Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics
Abstract
:1. Introduction
2. NGS and Viroids
2.1. Remarks
2.2. Cost of NGS
2.3. Viroid Studies by NGS
2.4. NGS Identification of Transcriptional (Gene Expression) Changes Associated with Viroid Infection
2.5. Searching for and Identifying Ancient Viroids by NGS
2.6. NGS in Viroid Quarantine and Certification Programs
3. Potential Utilization of CRISPR-Cas 13 Systems in Viroid Interference and Diagnostics
3.1. General Aspects
3.2. Application to Target Viroids for Inactivation
3.3. Application to Viroid Detection
4. Final Remarks
Dedication
Acknowledgments
Conflicts of Interest
References
- Diener, T.O. Potato spindle tuber virus with properties of a free nucleic acid. III. Subcellular location of PSTV-RNA and the question of whether virions exist in extracts or in situ. Virology 1971, 43, 75–89. [Google Scholar] [CrossRef]
- Diener, T.O. Potato spindle tuber “virus”. IV. A replicating, low molecular weight RNA. Virology 1971, 45, 411–428. [Google Scholar] [CrossRef]
- Fraenkel-Conrat, H.; Williams, R.C. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc. Natl. Acad. Sci. USA 1955, 41, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Di Serio, F.; Li, S.-F.; Pallas, V.; Owens, R.A.; Randles, J.W.; Sano, T.; Verhoeven, T.J.; Vidalakis, G.; Flores, R. Viroid taxonomy. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Oxford, UK, 2017; pp. 135–146. ISBN 978-0-12-801498-1. [Google Scholar]
- Waterworth, H.; Hadidi, A. Economic losses due to plant viruses. In Plant Virus Disease Control; Hadidi, A., Khetarpal, R.K., Koganezawa, H., Eds.; APS Press: St. Paul, MN, USA, 1998; pp. 1–13. ISBN 0-89054-191-4. [Google Scholar]
- Randles, J.W. Economic impact of viroid diseases. In Viroids; Hadidi, A., Flores, R., Randles, J.W., Semancik, J.S., Eds.; CSIRO Publishing: Collingwood, Australia, 2003; pp. 3–11. ISBN 1-57808-272-2. [Google Scholar]
- Hadidi, A.; Flores, R.; Randles, J.W.; Semancik, J.S. Viroids; CSIRO Publishing: Collingwood, Australia, 2003; ISBN 1-57808-272-2. [Google Scholar]
- Hadidi, A.; Flores, R.; Randles, J.W.; Palukaitis, P. Viroids and Satellites; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2017; ISBN 978-0-12-801498-1. [Google Scholar]
- Singh, R.P.; Randles, J.W.; Hadidi, A. Strategies for the control of viroid diseases. In Viroids; Hadidi, A., Flores, R., Randles, J.W., Semancik, J.S., Eds.; CSIRO Publishing: Collingwood, Australia, 2003; pp. 295–302. ISBN 1-57808-272-2. [Google Scholar]
- Singh, R.P.; Finnie, R.E.; Bagnal, R.H. Losses due to the potato spindle virus. Am. Potato J. 1971, 48, 266–267. [Google Scholar] [CrossRef]
- Pfannensteil, M.A.; Slack, S.A. Response of potato cultivars to infection by the potato spindle tuber viroid. Phytopathology 1980, 70, 922–926. [Google Scholar] [CrossRef]
- Sasaki, M.; Shikata, E. Studies on the host range of hop stunt disease in Japan. Proc. Jpn. Acad. 1977, 53, 103–108. [Google Scholar] [CrossRef]
- Sano, T. Hop stunt viroid. In Viroids; Hadidi, A., Flores, R., Randles, J.W., Semancik, J.S., Eds.; CSIRO Publishing: Collingwood, Australia, 2003; pp. 207–212. ISBN 1-57808-272-2. [Google Scholar]
- Hadidi, A.; Vidalakis, G.; Sano, T. Economic significance of fruit tree and grapevine viroids. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2017; pp. 15–25. ISBN 978-0-12-801498-1. [Google Scholar]
- Lavagi, I.; Matousek, J.; Vidalakis, G. Other cocadviroids. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2017; pp. 275–287. ISBN 978-0-12-801498-1. [Google Scholar]
- Jakse, J.; Radisek, S.; Pokorn, T.; Matousek, J.; Javornik, B. Deep sequencing revealed Citrus bark cracking viroid (CBCVd) as a highly aggressive pathogen on hop. Plant Pathol. 2015, 64, 831–842. [Google Scholar] [CrossRef]
- Hadidi, A.; Khetarpal, R.K.; Koganezawa, H. Plant Virus Disease Control; APS Press: St. Paul, MN, USA, 1998; ISBN 0-89054-191-4. [Google Scholar]
- Hadidi, A.; Barba, M.; Candresse, T.; Jelkmann, W. Virus and Virus-Like Diseases of Pome and Stone Fruits; APS Press: St. Paul, MN, USA, 1998; ISBN 0-89054-191-4. [Google Scholar]
- Barba, M.; Ilardi, V.; Pasquini, G. Control of pome and stone fruit virus diseases. Adv. Virus Res. 2015, 91, 47–61. [Google Scholar] [CrossRef]
- Hadidi, A.; Flores, R.; Candresse, T.; Barba, M. Next-generation sequencing and genome editing in plant virology. Front. Microbiol. 2016, 7, 1325. [Google Scholar] [CrossRef]
- Chertow, D.S. Next-generation diagnostics with CRISPR. Science 2018, 360, 381–382. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulsen, A.R. DNA sequencing with chain-terminator inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Barba, M.; Czosnek, H.; Hadidi, A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 2014, 6, 106–136. [Google Scholar] [CrossRef] [PubMed]
- Barba, M.; Hadidi, A. An overview of plant pathology and application of next-generation sequencing technologies. CAB Rev. 2015, 10, 1–10. [Google Scholar] [CrossRef]
- Barba, A.; Hadidi, A. Application of next-generation sequencing technologies to viroids. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2017; pp. 401–412. ISBN 978-0-12-801498-1. [Google Scholar]
- Wetterstrand, K.A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Available online: www.genome.gov/sequencingcostsdata (accessed on 21 January 2019).
- Ito, T.; Suzaki, K.; Nakano, M.; Sato, A. Characterization of a new apscaviroid from American persimmon. Arch. Virol. 2013, 158, 2629–2631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qi, S.; Tang, N.; Zhang, X.; Chen, S.; Zhu, P.; Ma, L.; Ching, J.; Xu, Y.; Lu, M.; et al. Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathog. 2014, 10, e1004553. [Google Scholar] [CrossRef] [PubMed]
- Chiumenti, M.; Torchetti, E.M.; Di Serio, F.; Minafra, A. Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs. Virus Res. 2014, 188, 54–59. [Google Scholar] [CrossRef]
- Wang, Y.; Atta, S.; Wang, X.; Yang, F.; Zhou, C.; Cao, M. Transcriptome sequencing reveals novel Citrus bark cracking viroid (CBCVd) variants from citrus and their molecular characterization. PLoS ONE 2018, 13, e0198022. [Google Scholar] [CrossRef]
- Suzuki, T.; Fujibayashi, M.; Hataya, T.; Taneda, A.; He, Y.-H.; Tsushima, T.; Duraisamy, G.S.; Siglova, K.; Matoušek, J.; Sano, T. Characterization of host-dependent mutations of apple fruit crinkle viroid replicating in newly identified experimental hosts suggests maintenance of stem-loop structures in the left-hand half of the molecule is important for replication. J. Gen. Virol. 2017, 98, 506–516. [Google Scholar] [CrossRef]
- Pirovano, W.; Miozzi, L.; Boetzer, M.; Pantaleo, V. Bioinformatics approaches for viral metagenomics in plants using short RNAs: Model case of study and application to a Cicer arietinum population. Front. Microbiol. 2015, 5, 790. [Google Scholar] [CrossRef]
- Glouzon, J.P.-S.; Bolduc, F.; Wang, S.; Najmanovich, R.J.; Perreault, J.-P. Deep-sequencing of the peach latent mosaic viroid reveals new aspects of population heterogeneity. PLoS ONE 2014, 9, e87297. [Google Scholar] [CrossRef]
- Brass, J.R.J.; Owens, R.A.; Matoušek, J.; Steger, G. Viroid quasispecies revealed by deep sequencing. RNA Biol. 2017, 14, 317–325. [Google Scholar] [CrossRef]
- Adkar-Purushothama, C.R.; Perreault, J.-P. Alterations of the viroid regions that interact with the host defense genes attenuate viroid infection in host plant. RNA Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- López-Carrasco, A.; Ballesteros, C.; Sentandreu, V.; Delgado, S.; Gago-Zachert, S.; Flores, R.; Sanjuán, R. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathog. 2017, 13, e1006547. [Google Scholar] [CrossRef] [PubMed]
- Navarro, B.; Pantaleo, V.; Gisel, A.; Moxon, S.; Dalmay, T.; Bistray, G.; di Serio, F.; Burgyan, J. Deep sequencing of viroid-derived small RNAs from grapevine provides new insight on the role of RNA silencing in plant-viroid interaction. PLoS ONE 2009, 4, e7686. [Google Scholar] [CrossRef] [PubMed]
- Alabi, O.J.; Zheng, Y.; Jagadeeswaran, G.; Sunkar, R.; Naidu, R. High-throughput sequence analysis of small RNAs in grapevine (Vitis. vinifera L.) affected by grapevine leafroll disease. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012. [Google Scholar]
- Martínez, G.; Donaire, L.; Llave, C.; Pallás, V.; Gómez, G. High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol. Plant Pathol. 2010, 11, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Di Serio, F.; Gisel, A.; Navarro, B.; Delgado, S.; Martínez de Alba, A.-E.; Donvito, G.; Flores, R. Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: Implications, for their genesis and for pathogenesis. PLoS ONE 2009, 4, e7539. [Google Scholar] [CrossRef] [PubMed]
- Navarro, B.; Gisel, A.; Rodio, M.E.; Delgado, S.; Flores, R.; Di Serio, F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012, 70, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Di Serio, F.; Martínez de Alba, A.E.; Navarro, B.A.; Gisel, A.; Flores, R. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J. Virol. 2010, 84, 2477–2489. [Google Scholar] [CrossRef]
- Adkar-Purushothama, C.R.; Brosseau, C.; Giguère, T.; Sano, T.; Mofett, P.; Perreault, J.P. Small RNA derived from the virulence modulating region of the potato spindle tuber viroid silences callose synthase genes of tomato plants. Plant Cell 2015, 27, 2178–2194. [Google Scholar] [CrossRef]
- Wang, Y.; Shibuya, M.; Taneda, A.; Kurauchi, T.; Senda, M.; Owens, R.A.; Sano, T. Accumulation of potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology 2011, 413, 72–83. [Google Scholar] [CrossRef]
- Piernikarczyk, R.; Matousek, J.; Riesner, D.; Steger, G. Potential mRNA targets of viroid-specific small RNA. In Proceedings of the International Workshop on Viroids and Satellite RNAs, Beijing, China, 23–25 August 2013. [Google Scholar]
- Adkar-Purushothama, C.R.; Iyer, P.S.; Perreault, J.-P. Potato spindle tuber viroid infection triggers degradation of chloride channel protein CLC-b-like and ribosomal protein S3a-like mRNAs in tomato plants. Sci. Rep. 2017, 7, 8341. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Cao, M.; Pantaleo, V.; Burgyan, J.; Li, W.X.; Ding, S.W. Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc. Natl. Acad. Sci. USA 2012, 109, 3938–3943. [Google Scholar] [CrossRef] [Green Version]
- Rott, M.; Xiang, Y.; Boyes, I.; Belton, M.; Saeed, H.; Kesanakurti, P.; Hayes, S.; Lawrence, T.; Birch, C.; Bhagwat, B.; et al. Application of next generation sequencing for diagnostic testing of tree fruit viruses and viroids. Plant Dis. 2017, 101, 1489–1499. [Google Scholar] [CrossRef]
- Al Rwahnih, M.; Daubert, S.; Golino, D.; Rowhani, A. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 2009, 387, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Poojari, S.; Alabi, O.J.; Fofanov, V.Y.; Naidu, R.A. A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family Geminiviridae implicated in grapevine redleaf disease by next-generation sequencing. PLoS ONE 2013, 8, e64194. [Google Scholar] [CrossRef]
- Pecman, A.; Kutnjak, D.; Gutiérrez-Aguirre, I.; Adams, I.; Fox, A.; Boonham, N.; Ravnikar, M. Next generation sequencing for detection and discovery of plant viruses and viroids: Comparison of two approaches. Front. Microbiol. 2017, 8, 1998. [Google Scholar] [CrossRef] [PubMed]
- Giampetruzzi, A.; Roumi, V.; Roberto, R.; Malossini, U.; Yoshikawa, N.; la Notte, P.; Terlizzi, F.; Credi, R.; Saldarelli, P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small small RNAs in Cv Pinot gris. Virus Res. 2012, 163, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Seguin, J.; Rajeswaran, R.; Malpica-López, N.; Martin, R.R.; Kasschau, K.; Dolja, V.V.; Otten, P.; Farinelli, L.; Pooggin, M.M. De novo reconstruction of consensus master genomes of plant RNA and DNA viruses from siRNAs. PLoS ONE 2014, 9, e88513. [Google Scholar] [CrossRef]
- Chiumenti, M.; Giampetruzzi, A.; Pirolo, C.; Morelli, M.; Saldarelli, P.; Minafra, A.; Bottalico, G.; la Notte, P.; Campanale, A.; Savino, V.; et al. Approaches of next generation sequencing to investigate grapevine diseases of unknown etiology. In Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012. [Google Scholar]
- Jo, Y.; Choi, H.; Yoon, J.-Y.; Choi, S.-K.; Cho, W.K. De novo genome assembly of grapevine yellow speckle viroid 1 from a grapevine transcriptome. Genome Announc. 2015, 3, e496. [Google Scholar] [CrossRef] [PubMed]
- Hily, J.-M.; Candresse, T.; Garcia, S.; Vigne, E.; Tannière, M.; Komar, V.; Barnabé, G.; Alliaume, A.; Gilg, S.; Hommay, G.; et al. High-throughput sequencing and the viromic study of grapevine leaves: From the detection of grapevine-infecting viruses to the description of a new environmental Tymovirales member. Front. Microbiol. 2018, 9, 1782. [Google Scholar] [CrossRef] [PubMed]
- Bolduc, F.; Hoareau, C.; St-Pierre, P.; Perreault, J.P. In-depth sequencing of the siRNAs associated with peach latent mosaic viroid infection. BMC Mol. Biol. 2010, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Diermann, N.; Matousek, J.; Junge, M.; Riesner, D.; Steger, G. Characterization of plant miRNAs and small RNAs derived from potato spindle tuber viroid (PSTVd) in infected tomato. Biol. Chem. 2010, 391, 1379–1390. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gao, S.; Hernandez, A.G.; Wechter, W.P.; Fei, Z.; Ling, K.-S. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS ONE 2012, 7, e37127. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.A.; Teck, K.B.; Shao, J.Y.; Sano, T.; Baker, C.J. Global analysis of tomato gene expression during potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol. Plant Microbe Interact. 2012, 25, 582–598. [Google Scholar] [CrossRef]
- Jo, Y.-H.; Jo, K.-M.; Park, S.-H.; Kim, K.-H.; Cho, W.-K. Transcriptomic landscape of chrysanthemum infected by chrysanthemum stunt viroid. Plant Omics J. 2014, 7, 1–11. [Google Scholar]
- Mishra, A.K.; Kumar, A.; Mishra, D.; Nath, V.S.; Jakše, J.; Kocábek, T.; Killi, U.K.; Morina, F.; Matoušek, J. Genome-wide transcriptomic analysis reveals insights into the response to citrus bark cracking viroid (CBCVd) in hop (Humulus lupulus L.). Viruses 2018, 10, 570. [Google Scholar] [CrossRef]
- Pääbo, S. The human condition-a molecular approach. Cell 2014, 157, 216–226. [Google Scholar] [CrossRef]
- Wolf, A.B.; Akey, J.M. Outstanding questions in the study of archaic hominin admixture. PLoS Genet 2018, 14, e1007349. [Google Scholar] [CrossRef]
- Diener, T.O. Circular RNAs: Relics of precellular evolution? Proc. Natl. Acad. Sci. USA 1989, 86, 9370–9374. [Google Scholar] [CrossRef]
- Diener, T.O. Origin and evolution of viroids and viroid-like satellite RNAs. Virus Genes 1995, 11, 119–131. [Google Scholar] [CrossRef]
- Flores, R.; Gago-Zachert, S.; Serra, P.; Sanjuan, R.; Elena, S.F. Viroids-survivors from the RNA world? Annu. Rev. Microbiol. 2014, 68, 395–414. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, A.; Yang, X. Detection of pome fruit viroids by enzymatic cDNA amplification. J. Virol. Methods 1990, 30, 261–270. [Google Scholar] [CrossRef]
- Hadidi, A.; Olmos, A.; Pasquini, G.; Barba, M.; Martin, R.R.; Shamloul, A.M. Polymerase chain reaction for detection of systemic plant pathogens. In Virus and Virus-Like Diseases of Pome and Stone Fruits; Hadidi, A., Barba, M., Candresse, T., Jelkmann, W., Eds.; APS Press: St. Paul, MN, USA, 2011; pp. 341–359. ISBN 978-0-89054-396-2. [Google Scholar]
- Faggioli, F.; Luigi, M.; Boubourakis, I.N. Viroid amplification methods: RT-PCR, Real-Time RT-PCR, and RT-LAMP. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2017; pp. 381–391. ISBN 978-0-12-801498-1. [Google Scholar]
- Pallás, V.; Sánchez-Navarro, J.A.; James, D. Recent advances on the multiplex molecular detection of plant viruses and viroids. Front. Microbiol. 2018, 9, 2087. [Google Scholar] [CrossRef] [PubMed]
- Barba, M.; James, D. Quarantine and certification for viroids and viroid diseases. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2017; pp. 415–424. ISBN 978-0-12-801498-1. [Google Scholar]
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Dehnen-Schmutz, K.; Gilioli, G.; Gregoire, J.-C.; Miret, J.A.J.; MacLeod, A.; Navarro, M.N.; et al. Pest categorization of cadang-cadang viroid. EFSA J. 2017. [Google Scholar] [CrossRef]
- Mójica, F.J.M.; Díez-Villasenor, C.; García-Martínez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef]
- van der Oost, J.; Westra, E.R.; Jackson, R.N.; Wiedenheft, B. Unraveling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 2014, 12, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.V.; Nunez, J.K.; Doudna, J.A. Biology and application of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell 2016, 164, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Fermaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Mójica, F.J.M.; Díez-Villasenor, C.; García-Martínez, J.; Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiol. SGM 2009, 155, 733–740. [Google Scholar] [CrossRef]
- Hale, C.R.; Zhao, P.; Olson, S.; Duff, M.O.; Graveley, L.; Wells, L.; Terns, R.M.; Terns, M.P. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009, 139, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, S.H.; Richter, H.; Charpentier, E.; Qimron, U. Adaptation in CRISPR-Cas systems. Mol. Cell 2016, 61, 797–808. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, M.R. Molecular mechanisms of RNA targeting by Cas13-containg type VI CRISPR-Cas systems. J. Mol. Biol. 2018. [Google Scholar] [CrossRef]
- Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005, 151, 2551–2561. [Google Scholar] [CrossRef] [Green Version]
- Pourcel, C.; Salvignol, G.; Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies. Microbiology 2005, 151, 653–663. [Google Scholar] [CrossRef]
- Brouns, S.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.; Snijders, A.P.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Haft, D.H. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Shmakov, S.; Abudayyeh, O.O.; Makarova, K.S.; Wolf, Y.I.; Gootenberg, J.S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 2015, 60, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Samai, P.; Marraffini, L.A. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 2016, 164, 710–721. [Google Scholar] [CrossRef]
- Plagens, A.; Richter, H.; Charpentier, E.; Randau, L. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol. Rev. 2015, 39, 442–463. [Google Scholar] [CrossRef] [Green Version]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konemann, S.; Joung, J.; Staymaker, I.M.; Cox, D.B.; Shmakov, S.; Makarova, K.S.; Ekaterina Semenova, E.; Minakhin, L.; et al. C2c2 is a single component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef]
- East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.; Tijan, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Knott, C.J.; Doudna, J. CRISPR-Cas guides the future of genetic engineering. Science 2018, 361, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Anantharman, V.; Makarova, K.S.; Burroughs, A.M.; Koonin, E.V.; Aravind, L. Comprehensive analysis of the HEPN superfamily: Identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 2013, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Aman, R.; Ali, Z.; Butt, H.; Mahas, A.; Aljedaani, F.; Khan, M.Z.; Ding, S.; Mahfouz, M. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018, 19, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, R.W.; Kovalskaya, N. Strategies to introduce resistance to viroids. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2017; pp. 447–455. ISBN 978-0-12-801498-1. [Google Scholar]
- Hadidi, A.; Flores, R. Genome editing by CRISPR-based technology: Potential application for viroids. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2017; pp. 531–540. ISBN 978-0-12-801498-1. [Google Scholar]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myhrvold, M.; Freijie, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLOS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Smargon, A.A.; Cox, D.B.T.; Pyzocha, N.K.; Zheng, K.; Slaymaker, I.M.; Gootenberg, J.S.; Abudayyeh, O.A.; Essletzbichler, P.; Shmakov, S.; Makarova, K.S.; et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 2017, 65, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Gersbach, C.A. Expanding the CRISPR toolbox: Targeting RNA with Cas13b. Mol. Cell 2017, 65, 582–584. [Google Scholar] [CrossRef] [PubMed]
- East-Seletsky, A.; O’Connell, M.R.; Burstein, D.; Knott, G.J.; Doudna, J.A. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol. Cell 2017, 66, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Niewoehner, O.; Jinek, M. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6. RNA 2016, 22, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. CRISPR foods dodge USDA. Science 2016, 352, 388. [Google Scholar]
- Waltz, E. CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol. 2016, 34, 582. [Google Scholar] [CrossRef]
- Waltz, E. With a free pass, CRISPR-edited plants reach market in record time. Nat. Biotechnol. 2018, 36, 6–7. [Google Scholar] [CrossRef]
- Callaway, E. CRISPR plants now subject to tough GM laws in European Union. Nature 2018, 560, 16. [Google Scholar] [CrossRef]
Viroid | Target RNA | Remarks | Reference |
---|---|---|---|
Persimmon viroid-2 (PVd-2) | dsRNA | A novel apscaviroid | [27] |
Grapevine latent viroid (GLVd) | total RNA | A novel apscaviroid | [28] |
Apple dimple fruit viroid (ADFVd) | vd-sRNAs | A novel variant that naturally infects fig | [29] |
CBCVd | vd-sRNAs or total RNA | A novel variant that naturally infects hops | [16] |
rRNA-depleted libraries | Two novel citrus variants closely related to hop variants | [30] |
Viroid | Target RNA | Remarks | Reference |
---|---|---|---|
ADFVd | vd-sRNAs | The host range was naturally extended to fig trees | [29] |
CBCVd | vd-sRNAs or total RNA | The host range was naturally extended to cultivated hops | [16] |
Apple fruit crinkle viroid (AFCVd) | vd-sRNAs | The host range was extended to tomato, cucumber and wild hop using an inoculum of a variant from cultivated hop | [31] |
HSVd | vd-sRNAs | Extending the host range to chickpea | [32] |
Viroid | Target RNA | Remarks | Reference |
---|---|---|---|
PLMVd | DNase-treated total RNA | A single infecting variant mutates quickly (about 17% variation compared to the parental sequence) | [33] |
PSTVd | vd-sRNAs | Different variants used to elucidate the viroid quasispecies evolved during infection. Several novel and already known variants were competent in replication. Common strand-specific mutations identified | [34] |
vd-sRNAs | Plus and minus vd-sRNAs of three different viroid variants and their mutants in tomato were identified and analyzed | [35] | |
PSTVd and ELVd | viroid circular and oligomeric RNAs | Chloroplastic and nuclear viroids have different mutation rates | [36] |
Viroid | Remarks | Reference |
---|---|---|
GYSVd-1 and HSVd | Biogenesis and role of vd-sRNAs of the two viroids in grapevine plant-viroid interactions | [37] |
GYSVd-1, GYSVd-2 and HSVd | vd-sRNAs of these grapevine viroids were characterized | [38] |
HSVd | Study the pathway involved in the biogenesis of vd-sRNAs in cucumber | [39] |
PLMVd | Study the viroid vd-sRNAs genesis, pathogenesis and evolution | [40,41] |
vd-sRNAs containing the pathogenic determinant of the viroid guide degradation of a host mRNA as predicted by RNA silencing, thus leading to symptom expression | [41] | |
PSTVd | RNA-dependent RNA polymerase 6 of Nicotiana benthamiana restricts accumulation and precludes meristem invasion of the viroid, which replicates in nuclei with prevailing 21-22 nt plus-strand vd-sRNAs that adopt strand-specific hot spot profiles | [42] |
vd-sRNAs derived from the virulence modulating region of two viroid variants target callose synthase mRNAs, which may affect the viroid spread/accumulation and symptom severity in tomato | [43] | |
vdsRNAs, originated from viroid variants that induce different symptoms, may target different host mRNAs | [44,45] | |
Study possible interactions of vd-sRNAs of two variants of the viroid plus and minus strands with host mRNAs during infection. vd- sRNAs induction was found independent of host mRNAs degradation | [46] | |
Considering that vd-sRNAs of 21-24 nt are generated in infected plants, bioinformatic tools were utilized to detect and identify viroids and viroid-like circular RNAs in sRNA libraries | [28,47] |
Viroid | Target RNA | Host | Reference |
---|---|---|---|
ADFVd | vd-sRNAs | apple, fig | [29,48] |
dsRNA | apple | [48] | |
AFCVd | dsRNA | apple | [48] |
ASSVd | Total RNA or dsRNA | apple | [28,48] |
Australian grapevine viroid (AGVd) | Total RNA or dsRNA | grapevine | [49] |
CEVd | DNase-treated total RNA | grapevine | [50] |
CBCVd | vd-sRNAs or total RNA | hop | [16] |
CLVd | vd-sRNAs or total RNA depleted of rRNA | tomato | [51] |
GLVd | Total RNA | grapevine | [28] |
GYSVd-1 | vd-sRNAs vd-sRNAs or dsRNA | grapevine | [37,38,52,53] [54] |
DNase-treated total RNA | [50] | ||
Total RNA | [55,56] | ||
GYSVd-2 | vd-sRNAs | grapevine | [38] |
HSVd | vd-sRNAs | Chickpea Grapevine cucumber | [32] [37,38,52,53] [39] |
DNase-treated total RNA | grapevine | [50] | |
dsRNA total RNA | Prunus sp. grapevine | [48] [56] | |
PLMVd | vd-sRNAs | Prunus sp. | [33,40,57] |
vd-sRNAs or total RNA depleted of rRNA dsRNA | Prunus sp. Prunus sp. | [51] [48] | |
Pear blister canker viroid (PBCVd) | dsRNA | pear | [48] |
PVd-2 | dsRNA | persimmon | [27] |
PSTVd | vd-sRNAs | tomato | [42,43,44,58,59] |
TASVd | vd-sRNAs or total RNA depleted of rRNA | tomato | [51] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadidi, A. Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics. Viruses 2019, 11, 120. https://doi.org/10.3390/v11020120
Hadidi A. Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics. Viruses. 2019; 11(2):120. https://doi.org/10.3390/v11020120
Chicago/Turabian StyleHadidi, Ahmed. 2019. "Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics" Viruses 11, no. 2: 120. https://doi.org/10.3390/v11020120