - | Broiler | 17,000 | No | - | 527 | 2019 |
#10-1122 | British Columbia | 11 | - | Layer | 45,000 | No | - | - | - |
#15 | Alberta | 6 | Heritage | Backyard | 250 | Yes ** | 10 | 10 | 2014 |
#20 | Alberta | 40 | Mille fleur | Backyard | 150 | No | 4 | 4 | 2015 |
#42 | Alberta | 60 | Heritage | Backyard | 56 | No | 22 | 4 | 2016 |
#45 | Alberta | 24 | Barnevelder | Backyard | 50 | No | 4 | 4 | 2016 |
#50 | Alberta | 10 | PRS cross * | Backyard | 475 | No | 400 | 40 | 2016 |
#61 | Alberta | 96 | Heritage | Backyard | 50 | No | 15 | 15 | 2017 |
#63 | Alberta | 6 | Heritage mixed | Backyard | 150 | No | 5 | 5 | 2017 |
#77 | Alberta | 80 | Heritage | Backyard | 150 | No | 7 | 4 | 2017 |
#84 | Alberta | 22 | Heritage | Backyard | 50 | No | 5 | 0 | 2017 |
#85 | Alberta | 40 | Heritage | Backyard | 120 | No | 80 | 80 | 2017 |
Isolate | Genome Length | Province | Total Reads | Mapped Reads | Virus Isolation | Accession # |
---|---|---|---|---|---|---|
CAN/AB-15A | 153,648 | Alberta | 5,650,374 | 9220 | LMH cells | MT797239 |
CAN/AB-S20 | 152,695 | Alberta | 3,630,632 | 18,054 | LMH cells | MT797240 |
CAN/AB-S42 | 153,469 | Alberta | 3,128,494 | 75,084 | LMH cells | MT797241 |
CAN/AB-S45 | 153,630 | Alberta | 4,144,190 | 55,821 | LMH cells | MT797242 |
CAN/AB-S50 | 153,641 | Alberta | 2,394,680 | 41,448 | LMH cells | MT797243 |
CAN/AB-S61 | 153,643 | Alberta | 3,603,066 | 15,064 | LMH cells | MT797244 |
CAN/AB-S63 | 152,703 | Alberta | 2,660,390 | 9072 | LMH cells | MT797245 |
CAN/AB-S77 | 153,633 | Alberta | 3,245,498 | 17,863 | LMH cells | MT797246 |
CAN/AB-S84 | 153,643 | Alberta | 3,090,720 | 9735 | LMH cells | MT797247 |
CAN/AB-T85 | 153,631 | Alberta | 2,504,122 | 12,822 | LMH cells | MT797248 |
CAN/BC-10-1122 | 150,118 | British Columbia | 2,404,772 | 502,040 | LMH cells | MT797249 |
CAN/QC-1990662 | 153,598 | Quebec | 4,669,964 | 67,376 | CAM | MT797250 |
CAN/QC-2154822 | 151,326 | Quebec | 4,233,878 | 9055 | CAM | MT797251 |
CAN/QC-2175807 | 153,468 | Quebec | 8,493,852 | 50,518 | CAM | MT797252 |
Gene | Protein | CDS Position | Nucleotide Change | Amino Acid Change | Sequence |
---|---|---|---|---|---|
US7 | Envelope glycoprotein | 57 | C → T | CAN/AB-45, 84 and 77 | |
UL39 | RDR large subunit | 58 | G → A | D → N | CAN/AB-45, 84 and 77 |
UL35 | Large tegument protein | 89 | C → T | T → I | CAN/AB-45, 84 and 77 |
UL1 | Uracil-DNA glycosylase | 121 | C → T | D → N | CAN/AB-15, 42, 50, 61, 84 and CAN/QC-1990662 |
UL10 | Envelope gM | 124 | T → C | T → A | * |
US10 | Virion protein | 128 | A → G | D → G | CAN/AB-45, 84 and 77 |
US10 | 128 | T → C | D → G | CAN/AB-45, 84 and 77 | |
UL1 | 161 | T → G | Q → P | * | |
UL27 | Envelope gB | 347 | A → G | V → A | * |
ORFB | ORF B protein | 352 | A → C | * | |
ORFA | ORF A protein | 360 | A → C | * | |
UL49 | Envelope gN | 378 | T → C | CAN/AB -15, 42, 50, 61& 84 | |
ORFE | ORF E protein | 398 | C → G | G → A | * |
UL50 | DUTN | 453 | A → G | * | |
US8 | Envelope gE | 629 | A → G | K → R | * |
UL46 | Putative viral tegument protein | 849 | A → G | * | |
UL21 | Tegument protein | 924 | C → T | CAN/AB -15, 42, 50, 61& 84 | |
UL5 | DNA replication helicase | 1027 | A → G | K → E | * |
US6 | Envelope gD | 1164 | C → T | CAN/AB-45, 84 and 77 | |
US3 | Protein Kinase | 1200 | A → G | * | |
UL44 | Envelope gC | 1201 | T → C | CAN/AB -15, 42, 50, 61& 84 | |
UL9 | DNA replication origin-binding helicase | 1428 | G → C | Q → H | CAN/AB -15, 42, 50, 61& 84 |
ORFF | ORF F protein | 1878 | T → C | CAN/AB-15, 42, 50, 61, 84 and CAN/QC-1990662 | |
ORFF | 1883 | C → A | S → Y | CAN/AB-45, 84 and 77 | |
ORFF | 1899 | CT → TA | GS → GT | CAN/AB-15, 42, 50, 61, 84 and CAN/QC-1990662 | |
UL28 | Tripartite terminase subunit 1 | 1913 | A → G | V → A | * |
UL27 | Envelope gB | 1931 | A → G | I → T | * |
UL52 | Helicase-primase primase subunit | 2232 | A → T | F → L | CAN/AB -15, 42, 50, 61& 84 |
UL52 | 2256 | G → A | CAN/AB -15, 42, 50, 61& 84 | ||
UL52 | 2325 | C → T | CAN/AB -15, 42, 50, 61& 84 | ||
ICP4 | Major viral transcription factor | 2342 | T → C | H → R | * |
ICP4 | 2342 | A → G | H → R | * | |
UL36 | Large tegument protein | 2449 | G → A | R → C | CAN/AB-15, 42, 50, 61, 84 and CAN/QC-1990662 |
UL36 | 4040 | C → T | R → H | * | |
ICP4 | Major viral transcription factor | 4281 | C → T | * | |
ICP4 | 4281 | G → A | * | ||
UL36 | Large tegument protein | 7677 | T → C | * | |
UL36 | 8349 | C → A | CAN/AB-45, 84 and 77 |
Potential Recombinant | Potential Major Parent | Potential Minor Parent | Detection Methods | p-Values | Position of Recombination Breaking Points |
---|---|---|---|---|---|
BC-10-1122 | LT-IVAX | Poulvac ILT Nobilis Laryngo-vac | RDP GENECONV MaxChi Chimaera SiScan 3Seq | 2.379 × 10−6; 3.356 × 10−9 * 1.457 × 10−5; 3.362 × 10−8 * 3.060 × 10−6; 6.860 × 10−8 * 1.518 × 10−6; 3.337 × 10−8 * 1.476 × 10−5; 1.054 × 10−7 * 1.194 × 10−7; 2.190 × 10−3 * | 15,393-UL52 37,509-UL26 113,748-ICP4 |
6.48.88 | SA2 | CAN/AB-S20 | RDP GENCONV MaxChi Chimaera SiScan 3Seq | 5.375 × 10−20 1.864 × 10−18 2.159 × 10−10 1.463 × 10−10 2.379 × 10−11 | 9652-ORF F 81,152-UL 19 104,647-UL 5 |
1–15,393 | 15,393–37,509 | 37,509–113,748 | 113,748–End | |
---|---|---|---|---|
Poulvac ILT | 77.09% | 99.98% | 99.84% | 99.52% |
TCO_IVAX | 99.41% | 99.91% | 99.83% | 87.99% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez Contreras, A.; van der Meer, F.; Checkley, S.; Joseph, T.; King, R.; Ravi, M.; Peters, D.; Fonseca, K.; Gagnon, C.A.; Provost, C.; et al. Analysis of Whole-Genome Sequences of Infectious laryngotracheitis Virus Isolates from Poultry Flocks in Canada: Evidence of Recombination. Viruses 2020, 12, 1302. https://doi.org/10.3390/v12111302
Perez Contreras A, van der Meer F, Checkley S, Joseph T, King R, Ravi M, Peters D, Fonseca K, Gagnon CA, Provost C, et al. Analysis of Whole-Genome Sequences of Infectious laryngotracheitis Virus Isolates from Poultry Flocks in Canada: Evidence of Recombination. Viruses. 2020; 12(11):1302. https://doi.org/10.3390/v12111302
Chicago/Turabian StylePerez Contreras, Ana, Frank van der Meer, Sylvia Checkley, Tomy Joseph, Robin King, Madhu Ravi, Delores Peters, Kevin Fonseca, Carl A. Gagnon, Chantale Provost, and et al. 2020. "Analysis of Whole-Genome Sequences of Infectious laryngotracheitis Virus Isolates from Poultry Flocks in Canada: Evidence of Recombination" Viruses 12, no. 11: 1302. https://doi.org/10.3390/v12111302
APA StylePerez Contreras, A., van der Meer, F., Checkley, S., Joseph, T., King, R., Ravi, M., Peters, D., Fonseca, K., Gagnon, C. A., Provost, C., Ojkic, D., & Abdul-Careem, M. F. (2020). Analysis of Whole-Genome Sequences of Infectious laryngotracheitis Virus Isolates from Poultry Flocks in Canada: Evidence of Recombination. Viruses, 12(11), 1302. https://doi.org/10.3390/v12111302