Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia
Abstract
:1. Introduction
2. Integrating Bat Ecology and Conservation with Virus Surveillance
2.1. Bats as Viral Reservoir Hosts
2.2. Bat Conservation and Viral Emergence: Shared Anthropogenic Drivers
2.3. Bat Research Networks
2.4. Integrating Bat Research Networks and Virus Surveillance Initiatives
3. Collaborative Research on Bats and Associated Viruses in Western Asia
3.1. Opportunities
3.2. Challenges
3.2.1. Limited Research Effort in Western Asia: Bats
3.2.2. Limited Research Effort in Western Asia: Bat-Associated Viruses
4. Western Asia Bat Research Network (WAB-Net)
4.1. Hypothesis-Driven Research Approach
4.2. Sustainability of Bat Virus Research in Western Asia
4.2.1. In-Service Training
4.2.2. Data Sharing
4.2.3. Communication
4.2.4. Local Leadership
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Voigt, C.C.; Kingston, T. Bats in the Anthropocene. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–9. [Google Scholar]
- IUCN The IUCN Red List of Threatened Species. Version 2018-2. Available online: http://www.iucnredlist.org (accessed on 5 February 2019).
- Mickleburgh, S.P.; Hutson, A.M.; Racey, P.A. A review of the global conservation status of bats. Oryx 2002, 36, 18–34. [Google Scholar] [CrossRef]
- Racey, P.A. Bat Conservation: Past, Present and Future. In Bat Evolution, Ecology, and Conservation; Adams, R.A., Pedersen, S.C., Eds.; Springer: New York, NY, USA, 2013; pp. 517–532. [Google Scholar]
- Olival, K.J.; Weekley, C.C.; Daszak, P. Are bats really “special” as viral reservoirs? What we know and need to know. In Bats and Viruses: A New Frontier of Emerging Infectious Diseases; Wang, L.-F., Bowled, C., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2015; pp. 281–294. [Google Scholar]
- Lei, B.R.; Olival, K.J. Contrasting patterns in mammal-bacteria coevolution: Bartonella and Leptospira in bats and rodents. PLoS Negl. Trop. Dis. 2014, 8, e2738. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J.; Hayman, D.T.S. Filoviruses in bats: Current knowledge and future directions. Viruses 2014, 6, 1759–1788. [Google Scholar] [CrossRef] [PubMed]
- Drexler, J.F.; Corman, V.M.; Müller, M.A.; Maganga, G.D.; Vallo, P.; Binger, T.; Gloza-Rausch, F.; Cottontail, V.M.; Rasche, A.; Yordanov, S.; et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 2012, 3, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthony, S.J.; Johnson, C.K.; Greig, D.J.; Kramer, S.; Che, X.; Wells, H.; Hicks, A.L.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; et al. Global patterns in coronavirus diversity. Virus Evol. 2017, 3, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Racey, P.A.; Fenton, B.; Mubareka, S.; Simmons, N.; Tuttle, M. Don’t misrepresent link between bats and SARS. Nature 2018, 553, 281. [Google Scholar] [CrossRef] [PubMed]
- Cyranoski, D. Bat cave solves mystery of deadly SARS virus—And suggests new outbreak could occur. Nature 2017, 552, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J. To cull, or not to cull, bat is the question. Ecohealth 2016, 13, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, K.; Voigt, C.C. Zoonotic Viruses and Conservation of Bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 263–292. [Google Scholar]
- Karesh, W.B.; Cook, R.A. One world--one health. Clin. Med. 2009, 9, 259–260. [Google Scholar] [CrossRef]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- WHO-CBD. Connecting Global Priorities: Biodiversity and Human Health; World Health Organization and Secretariat of the Convention on Biological Diversity: Geneva, Switzerland, 2015; Available online: wedocs.unep.org (accessed on 31 January 2019).
- CBD Guidance on Integrating Biodiversity Considerations into One Health Approaches; Convention on Biological Diversity: Montreal, PQ, Canada, 2017.
- Kingston, T.; Aguirre, L.; Armstrong, K.; Mies, R.; Racey, P.; Rodríguez-Herrera, B.; Waldien, D. Networking Networks for Global Bat Conservation. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 539–569. [Google Scholar]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef] [PubMed]
- Brierley, L.; Vonhof, M.J.; Olival, K.J.; Daszak, P.; Jones, K.E. Quantifying global drivers of zoonotic bat viruses: A process-based perspective. Am. Nat. 2016, 187, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Beltz, L.A. Bats and Human Health: Ebola, SARS, Rabies and Beyond; John Wiley & Sons: New York, NY, USA, 2017. [Google Scholar]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Hayman, D.T.S. Bats as Viral Reservoirs. Annu Rev Virol 2016, 3, 77–99. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J.; Epstein, J.H.; Wang, L.-F.; Field, H.E.; Daszak, P. Are bats exceptional viral reservoirs? In New Directions in Conservation Medicine: Applied Cases of Ecological Health; Aguirre, A.A., Ostfeld, R., Daszak, P., Eds.; Oxford Publishing: Oxford, UK, 2012; pp. 195–212. [Google Scholar]
- Wang, L.-F.; Cowled, C. Bats and Viruses: A New Frontier of Emerging Infectious Diseases; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Hayman, D.T.S.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O’Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.N. Ecology of zoonotic infectious diseases in bats: Current knowledge and future directions. Zoonoses Public Health 2013, 60, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Luis, A.D.; Hayman, D.T.S.; O’Shea, T.J.; Cryan, P.M.; Gilbert, A.T.; Pulliam, J.R.C.; Mills, J.N.; Timonin, M.E.; Willis, C.K.R.; Cunningham, A.A.; et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc. Biol. Sci. 2013, 280, 20122753. [Google Scholar] [CrossRef] [PubMed]
- Han, H.-J.; Wen, H.-L.; Zhou, C.-M.; Chen, F.-F.; Luo, L.-M.; Liu, J.-W.; Yu, X.-J. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 2015, 205, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Field, H.E. Bats and emerging zoonoses: Henipaviruses and SARS. Zoonoses Public Health 2009, 56, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Fan, H.; Lan, T.; Yang, X.-L.; Shi, W.-F.; Zhang, W.; Zhu, Y.; Zhang, Y.-W.; Xie, Q.-M.; Mani, S.; et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018, 556, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schountz, T.; Baker, M.L.; Butler, J.; Munster, V. Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front. Immunol. 2017, 8, 1098. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, T.J.; Cryan, P.M.; Cunningham, A.A.; Fooks, A.R.; Hayman, D.T.S.; Luis, A.D.; Peel, A.J.; Plowright, R.K.; Wood, J.L.N. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 2014, 20, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cowled, C.; Shi, Z.; Huang, Z.; Bishop-Lilly, K.A.; Fang, X.; Wynne, J.W.; Xiong, Z.; Baker, M.L.; Zhao, W.; et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 2013, 339, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; Lau, S.K.P.; Huang, Y.; Yuen, K.-Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. 2009, 234, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Ge, X.; Wang, L.-F.; Shi, Z. Bat origin of human coronaviruses. Virol. J. 2015, 12, 221. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Mishra, N.; Olival, K.J.; Fagbo, S.F.; Kapoor, V.; Epstein, J.H.; Alhakeem, R.; Durosinloun, A.; Al Asmari, M.; Islam, A.; et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis. 2013, 19, 1819–1823. [Google Scholar] [CrossRef] [PubMed]
- Anthony, S.J.; Gilardi, K.; Menachery, V.D.; Goldstein, T.; Ssebide, B.; Mbabazi, R.; Navarrete-Macias, I.; Liang, E.; Wells, H.; Hicks, A.; et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 2017, 8, e00373-17. [Google Scholar] [CrossRef] [PubMed]
- Ithete, N.L.; Stoffberg, S.; Corman, V.M.; Cottontail, V.M.; Richards, L.R.; Schoeman, M.C.; Drosten, C.; Drexler, J.F.; Preiser, W. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 2013, 19, 1697–1699. [Google Scholar] [CrossRef] [PubMed]
- Al-Omari, A.; Rabaan, A.A.; Salih, S.; Al-Tawfiq, J.A.; Memish, Z.A. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn. Microbiol. Infect. Dis. 2019, 93, 265–285. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.-Y.; Li, J.-L.; Yang, X.-L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503, 535–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J.H.; Wang, H.; Crameri, G.; Hu, Z.; Zhang, H.; et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005, 310, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, S.-Y.; Yang, X.-L.; Huang, H.-M.; Zhang, Y.-J.; Guo, H.; Luo, C.-M.; Miller, M.; Zhu, G.; Chmura, A.A.; et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol. Sin. 2018, 33, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Shankar, V.; Bowen, R.A.; Davis, A.D.; Rupprecht, C.E.; O’Shea, T.J. Rabies in a captive colony of big brown bats (Eptesicus fuscus). J. Wildl. Dis. 2004, 40, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Picard-Meyer, E.; Servat, A.; Wasniewski, M.; Gaillard, M.; Borel, C.; Cliquet, F. Bat rabies surveillance in France: First report of unusual mortality among serotine bats. BMC Vet. Res. 2017, 13, 387. [Google Scholar] [CrossRef] [PubMed]
- Hayman, D.T.S.; Luis, A.D.; Restif, O.; Baker, K.S.; Fooks, A.R.; Leach, C.; Horton, D.L.; Suu-Ire, R.; Cunningham, A.A.; Wood, J.L.N.; et al. Maternal antibody and the maintenance of a lyssavirus in populations of seasonally breeding African bats. PLoS ONE 2018, 13, e0198563. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.M.; Gilbert, A.; Slate, D.; Chipman, R.; Singh, A.; Cassie, W.; Blanton, J.D. Right place, wrong species: A 20-year review of rabies virus cross species transmission among terrestrial mammals in the United States. PLoS ONE 2014, 9, e107539. [Google Scholar] [CrossRef] [PubMed]
- Banyard, A.C.; Evans, J.S.; Luo, T.R.; Fooks, A.R. Lyssaviruses and bats: Emergence and zoonotic threat. Viruses 2014, 6, 2974–2990. [Google Scholar] [CrossRef] [PubMed]
- Banyard, A.C.; Hayman, D.; Johnson, N.; McElhinney, L.; Fooks, A.R. Bats and lyssaviruses. Adv. Virus Res. 2011, 79, 239–289. [Google Scholar] [PubMed]
- Kemenesi, G.; Kurucz, K.; Dallos, B.; Zana, B.; Földes, F.; Boldogh, S.; Görföl, T.; Carroll, M.W.; Jakab, F. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg. Microbes Infect. 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Negredo, A.; Palacios, G.; Vázquez-Morón, S.; González, F.; Dopazo, H.; Molero, F.; Juste, J.; Quetglas, J.; Savji, N.; de la Cruz Martínez, M.; et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 2011, 7, e1002304. [Google Scholar] [CrossRef] [PubMed]
- Kunz, T.H.; de Torrez, E.B.; Bauer, D.; Lobova, T.; Fleming, T.H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Mildenstein, T.; Tanshi, I.; Racey, P.A. Exploitation of bats for bushmeat and medicine. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Springer International Publishing: Cham, Switzerland, 2016; pp. 325–375. [Google Scholar]
- Epstein, J.H.; Olival, K.J.; Pulliam, J.R.C.; Smith, C.; Westrum, J.; Hughes, T.; Dobson, A.P.; Zubaid, A.; Rahman, S.A.; Basir, M.M.; et al. Pteropus vampyrus, a hunted migratory species with a multinational home-range and a need for regional management. J. Appl. Ecol. 2009, 46, 991–1002. [Google Scholar] [CrossRef]
- Lee, B.P.Y.-H.; Struebig, M.J.; Rossiter, S.J.; Kingston, T. Increasing concern over trade in bat souvenirs from South-east Asia. Oryx 2015, 49, 204. [Google Scholar] [CrossRef] [Green Version]
- Amr, Z.S.; Baker, M.A.A.; Qumsiyeh, M.B. Bat diversity and conservation in Jordan. Turk. Zool. J. 2006, 30, 235–244. [Google Scholar]
- Alagaili, A. Biological, Ecological, and Conservational Study of Kuhl’s Bat (Pipistrellus kuhlii) from Unizah Province, Saudi Arabia. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2008. [Google Scholar]
- Zohoori, H. Fake bat news: Bat saliva contains mercury which can be harvested from the nest. Bat News 2018, 117, 22–23. [Google Scholar]
- Kunz, T.H. Roosting Ecology of Bats. In Ecology of Bats; Kunz, T.H., Brock, F.M., Eds.; Springer: Berlin, Germany, 1982; pp. 1–55. [Google Scholar]
- Khanfar, J. “The Nest of Bat” a New Phenomenon Sweeping Facebook. Al Anbat News. 2018. Available online: http://www.alanbatnews.net/article/index/197107 (accessed on 23 January 2019).
- Mickleburgh, S.; Waylen, K.; Racey, P. Bats as bushmeat: A global review. Oryx 2009, 43, 217–234. [Google Scholar] [CrossRef]
- Pernet, O.; Schneider, B.S.; Beaty, S.M.; LeBreton, M.; Yun, T.E.; Park, A.; Zachariah, T.T.; Bowden, T.A.; Hitchens, P.; Ramirez, C.M.; et al. Evidence for henipavirus spillover into human populations in Africa. Nat. Commun. 2014, 5, 5342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Openshaw, J.J.; Hegde, S.; Sazzad, H.M.S.; Khan, S.U.; Hossain, M.J.; Epstein, J.H.; Daszak, P.; Gurley, E.S.; Luby, S.P. Bat hunting and bat-human interactions in Bangladeshi villages: Implications for zoonotic disease transmission and bat conservation. Transbound. Emerg. Dis. 2017, 64, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Oleksy, R.Z.; Ayady, C.L.; Tatayah, V.; Jones, C.; Froidevaux, J.S.P.; Racey, P.A.; Jones, G. The impact of the Endangered Mauritian flying fox Pteropus niger on commercial fruit farms and the efficacy of mitigation. Oryx 2018. [Google Scholar] [CrossRef]
- Florens, F.B.V.; Baider, C. Mass-culling of a threatened island flying fox species failed to increase fruit growers’ profits and revealed gaps to be addressed for effective conservation. J. Nat. Conserv. 2019, 47, 58–64. [Google Scholar] [CrossRef]
- Amman, B.R.; Nyakarahuka, L.; McElroy, A.K.; Dodd, K.A.; Sealy, T.K.; Schuh, A.J.; Shoemaker, T.R.; Balinandi, S.; Atimnedi, P.; Kaboyo, W.; et al. Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda. Emerg. Infect. Dis. 2014, 20, 1761–1764. [Google Scholar] [CrossRef] [PubMed]
- Streicker, D.G.; Recuenco, S.; Valderrama, W.; Gomez Benavides, J.; Vargas, I.; Pacheco, V.; Condori Condori, R.E.; Montgomery, J.; Rupprecht, C.E.; Rohani, P.; et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: Implications for transmission and control. Proc. Biol. Sci. 2012, 279, 3384–3392. [Google Scholar] [CrossRef] [PubMed]
- Frick, W.; Kingston, T.; Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 2019, in press. [Google Scholar]
- Daszak, P.; Plowright, R.; Epstein, J.H.; Pulliam, J.; Abdul Rahman, S.; Field, H.E.; Smith, C.S.; Olival, K.J.; Luby, S.; Halpin, K.; et al. The emergence of Nipah and Hendra virus: Pathogen dynamics across a wildlife-livestock-human continuum. In Disease Ecology: Community Structure and Pathogen Dynamics; Oxford University Press: Oxford, UK, 2006; pp. 186–201. [Google Scholar]
- Gurley, E.S.; Hegde, S.T.; Hossain, K.; Sazzad, H.M.S.; Hossain, M.J.; Rahman, M.; Sharker, M.A.Y.; Salje, H.; Islam, M.S.; Epstein, J.H.; et al. Convergence of humans, bats, trees, and culture in Nipah virus transmission, Bangladesh. Emerg. Infect. Dis. 2017, 23, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.A.; Olival, K.J.; Bumrungsri, S.; Richards, G.C.; Racey, P.A. The conflict between Pteropodid bats and fruit growers: Species, legislation and mitigation. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 377–426. [Google Scholar]
- Phelps, K.; Jose, R.; Labonite, M.; Kingston, T. Correlates of cave-roosting bat diversity as an effective tool to identify priority caves. Biol. Conserv. 2016, 201, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Phelps, K.; Jose, R.; Labonite, M.; Kingston, T. Assemblage and species threshold responses to environmental and disturbance gradients shape bat diversity in disturbed cave landscapes. Diversity 2018, 10, 55. [Google Scholar] [CrossRef]
- Amman, B.R.; Carroll, S.A.; Reed, Z.D.; Sealy, T.K.; Balinandi, S.; Swanepoel, R.; Kemp, A.; Erickson, B.R.; Comer, J.A.; Campbell, S.; et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012, 8, e1002877. [Google Scholar] [CrossRef] [PubMed]
- Breed, A.C.; Field, H.E.; Smith, C.S.; Edmonston, J.; Meers, J. Bats without borders: Long-distance movements and implications for disease risk management. Ecohealth 2010, 7, 204–212. [Google Scholar] [CrossRef] [PubMed]
- RELCOM Strategy for the Conservation of Bats in Latin America and the Caribbean. Available online: http://www.relcomlatinoamerica.net/que-hacemos/investigacion.html (accessed on 4 February 2019).
- SEABCRU Disease Recommendations for Personal Protection and Safety. Available online: http://www.seabcru.org/?page_id=1137 (accessed on 4 February 2019).
- Racey, P.A.; Hutson, A.M.; Lina, P.H.C. Bat rabies, public health and European bat conservation. Zoonoses Public Health 2013, 60, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Eby, P.; Hudson, P.J.; Smith, I.L.; Westcott, D.; Bryden, W.L.; Middleton, D.; Reid, P.A.; McFarlane, R.A.; Martin, G.; et al. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 2015, 282, 20142124. [Google Scholar] [CrossRef] [PubMed]
- Badrane, H.; Tordo, N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J. Virol. 2001, 75, 8096. [Google Scholar] [CrossRef] [PubMed]
- Calisher, C.H.; Holmes, K.V.; Dominguez, S.R.; Schountz, T.; Cryan, P. Bats prove to be rich reservoirs for emerging viruses. Microbe 2008, 3, 521–528. [Google Scholar] [CrossRef]
- Cui, J.; Han, N.; Streicker, D.; Li, G.; Tang, X.; Shi, Z.; Hu, Z.; Zhao, G.; Fontanet, A.; Guan, Y.; et al. Evolutionary relationships between bat coronaviruses and their hosts. Emerg. Infect. Dis. 2007, 13, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, A.R.; Phelps, K.L.; PREDICT Consortium; Olival, K.J. A comparative analysis of viral richness and viral sharing in cave-roosting bats. Diversity 2017, 9, 35. [Google Scholar] [CrossRef]
- BOHRN Bat One Health Research Network. Available online: https://www.bohrn.net/ (accessed on 16 February 2019).
- Nader, I.A. Bats (Chiroptera) of Kingdom of Saudi-Arabia. J. Zool. 1975, 176, 331–340. [Google Scholar] [CrossRef]
- DeBlase, A.F. The Bats of Iran: Systematics, Distribution, Ecology. In Fieldiana: Zoology; Field Museum of Natural History: Chicago, IL, USA, 1980. [Google Scholar]
- Al-Safadi, M.M. Chiropteran Fauna of Yemen Arab Republic. Mammalia 1991, 55, 269–274. [Google Scholar] [CrossRef]
- Benda, P. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 1: Review of distribution and taxonomy of bats in Turkey. Acta Soc. Zool. Bohem. 1998, 62, 255–313. [Google Scholar]
- Harrison, D.L.; Bates, P.J.J. The Mammals of Arabia, 2nd ed.; Harrison Zoological Museum: Kent, UK, 1991. [Google Scholar]
- Yavruyan, E.; Rakhmatulina, I.; Bukhnikashvili, A.; Kandaurov, A.; Natradze, I.; Gazaryan, S. Bats Conservation Action Plan for the Caucasus; Kandaurov, A., Ed.; Publishing House Universal: Tbilisi, Georgia, 2008. [Google Scholar]
- Al-Sheikhly, O.F.; Haba, M.K.; Görföl, T.; Csorba, G. First confirmed records of two bat species for Iraq: Rhinolophus euryale and Myotis emarginatus (Chiroptera). Mammalia 2016, 80, 156. [Google Scholar] [CrossRef]
- Mahmood-ul-Hassan, M.; Salim, M. Two new bat species (Chiroptera: Mammalia) for Pakistan: Miniopterus fuliginosus and Myotis formosus. Mammalia 2015, 79, 125–129. [Google Scholar] [CrossRef]
- Benda, P.; Reiter, A.; Uhrin, M.; Varadínová, Z. A new species of pipistrelle bat (Chiroptera: Vespertilionidae) from southern Arabia. Acta Chiropt. 2016, 18, 301–323. [Google Scholar] [CrossRef]
- Naderi, S.; Dietz, C.; Mirzajani, A.; Mayer, F. First record of Nathusius’ Pipistrelle, Pipistrellus nathusii (Mammalia: Chiroptera), from Iran. Zool. Middle East 2017, 63, 93–94. [Google Scholar] [CrossRef]
- Javid, A.; Mahmood-ul-Hassan, M.; Nadeem, M.S.; Rana, N.; Khan, N. First record of the lesser mouse-tailed bat Rhinopoma hardwickii (Rhinopomatidae: Chiroptera) from southern Punjab, Pakistan. J. Anim. Plant Sci. 2012, 22, 278–282. [Google Scholar]
- Paksuz, S.; Özkan, B. New distributional records and some notes for greater noctule, Nyctalus lasiopterus (Mammalia: Chiroptera) from Turkey. Acta Zool. Bulg. 2011, 63, 217–220. [Google Scholar]
- Salim, M.; Mahmood-ul-Hassan, M. Description of the first record of the Indian false vampire bat (Megaderma lyra) E. Geoffroy, 1810 (Megadermatidae: Chiroptera) captured from northwestern Pakistan. J. Anim. Plant Sci. 2014, 24, 1374–1379. [Google Scholar]
- Mahmood-ul-Hassan, M.; Jones, G. Bats of Pakistan. The Least Known Mammals; VDM Verlag Dr. Muller: Saarbrucken, Germany, 2009. [Google Scholar]
- Dietz, C.; Gazaryan, A.; Papov, G.; Dundarova, H.; Mayer, F. Myotis hajastanicus is a local vicariant of a widespread species rather than a critically endangered endemic of the Sevan lake basin (Armenia). Mamm. Biol. 2016, 81, 518–522. [Google Scholar] [CrossRef]
- Benda, P.; Gvoždík, V. Taxonomy of the genus Otonycteris (Chiroptera: Vespertilionidae: Plecotini) as inferred from morphological and mtDNA data. Acta Chiropt. 2010, 12, 83–102. [Google Scholar] [CrossRef]
- Benda, P.; Reiter, A.; Al-Jumaily, M.; Nasher, A.K.; Hulva, P. A new species of mouse-tailed bat (Chiroptera: Rhinopomatidae: Rhinopoma) from Yemen. J. Natl. Mus. (Prague) Nat. Hist. Ser. 2009, 177, 53–68. [Google Scholar]
- Hijams, R.J. raster: Geographic Data Analysis and Modeling. R Package Version 2.6-7. 2017. Available online: https://CRAN.R-project.org/package=raster (accessed on 18 December 2018).
- Ross, N. fasterize: Fast Polygon to Raster Conversion. R Package Version 1.0.0. 2018. Available online: https://CRAN.R-project.org/package=fasterize (accessed on 19 December 2018).
- Bivand, R.; Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R Package Version 0.9-4. 2018. Available online: https://CRAN.R-project.org/package=maptools (accessed on 18 December 2018).
- Garnier, S.; Ross, N.; Rudis, B.; Sciani, M.; Scherer, C. viridis: Default Color Maps from “matplotlib”. R Package Version 0.5.1. 2018. Available online: https://CRAN.R-project.org/package=viridis (accessed on 12 January 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 18 December 2018).
- Leopardi, S.; Oluwayelu, D.; Meseko, C.; Marciano, S.; Tassoni, L.; Bakarey, S.; Monne, I.; Cattoli, G.; De Benedictis, P. The close genetic relationship of lineage D Betacoronavirus from Nigerian and Kenyan straw-colored fruit bats (Eidolon helvum) is consistent with the existence of a single epidemiological unit across sub-Saharan Africa. Virus Genes 2016, 52, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Hayman, D.T.S.; Fooks, A.R.; Rowcliffe, J.M.; McCrea, R.; Restif, O.; Baker, K.S.; Horton, D.L.; Suu-Ire, R.; Cunningham, A.A.; Wood, J.L.N. Endemic Lagos bat virus infection in Eidolon helvum. Epidemiol. Infect. 2012, 140, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Tyem, D.A.; Dogonyaro, B.B.; Woma, T.A.; Ngoepe, E.C.; Sabeta, C.T. Sero-surveillance of lyssavirus specific antibodies in Nigerian fruit bats (Eidolon helvum). Trop. Med. Infect. Dis. 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Hayman, D.T.S.; Yu, M.; Crameri, G.; Wang, L.-F.; Suu-Ire, R.; Wood, J.L.N.; Cunningham, A.A. Ebola virus antibodies in fruit bats, Ghana, West Africa. Emerg. Infect. Dis. 2012, 18, 1207–1209. [Google Scholar] [CrossRef] [PubMed]
- Peel, A.J.; Sargan, D.R.; Baker, K.S.; Hayman, D.T.S.; Barr, J.A.; Crameri, G.; Suu-Ire, R.; Broder, C.C.; Lembo, T.; Wang, L.-F.; et al. Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses. Nat. Commun. 2013, 4, 2770. [Google Scholar] [CrossRef] [PubMed]
- Mickleburgh, S.; Hutson, A.M.; Bergmans, W.; Fahr, J.; Racey, P.A. Eidolon helvum. Available online: https://www.iucnredlist.org/species/7084/12824968 (accessed on 11 February 2019).
- Taylor, P. Rhinolophus hipposideros. Available online: http://dx.doi.org/10.2305/iucn.uk.2016-2.rlts.t19518a21972794.en (accessed on 11 February 2019).
- Rihtaric, D.; Hostnik, P.; Steyer, A.; Grom, J.; Toplak, I. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch. Virol. 2010, 155, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Shi, M.; Chommanard, C.; Queen, K.; Zhang, J.; Markotter, W.; Kuzmin, I.V.; Holmes, E.C.; Tong, S. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Fielding, B.C. Human coronavirus NL63: A clinically important virus? Future Microbiol. 2011, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z. PubMed and beyond: A survey of web tools for searching biomedical literature. Database 2011, 2011, baq036. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.J. rentrez: An R package for the NCBI eUtils API. R J. 2017, 9, 520–526. [Google Scholar]
- South, A. rworldmap: A New R package for Mapping Global Data. R J. 2011, 3, 35–43. [Google Scholar] [CrossRef]
- Gu, S.H.; Lim, B.K.; Kadjo, B.; Arai, S.; Kim, J.-A.; Nicolas, V.; Lalis, A.; Denys, C.; Cook, J.A.; Dominguez, S.R.; et al. Molecular phylogeny of hantaviruses harbored by insectivorous bats in Côte d’Ivoire and Vietnam. Viruses 2014, 6, 1897–1910. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2018, 41579. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Kulcsar, K.; Misra, V.; Frieman, M.; Mossman, K. Bats and coronaviruses. Viruses 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Mohd, H.A.; Al-Tawfiq, J.A.; Memish, Z.A. Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virol. J. 2016, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Eden, J.-S.; Holmes, E.C.; Wang, L.-F. Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): Implications for the origin and emergence of Middle East respiratory syndrome coronavirus. Virol. J. 2013, 10, 304. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K. Middle East respiratory syndrome virus pathogenesis. Semin. Respir. Crit. Care Med. 2016, 37, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Mackay, I.M.; Arden, K.E. Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd. Virus Res. 2015, 202, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.M.; Chu, D.K.W.; Gomaa, M.R.; AbiSaid, M.; El Shesheny, R.; Kandeil, A.; Bagato, O.; Chan, S.M.S.; Barbour, E.K.; Shaib, H.S.; et al. Surveillance for coronaviruses in bats, Lebanon and Egypt, 2013-2015. Emerg. Infect. Dis. 2016, 22, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Global Conflict Tracker Council on Foreign Relations Center for Preventative Action. Available online: https://www.cfr.org/interactives/global-conflict-tracker#!/ (accessed on 23 January 2019).
- Amr, Z. In memory of Dr. Adwan Shehab. Zool. Middle East 2015, 61, 294. [Google Scholar] [CrossRef]
- Stone, R. In Letter, Researchers Call for “Fair and Just” Treatment of Iranian Researchers Accused of Espionage. Science Magazine, 21 November 2018. [Google Scholar]
- Nasim, A.; Al-Hmoud, N.D.; AlMomin, S.; Rashid, N.; Temsamani, K.R.; Berger, K.; Franz, D.R. Paths to biosafety and biosecurity sustainability: A message from the MENA region. In Science and Diplomacy; American Association for the Advancement of Science: Washington, DC, USA, 2013; Volume 2. [Google Scholar]
- Javid, A.; Mahmood-ul-Hassan, M.; Hussain, S.M.; Iqbal, K.J. Recent record of the Asiatic lesser yellow house bat (Scotophilus kuhlii) from Punjab, Pakistan. Mammalia 2014, 78, 133–137. [Google Scholar] [CrossRef]
- Eghbali, H.; Shahabi, S.; Najafi, N.; Mehdizadeh, R.; Yousefi, S.; Sharifi, M. Postnatal growth, wing development and age estimations in the Mediterranean horseshoe bat Rhinolophus euryale (Chiroptera: Rhinolophidae) in Kerend cave, western Iran. Mammalia 2017, 82, 276–287. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Zafar, S.; Kayani, A.R.; Mushtaq, M.; Beg, M.A.; Nasir, M.F. Distribution and roosting habitats of some microchiropteran bats in Rawalpindi District, Pakistan. Pak. J. Zool. 2013, 45, 565–569. [Google Scholar]
- Bray, T.C.; Benda, P. Distribution of Asellia tridens (Chiroptera: Hipposideridae) lineages including representatives from Saudi Arabia. Zool. Middle East 2016, 62, 283–287. [Google Scholar] [CrossRef]
- Bilgin, R.; Gürün, K.; Maraci, Ö.; Furman, A.; Hulva, P.; Çoraman, E.; Lučan, R.K.; Bartonička, T.; Horáček, I. Syntopic occurrence in Turkey supports separate species status for Miniopterus schreibersii schreibersii and M. schreibersii pallidus (Mammalia: Chiroptera). Acta Chiropt. 2012, 14, 279–289. [Google Scholar] [CrossRef]
- Bukhnikashvili, A.; Natradze, N. Geoffroy’s bat (Myotis emarginatus) in Georgia: Present status of the species. Proc. Inst. Zool. Tbilisi 2008, 23, 177–179. [Google Scholar]
- Ghazaryan, A.; Hambardzumyan, V.; Hayrapetyan, T.; Papov, G. First International Conference Bat of Eastern Europe: Challenges for Conservation; George, A.M., Lina, P.H.C., Eds.; Lusabats Publishing House: Yerevan, Armenia, 2018. [Google Scholar]
- EMPHNET The Eastern Mediterranean Public Health Network. Available online: http://emphnet.net (accessed on 20 January 2018).
- Al Nsour, M.; Kaiser, R.; Abd Elkreem, E.; Walke, H.; Kandeel, A.; Bloland, R. Highlights and conclusions from the Eastern Mediterranean Public Health Network (EMPHNET) Conference. Eastern Mediterr. Health J. 2012, 18, 189–191. [Google Scholar] [CrossRef]
- Pak One Health Alliance Pak One Health. Alliance. Available online: http://www.pakonehealth.org/index.php (accessed on 18 January 2018).
- Kelly, T.R.; Karesh, W.B.; Johnson, C.K.; Gilardi, K.V.K.; Anthony, S.J.; Goldstein, T.; Olson, S.H.; Machalaba, C.; PREDICT Consortium; Mazet, J.A.K. One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Prev. Vet. Med. 2017, 137, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Fair, J.M.; Stokes, M.M.; Pennington, D.; Mendenhall, I.H. Scientific collaborations: How do we measure the return on relationships? Front Public Health 2016, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Havens, K.E.; Aumen, N.G. Hypothesis-driven experimental research is necessary for natural resource management. Environ. Manag. 2000, 25, 1–7. [Google Scholar]
- Johnson, P.T.J.; de Roode, J.C.; Fenton, A. Why infectious disease research needs community ecology. Science 2015, 349, 1259504. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, H.A.; Montgomery, W.I.; Lundy, M.G. The impact and implications of climate change for bats. Mamm. Rev. 2013, 43, 171–182. [Google Scholar] [CrossRef]
- Giles, J.R.; Eby, P.; Parry, H.; Peel, A.J.; Plowright, R.K.; Westcott, D.A.; McCallum, H. Environmental drivers of spatiotemporal foraging intensity in fruit bats and implications for Hendra virus ecology. Sci. Rep. 2018, 8, 9555. [Google Scholar] [CrossRef] [PubMed]
- Bond, K.C.; Macfarlane, S.B.; Burke, C.; Ungchusak, K.; Wibulpolprasert, S. The evolution and expansion of regional disease surveillance networks and their role in mitigating the threat of infectious disease outbreaks. Emerg. Health Threats J. 2013, 6, 19913. [Google Scholar] [CrossRef] [PubMed]
- EIDITH. Available online: https://eidith.org (accessed on 10 February 2019).
- Khan, S.U.; Gurley, E.S.; Hossain, M.J.; Nahar, N.; Sharker, M.A.Y.; Luby, S.P. A randomized controlled trial of interventions to impede date palm sap contamination by bats to prevent Nipah virus transmission in Bangladesh. PLoS ONE 2012, 7, e42689. [Google Scholar] [CrossRef] [PubMed]
- López-Baucells, A.; Rocha, R.; Fernández-Llamazares, Á. When bats go viral: Negative framings in virological research imperil bat conservation. Mamm. Rev. 2018, 48, 62–66. [Google Scholar] [CrossRef]
- Rabiee, M.H.; Mahmoudi, A.; Siahsarvie, R.; Kryštufek, B.; Mostafavi, E. Rodent-borne diseases and their public health importance in Iran. PLoS Negl. Trop. Dis. 2018, 12, e0006256. [Google Scholar] [CrossRef] [PubMed]
Country | Country Code (ISO3) in Figure 2 | Research Effort by Search Terms * | ||
---|---|---|---|---|
Bats | Bats and Viruses | Bats and Coronaviruses | ||
Afghanistan | AFG | 1 | 0 | 0 |
Armenia | ARM | 22 | 0 | 0 |
Azerbaijan | AZE | 2 | 0 | 0 |
Bahrain | BHR | 1 | 1 | 0 |
Georgia | GEO | 9 | 1 | 0 |
Iran | IRN | 76 | 4 | 0 |
Iraq | IRQ | 8 | 2 | 0 |
Israel | ISR | 533 | 9 | 0 |
Jordan | JOR | 44 | 21 | 9 |
Kuwait | KWT | 4 | 1 | 1 |
Lebanon | LBN | 37 | 4 | 2 |
Oman | OMN | 10 | 3 | 3 |
Pakistan | PAK | 37 | 4 | 1 |
Palestine | PSE | 1 | 0 | 0 |
Qatar | QAT | 11 | 4 | 4 |
Saudi Arabia | SAU | 67 | 29 | 32 |
Syria | SYR | 3 | 1 | 0 |
Turkey | TUR | 110 | 7 | 2 |
United Arab Emirates | ARE | 13 | 5 | 3 |
Yemen | YEM | 5 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phelps, K.L.; Hamel, L.; Alhmoud, N.; Ali, S.; Bilgin, R.; Sidamonidze, K.; Urushadze, L.; Karesh, W.; Olival, K.J. Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia. Viruses 2019, 11, 240. https://doi.org/10.3390/v11030240
Phelps KL, Hamel L, Alhmoud N, Ali S, Bilgin R, Sidamonidze K, Urushadze L, Karesh W, Olival KJ. Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia. Viruses. 2019; 11(3):240. https://doi.org/10.3390/v11030240
Chicago/Turabian StylePhelps, Kendra L., Luke Hamel, Nisreen Alhmoud, Shahzad Ali, Rasit Bilgin, Ketevan Sidamonidze, Lela Urushadze, William Karesh, and Kevin J. Olival. 2019. "Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia" Viruses 11, no. 3: 240. https://doi.org/10.3390/v11030240