Measles Encephalitis: Towards New Therapeutics
Abstract
:1. Measles Virus Epidemiology
2. Virus
3. Vaccines
4. Disease/Generalities
4.1. Symptoms and Complications
4.2. Associated Factors (Age/Nutrition)
4.3. Pathogenesis
5. Disabilities and Nervous System
5.1. Hearing Loss
5.2. Blindness
6. Central Nervous System (CNS) Infection
6.1. Acute Encephalitis
6.2. MIBE
6.3. SSPE
7. Mutations Associated with MeV CNS Infection
7.1. M Protein
7.2. F protein
7.3. H Protein
7.4. Mutations in Other Genes
8. Animal Models for Neuro-Invasion Studies
9. MeV Tropism
9.1. Post-Mortem Studies
9.2. Early Events in MeV Infection?
9.3. Models to Study Tropism?
10. MeV Dissemination in the CNS
Models to Study the Dissemination?
11. Treatments
11.1. Symptomatic Treatment
11.2. Treatment Based on the Enhancement of Immune Response
11.2.1. Immune Serum Globulin
11.2.2. Ribavirin, IFN-α, Isoprinosine
11.2.3. Vitamin A
11.2.4. Interferon-Stimulating Genes (ISGs) and Other Treatments
11.3. Transcription/Replication Inhibitors
11.4. Inhibitors of MeV Fusion and Entry
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holzmann, H.; Hengel, H.; Tenbusch, M.; Doerr, H.W. Eradication of Measles: Remaining Challenges. Med. Microbiol. Immunol. 2016, 205, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.M.; Bolotin, S.; Lim, G.; Heffernan, J.; Deeks, S.L.; Li, Y.; Crowcroft, N.S. The Basic Reproduction Number (R0) of Measles: A Systematic Review. Lancet. Infect. Dis. 2017, 17, e420–e428. [Google Scholar] [CrossRef]
- Moss, W.J. Measles. Lancet 2017, 390, 2490–2502. [Google Scholar] [CrossRef]
- Brechot, C.; Bryant, J.; Endtz, H.; Garry, R.F.; Griffin, D.E.; Lewin, S.R.; Mercer, N.; Osterhaus, A.; Picot, V.; Vahlne, A.; et al. 2018 International Meeting of the Global Virus Network. Antivir. Res. 2019, 163, 140–148. [Google Scholar] [CrossRef]
- Strebel, P.M.; Orenstein, W.A. Measles. N. Engl. J. Med. 2019, 381, 349–357. [Google Scholar] [CrossRef]
- Waaijenborg, S.; Hahné, S.J.M.; Mollema, L.; Smits, G.P.; Berbers, G.A.M.; van der Klis, F.R.M.; de Melker, H.E.; Wallinga, J. Waning of Maternal Antibodies against Measles, Mumps, Rubella, and Varicella in Communities with Contrasting Vaccination Coverage. J. Infect. Dis. 2013, 208, 10–16. [Google Scholar] [CrossRef]
- LaVito, A.; John, S.W. Measles Infected up to 4 million a year in US before Vaccine. Available online: https://www.cnbc.com/2019/05/24/measles-infected-up-to-4-million-a-year-in-us-before-vaccine.html (accessed on 24 October 2019).
- Tesini, B.L. Measles-Pediatrics—Merck Manuals Professional Edition. Available online: https://www.merckmanuals.com/professional/pediatrics/miscellaneous-viral-infections-in-infants-and-children/measles (accessed on 24 October 2019).
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Measles in 2019—Going Backward. N. Engl. J. Med. 2019, 380, 2185–2187. [Google Scholar] [CrossRef]
- WHO. New Measles Surveillance Data for 2019. Available online: https://www.who.int/immunization/newsroom/measles-data-2019/en/ (accessed on 23 October 2019).
- Measles Cases and Outbreaks|CDC. Available online: https://www.cdc.gov/measles/cases-outbreaks.html (accessed on 15 September 2019).
- Griffin, D.E. Measles Virus. In Fields Virology; Knipe, D.M., Ed.; Wolters Kluwer: Philadelphia, PA, USA, 2013; Volume 6. [Google Scholar]
- Bellini, W.J.; Englund, G.; Rozenblatt, S.; Arnheiter, H.; Richardson, C.D. Measles Virus P Gene Codes for Two Proteins. J. Virol. 1985, 53, 908–919. [Google Scholar]
- Shaffer, J.A.; Bellini, W.J.; Rota, P.A. The C Protein of Measles Virus Inhibits the Type I Interferon Response. Virology 2003, 315, 389–397. [Google Scholar] [CrossRef]
- Schuhmann, K.M.; Pfaller, C.K.; Conzelmann, K.-K. The Measles Virus V Protein Binds to P65 (RelA) to Suppress NF-KappaB Activity. J. Virol. 2011, 85, 3162–3171. [Google Scholar] [CrossRef]
- Gotoh, B.; Komatsu, T.; Takeuchi, K.; Yokoo, J. Paramyxovirus Accessory Proteins as Interferon Antagonists. Microbiol. Immunol. 2001, 45, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.E.; Lin, W.-H.; Pan, C.-H. Measles Virus, Immune Control, and Persistence. FEMS Microbiol. Rev. 2012, 36, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Tatsuo, H.; Ono, N.; Tanaka, K.; Yanagi, Y. SLAM (CDw150) Is a Cellular Receptor for Measles Virus. Nature 2000, 406, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Noyce, R.S.; Bondre, D.G.; Ha, M.N.; Lin, L.-T.; Sisson, G.; Tsao, M.-S.; Richardson, C.D. Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus. PLoS Pathog. 2011, 7, e1002240. [Google Scholar] [CrossRef] [PubMed]
- Mühlebach, M.D.; Mateo, M.; Sinn, P.L.; Prüfer, S.; Uhlig, K.M.; Leonard, V.H.J.; Navaratnarajah, C.K.; Frenzke, M.; Wong, X.X.; Sawatsky, B.; et al. Adherens Junction Protein Nectin-4 Is the Epithelial Receptor for Measles Virus. Nature 2011, 480, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Naniche, D.; Varior-Krishnan, G.; Cervoni, F.; Wild, T.F.; Rossi, B.; Rabourdin-Combe, C.; Gerlier, D. Human Membrane Cofactor Protein (CD46) Acts as a Cellular Receptor for Measles Virus. J. Virol. 1993, 67, 6025–6032. [Google Scholar]
- Dörig, R.E.; Marcil, A.; Chopra, A.; Richardson, C.D. The Human CD46 Molecule Is a Receptor for Measles Virus (Edmonston Strain). Cell 1993, 75, 295–305. [Google Scholar] [CrossRef]
- Lamb, R.A.; Parks, G.D. Paramyxoviridae: The Viruses and Their Replication; Lippincott, Williams, and Wilkins: Philadelphia, PA, USA, 2007; pp. 1449–1496. [Google Scholar]
- Gonçalves-Carneiro, D.; McKeating, J.A.; Bailey, D. The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Delpeut, S.; Sisson, G.; Black, K.M.; Richardson, C.D. Measles Virus Enters Breast and Colon Cancer Cell Lines through a PVRL4-Mediated Macropinocytosis Pathway. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Crimeen-Irwin, B.; Ellis, S.; Christiansen, D.; Ludford-Menting, M.J.; Milland, J.; Lanteri, M.; Loveland, B.E.; Gerlier, D.; Russell, S.M. Ligand Binding Determines Whether CD46 Is Internalized by Clathrin-Coated Pits or Macropinocytosis. J. Biol. Chem. 2003, 278, 46927–46937. [Google Scholar] [CrossRef]
- Frecha, C.; Lévy, C.; Costa, C.; Nègre, D.; Amirache, F.; Buckland, R.; Russell, S.J.; Cosset, F.-L.; Verhoeyen, E. Measles Virus Glycoprotein-Pseudotyped Lentiviral Vector-Mediated Gene Transfer into Quiescent Lymphocytes Requires Binding to Both SLAM and CD46 Entry Receptors. J. Virol. 2011, 85, 5975–5985. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, E.M.; Mathieu, C.; Palermo, L.M.; Hardie, D.; Horvat, B.; Moscona, A.; Porotto, M. Measles Fusion Machinery Is Dysregulated in Neuropathogenic Variants. MBio 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathieu, C.; Huey, D.; Jurgens, E.; Welsch, J.C.; DeVito, I.; Talekar, A.; Horvat, B.; Niewiesk, S.; Moscona, A.; Porotto, M. Prevention of Measles Virus Infection by Intranasal Delivery of Fusion Inhibitor Peptides. J. Virol. 2015, 89, 1143–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.K.; Li, N.; Mark, A.C.; Mateo, M.; Cattaneo, R.; Sinn, P.L. Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells. J. Virol. 2016, 90, 6808–6817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duprex, W.P.; McQuaid, S.; Hangartner, L.; Billeter, M.A.; Rima, B.K. Observation of Measles Virus Cell-to-Cell Spread in Astrocytoma Cells by Using a Green Fluorescent Protein-Expressing Recombinant Virus. J. Virol. 1999, 73, 9568–9575. [Google Scholar] [Green Version]
- Rima, B.K.; Duprex, W.P. The Measles Virus Replication Cycle. Curr. Top. Microbiol. Immunol. 2009, 329, 77–102. [Google Scholar]
- Iwasaki, M.; Takeda, M.; Shirogane, Y.; Nakatsu, Y.; Nakamura, T.; Yanagi, Y. The Matrix Protein of Measles Virus Regulates Viral RNA Synthesis and Assembly by Interacting with the Nucleocapsid Protein. J. Virol. 2009, 83, 10374–10383. [Google Scholar] [CrossRef] [Green Version]
- Bhella, D.; Ralph, A.; Murphy, L.B.; Yeo, R.P. Significant Differences in Nucleocapsid Morphology within the Paramyxoviridae. J. Gen. Virol. 2002, 83, 1831–1839. [Google Scholar] [CrossRef]
- Radecke, F.; Spielhofer, P.; Schneider, H.; Kaelin, K.; Huber, M.; Dötsch, C.; Christiansen, G.; Billeter, M.A. Rescue of Measles Viruses from Cloned DNA. EMBO J. 1995, 14, 5773–5784. [Google Scholar] [CrossRef]
- Calain, P.; Roux, L. The Rule of Six, a Basic Feature for Efficient Replication of Sendai Virus Defective Interfering RNA. J. Virol. 1993, 67, 4822–4830. [Google Scholar]
- Hashiguchi, T.; Fukuda, Y.; Matsuoka, R.; Kuroda, D.; Kubota, M.; Shirogane, Y.; Watanabe, S.; Tsumoto, K.; Kohda, D.; Plemper, R.K.; et al. Structures of the Prefusion Form of Measles Virus Fusion Protein in Complex with Inhibitors. Proc. Natl. Acad. Sci. USA 2018, 115, 2496–2501. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Shirogane, Y.; Sato, Y.; Hashiguchi, T.; Yanagi, Y. New Insights into Measles Virus Brain Infections. Trends Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Plattet, P.; Alves, L.; Herren, M.; Aguilar, H.C. Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses 2016, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Angius, F.; Smuts, H.; Rybkina, K.; Stelitano, D.; Eley, B.; Wilmshurst, J.; Ferren, M.; Lalande, A.; Mathieu, C.; Moscona, A.; et al. Analysis of a Subacute Sclerosing Panencephalitis (SSPE) Genotype B3 Virus from the 2009/10 South African Measles Epidemic Shows Hyperfusogenic F Proteins Contribute to Measles Virus Infection in the Brain. J. Virol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.M.; Barney, S.; Lambert, A.L.; Guthrie, K.; Medinas, R.; Davis, D.E.; Bucy, T.; Erickson, J.; Merutka, G.; Petteway, S.R. Peptides from Conserved Regions of Paramyxovirus Fusion (F) Proteins Are Potent Inhibitors of Viral Fusion. Proc. Natl. Acad. Sci. USA 1996, 93, 2186–2191. [Google Scholar] [CrossRef]
- Mathieu, C.; Ferren, M.; Jurgens, E.; Dumont, C.; Rybkina, K.; Harder, O.; Stelitano, D.; Madeddu, S.; Sanna, G.; Schwartz, D.; et al. Measles Virus Bearing Measles Inclusion Body Encephalitis-Derived Fusion Protein Is Pathogenic after Infection via the Respiratory Route. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, M.M.; Beck, A.S.; Bankamp, B.; Rota, P.A. Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies. Viruses 2017, 9, 11. [Google Scholar] [CrossRef]
- Melenotte, C.; Zandotti, C.; Gautret, P.; Parola, P.; Raoult, D. Measles: Is a New Vaccine Approach Needed? Lancet. Infect. Dis. 2018, 18, 1060–1061. [Google Scholar] [CrossRef]
- Bankamp, B.; Takeda, M.; Zhang, Y.; Xu, W.; Rota, P.A. Genetic Characterization of Measles Vaccine Strains. J. Infect. Dis. 2011, 204, S533–S548. [Google Scholar] [CrossRef] [Green Version]
- Vaccine for Measles (MMR Shot)|CDC. Available online: https://www.cdc.gov/measles/vaccination.html (accessed on 15 September 2019).
- McLean, H.Q.; Fiebelkorn, A.P.; Temte, J.L.; Wallace, G.S. Centers for Disease Control and Prevention. Prevention of Measles, Rubella, Congenital Rubella Syndrome, and Mumps, 2013: Summary Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb. Mortal. Wkly. 2013, 62, 1–34. [Google Scholar]
- Haralambieva, I.H.; Ovsyannikova, I.G.; O’Byrne, M.; Pankratz, V.S.; Jacobson, R.M.; Poland, G.A. A Large Observational Study to Concurrently Assess Persistence of Measles Specific B-Cell and T-Cell Immunity in Individuals Following Two Doses of MMR Vaccine. Vaccine 2011, 29, 4485–4491. [Google Scholar] [CrossRef] [PubMed]
- Haralambieva, I.H.; Kennedy, R.B.; Ovsyannikova, I.G.; Whitaker, J.A.; Poland, G.A. Variability in Humoral Immunity to Measles Vaccine: New Developments. Trends Mol. Med. 2015, 21, 789–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laksono, B.M.; de Vries, R.D.; Verburgh, R.J.; Visser, E.G.; de Jong, A.; Fraaij, P.L.A.; Ruijs, W.L.M.; Nieuwenhuijse, D.F.; van den Ham, H.-J.; Koopmans, M.P.G.; et al. Studies into the Mechanism of Measles-Associated Immune Suppression during a Measles Outbreak in the Netherlands. Nat. Commun. 2018, 9, 4944. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, T.G.; Geeta, M.G.; Krishnakumar, P.; Sabitha, S.; Ajina, K.K. Clinical Profile of Measles in Children with Special Reference to Infants. Trop. Doct. 2019, 49, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Ben-Chetrit, E.; Oster, Y.; Jarjou’i, A.; Megged, O.; Lachish, T.; Cohen, M.J.; Stein-Zamir, C.; Ivgi, H.; Rivkin, M.; Milgrom, Y.; et al. Measles-Related Hospitalizations and Associated Complications in Jerusalem, 2018-2019. Clin. Microbiol. Infect. 2019. [Google Scholar] [CrossRef] [PubMed]
- Marie, J.C.; Saltel, F.; Escola, J.-M.; Jurdic, P.; Wild, T.F.; Horvat, B. Cell Surface Delivery of the Measles Virus Nucleoprotein: A Viral Strategy To Induce Immunosuppression. J. Virol. 2004, 78, 11952–11961. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.J.; Metcalf, C.J.E.; de Swart, R.L.; Osterhaus, A.D.M.E.; Grenfell, B.T. Long-Term Measles-Induced Immunomodulation Increases Overall Childhood Infectious Disease Mortality. Science 2015, 348, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Sellin, C.I.; Jégou, J.-F.; Renneson, J.; Druelle, J.; Wild, T.F.; Marie, J.C.; Horvat, B. Interplay between Virus-Specific Effector Response and Foxp3+ Regulatory T Cells in Measles Virus Immunopathogenesis. PLoS ONE 2009, 4, e4948. [Google Scholar] [CrossRef]
- Moss, W.J.; Griffin, D.E. Measles. Lancet 2012, 379, 153–164. [Google Scholar] [CrossRef]
- Rima, B.K.; Duprex, W.P. Morbilliviruses and Human Disease. J. Pathol. 2006, 208, 199–214. [Google Scholar] [CrossRef]
- Enders, J.F.; McCarthy, K.; Mitus, A.; Cheatham, W.J. Isolation of Measles Virus at Autopsy in Cases of Giant-Cell Pneumonia without Rash. N. Engl. J. Med. 1959, 261, 875–881. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, R.M. Vitamin A for the Treatment of Children with Measles—A Systematic Review. J. Trop. Pediatr. 2002, 48, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Ellison, J.B. Intensive Vitamin Therapy in Measles. Br. Med. J. 1932, 2, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Mayo-Wilson, E.; Herzer, K.; Bhutta, Z.A. Vitamin A Supplementation for Preventing Morbidity and Mortality in Children from Six Months to Five Years of Age. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef]
- Avota, E.; Koethe, S.; Schneider-Schaulies, S. Membrane Dynamics and Interactions in Measles Virus Dendritic Cell Infections. Cell. Microbiol. 2013, 15, 161–169. [Google Scholar] [CrossRef]
- Ferreira, C.S.A.; Frenzke, M.; Leonard, V.H.J.; Welstead, G.G.; Richardson, C.D.; Cattaneo, R. Measles Virus Infection of Alveolar Macrophages and Dendritic Cells Precedes Spread to Lymphatic Organs in Transgenic Mice Expressing Human Signaling Lymphocytic Activation Molecule (SLAM, CD150). J. Virol. 2010, 84, 3033–3042. [Google Scholar] [CrossRef] [Green Version]
- De Vries, R.D.; Mesman, A.W.; Geijtenbeek, T.B.; Duprex, W.P.; de Swart, R.L. The Pathogenesis of Measles. Curr. Opin. Virol. 2012, 2, 248–255. [Google Scholar] [CrossRef]
- Delpeut, S.; Sawatsky, B.; Wong, X.-X.; Frenzke, M.; Cattaneo, R.; von Messling, V. Nectin-4 Interactions Govern Measles Virus Virulence in a New Model of Pathogenesis, the Squirrel Monkey (Saimiri Sciureus). J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Frenzke, M.; Sawatsky, B.; Wong, X.X.; Delpeut, S.; Mateo, M.; Cattaneo, R.; von Messling, V. Nectin-4-Dependent Measles Virus Spread to the Cynomolgus Monkey Tracheal Epithelium: Role of Infected Immune Cells Infiltrating the Lamina Propria. J. Virol. 2013, 87, 2526–2534. [Google Scholar] [CrossRef] [Green Version]
- Gourru-Lesimple, G.; Mathieu, C.; Thevenet, T.; Guillaume-Vasselin, V.; Jégou, J.-F.; Boer, C.G.; Tomczak, K.; Bloyet, L.-M.; Giraud, C.; Grande, S.; et al. Measles Virus Infection of Human Keratinocytes: Possible Link between Measles and Atopic Dermatitis. J. Dermatol. Sci. 2017, 86, 97–105. [Google Scholar] [CrossRef]
- Lemon, K.; de Vries, R.D.; Mesman, A.W.; McQuaid, S.; van Amerongen, G.; Yüksel, S.; Ludlow, M.; Rennick, L.J.; Kuiken, T.; Rima, B.K.; et al. Early Target Cells of Measles Virus after Aerosol Infection of Non-Human Primates. PLoS Pathog. 2011, 7, e1001263. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.E.; Durstenfeld, A.; Roehm, P.C. Viral Causes of Hearing Loss: A Review for Hearing Health Professionals. Trends Hear. 2014, 18, 233121651454136. [Google Scholar] [CrossRef] [PubMed]
- Dunmade, A.; Segun-Busari, S.; Olajide, T.; Ologe, F. Profound Bilateral Sensorineural Hearing Loss in Nigerian Children: Any Shift in Etiology? J. Deaf Stud. Deaf Educ. 2006, 12, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, J. Will the Current Measles Vaccines Ever Eradicate Measles? Expert Rev. Vaccines 2002, 1, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Bloem, M.W. Measles Blindness. Surv. Ophthalmol. 2004, 49, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, K.; Kobayashi, A.; Higashide, T.; Shirao, Y.; Sakurai, M.; Shirota, Y.; Kagaya, M. Detection of Measles Virus Genomic RNA in Tear Samples from a Patient with Measles Keratitis. Cornea 2002, 21, 610–612. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, M.; Rennick, L.J.; Sarlang, S.; Skibinski, G.; McQuaid, S.; Moore, T.; de Swart, R.L.; Duprex, W.P. Wild-Type Measles Virus Infection of Primary Epithelial Cells Occurs via the Basolateral Surface without Syncytium Formation or Release of Infectious Virus. J. Gen. Virol. 2010, 91, 971–979. [Google Scholar] [CrossRef]
- Muñoz-Alía, M.Á.; Muller, C.P.; Russell, S.J. Hemagglutinin-Specific Neutralization of Subacute Sclerosing Panencephalitis Viruses. PLoS ONE 2018, 13, e0192245. [Google Scholar] [CrossRef]
- Pratakpiriya, W.; Ping Teh, A.P.; Radtanakatikanon, A.; Pirarat, N.; Thi Lan, N.; Takeda, M.; Techangamsuwan, S.; Yamaguchi, R. Expression of Canine Distemper Virus Receptor Nectin-4 in the Central Nervous System of Dogs. Sci. Rep. 2017, 7, 349. [Google Scholar] [CrossRef]
- Pratakpiriya, W.; Seki, F.; Otsuki, N.; Sakai, K.; Fukuhara, H.; Katamoto, H.; Hirai, T.; Maenaka, K.; Techangamsuwan, S.; Lan, N.T.; et al. Nectin4 Is an Epithelial Cell Receptor for Canine Distemper Virus and Involved in Neurovirulence. J. Virol. 2012, 86, 10207–10210. [Google Scholar] [CrossRef] [Green Version]
- Generous, A.R.; Harrison, O.J.; Troyanovsky, R.B.; Mateo, M.; Navaratnarajah, C.K.; Donohue, R.C.; Pfaller, C.K.; Alekhina, O.; Sergeeva, A.P.; Indra, I.; et al. Trans-Endocytosis Elicited by Nectins Transfers Cytoplasmic Cargo, Including Infectious Material, between Cells. J. Cell Sci. 2019, 132, jcs235507. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.E. Measles Virus and the Nervous System. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 123, pp. 577–590. [Google Scholar] [CrossRef]
- Zachariah, P.; Stockwell, M.S. Measles Vaccine: Past, Present, and Future. J. Clin. Pharmacol. 2016, 56, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.T.; Griffin, D.E.; Hirsch, R.L.; Wolinsky, J.S.; Roedenbeck, S.; Lindo de Soriano, I.; Vaisberg, A. Measles Encephalomyelitis—Clinical and Immunologic Studies. N. Engl. J. Med. 1984, 310, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Moench, T.R.; Griffin, D.E.; Obriecht, C.R.; Vaisberg, A.J.; Johnson, R.T. Acute Measles in Patients with and without Neurological Involvement: Distribution of Measles Virus Antigen and RNA. J. Infect. Dis. 1988, 158, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Reuter, D.; Schneider-Schaulies, J. Measles Virus Infection of the CNS: Human Disease, Animal Models, and Approaches to Therapy. Med. Microbiol. Immunol. 2010, 199, 261–271. [Google Scholar] [CrossRef]
- Garg, R.K. Acute Disseminated Encephalomyelitis. Postgrad. Med. J. 2003, 79, 11–17. [Google Scholar] [CrossRef]
- Miller, H.G.; Stanton, J.B.; Gibbons, J.L. Acute Disseminated Encephalomyelitis and Related Syndromes. Br. Med. J. 1957, 1, 668–672. [Google Scholar] [CrossRef] [Green Version]
- Ludlow, M.; Kortekaas, J.; Herden, C.; Hoffmann, B.; Tappe, D.; Trebst, C.; Griffin, D.E.; Brindle, H.E.; Solomon, T.; Brown, A.S.; et al. Neurotropic Virus Infections as the Cause of Immediate and Delayed Neuropathology. Acta Neuropathol. 2016, 131, 159–184. [Google Scholar] [CrossRef]
- Griffin, D.E.; Cooper, S.J.; Hirsch, R.L.; Johnson, R.T.; Lindo de Soriano, I.; Roedenbeck, S.; Vaisberg, A. Changes in Plasma IgE Levels during Complicated and Uncomplicated Measles Virus Infections. J. Allergy Clin. Immunol. 1985, 76, 206–213. [Google Scholar] [CrossRef]
- Esolen, L.M.; Takahashi, K.; Johnson, R.T.; Vaisberg, A.; Moench, T.R.; Wesselingh, S.L.; Griffin, D.E. Brain Endothelial Cell Infection in Children with Acute Fatal Measles. J. Clin. Investig. 1995, 96, 2478–2481. [Google Scholar] [CrossRef]
- Hosoya, M. Measles Encephalitis: Direct Viral Invasion or Autoimmune-Mediated Inflammation? Intern. Med. 2006, 45, 841–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldolli, A.; Dargère, S.; Cardineau, E.; Vabret, A.; Dina, J.; de La Blanchardière, A.; Verdon, R. Measles Inclusion-Body Encephalitis (MIBE) in a Immunocompromised Patient. J. Clin. Virol. 2016, 81, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Hughes, I.; Jenney, M.E.; Newton, R.W.; Morris, D.J.; Klapper, P.E. Measles Encephalitis during Immunosuppressive Treatment for Acute Lymphoblastic Leukaemia. Arch. Dis. Child. 1993, 68, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.R.; Albertyn, C.; Heckmann, J.M.; Smuts, H.E.M. Molecular Characterisation of Virus in the Brains of Patients with Measles Inclusion Body Encephalitis (MIBE). Virol. J. 2013, 10, 283. [Google Scholar] [CrossRef] [PubMed]
- Roos, R.P.; Graves, M.C.; Wollmann, R.L.; Chilcote, R.R.; Nixon, J. Immunologic and Virologic Studies of Measles Inclusion Body Encephalitis in an Immunosuppressed Host: The Relationship to Subacute Sclerosing Panencephalitis. Neurology 1981, 31, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Bitnun, A.; Shannon, P.; Durward, A.; Rota, P.A.; Bellini, W.J.; Graham, C.; Wang, E.; Ford-Jones, E.L.; Cox, P.; Becker, L.; et al. Measles Inclusion-Body Encephalitis Caused by the Vaccine Strain of Measles Virus. Clin. Infect. Dis. 1999, 29, 855–861. [Google Scholar] [CrossRef]
- Ohuchi, M.; Ohuchi, R.; Mifune, K.; Ishihara, T.; Ogawa, T. Characterization of the Measles Virus Isolated from the Brain of a Patient with Immunosuppressive Measles Encephalitis. J. Infect. Dis. 1987, 156, 436–441. [Google Scholar] [CrossRef]
- Makhortova, N.R.; Askovich, P.; Patterson, C.E.; Gechman, L.A.; Gerard, N.P.; Rall, G.F. Neurokinin-1 Enables Measles Virus Trans-Synaptic Spread in Neurons. Virology 2007, 362, 235–244. [Google Scholar] [CrossRef]
- Young, V.A.; Rall, G.F. Making It to the Synapse: Measles Virus Spread in and among Neurons. Curr. Top. Microbiol. Immunol. 2009, 330, 3–30. [Google Scholar]
- Mekki, M.; Eley, B.; Hardie, D.; Wilmshurst, J.M. Subacute Sclerosing Panencephalitis: Clinical Phenotype, Epidemiology, and Preventive Interventions. Dev. Med. Child Neurol. 2019, dmcn.14166. [Google Scholar] [CrossRef]
- Wendorf, K.A.; Winter, K.; Zipprich, J.; Schechter, R.; Hacker, J.K.; Preas, C.; Cherry, J.D.; Glaser, C.; Harriman, K. Subacute Sclerosing Panencephalitis: The Devastating Measles Complication That Might Be More Common Than Previously Estimated. Clin. Infect. Dis. 2017, 65, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Iinuma, K.; Oka, E.; Nihei, K. Epidemiologic Features of Subacute Sclerosing Panencephalitis from Clinical Data of Patients Receiving a Public Aid for Treatment. No to hattatsu = Brain Dev. 2003, 35, 316–320. [Google Scholar]
- Miller, C.; Andrews, N.; Rush, M.; Munro, H.; Jin, L.; Miller, E. The Epidemiology of Subacute Sclerosing Panencephalitis in England and Wales 1990-2002. Arch. Dis. Child. 2004, 89, 1145–1148. [Google Scholar] [CrossRef]
- Prashanth, L.K.; Taly, A.B.; Ravi, V.; Sinha, S.; Rao, S. Long Term Survival in Subacute Sclerosing Panencephalitis: An Enigma. Brain Dev. 2006, 28, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Oldstone, M.B.A.; Dales, S.; Tishon, A.; Lewicki, H.; Martin, L. A Role for Dual Viral Hits in Causation of Subacute Sclerosing Panencephalitis. J. Exp. Med. 2005, 202, 1185–1190. [Google Scholar] [CrossRef]
- Bellini, W.J.; Rota, J.S.; Lowe, L.E.; Katz, R.S.; Dyken, P.R.; Zaki, S.R.; Shieh, W.-J.; Rota, P.A. Subacute Sclerosing Panencephalitis: More Cases of This Fatal Disease Are Prevented by Measles Immunization than Was Previously Recognized. J. Infect. Dis. 2005, 192, 1686–1693. [Google Scholar] [CrossRef]
- Forcić, D.; Baricević, M.; Zgorelec, R.; Kruzić, V.; Kaić, B.; Della Marina, B.M.; Sojat, L.C.; Tesović, G.; Mazuran, R. Detection and Characterization of Measles Virus Strains in Cases of Subacute Sclerosing Panencephalitis in Croatia. Virus Res. 2004, 99, 51–56. [Google Scholar] [CrossRef]
- Moulin, E.; Beal, V.; Jeantet, D.; Horvat, B.; Wild, T.F.; Waku-Kouomou, D. Molecular Characterization of Measles Virus Strains Causing Subacute Sclerosing Panencephalitis in France in 1977 and 2007. J. Med. Virol. 2011, 83, 1614–1623. [Google Scholar] [CrossRef]
- Cattaneo, R.; Schmid, A.; Eschle, D.; Baczko, K.; ter Meulen, V.; Billeter, M.A. Biased Hypermutation and Other Genetic Changes in Defective Measles Viruses in Human Brain Infections. Cell 1988, 55, 255–265. [Google Scholar] [CrossRef]
- Pfaller, C.K.; Donohue, R.C.; Nersisyan, S.; Brodsky, L.; Cattaneo, R. Extensive Editing of Cellular and Viral Double-Stranded RNA Structures Accounts for Innate Immunity Suppression and the Proviral Activity of ADAR1p150. PLoS Biol. 2018, 16, e2006577. [Google Scholar] [CrossRef] [PubMed]
- Rima, B.K.; Duprex, W.P. Molecular Mechanisms of Measles Virus Persistence. Virus Res. 2005, 111, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Liebert, U.G.; Baczko, K.; Budka, H.; ter Meulen, V. Restricted Expression of Measles Virus Proteins in Brains from Cases of Subacute Sclerosing Panencephalitis. J. Gen. Virol. 1986, 67, 2435–2444. [Google Scholar] [CrossRef]
- Cathomen, T.; Mrkic, B.; le Spehner, D.; Drillien, R.; Naef, R.; Pavlovic, J.; Aguzzi, A.; ABilleter, M.; Cattaneo, R. A Matrix-Less Measles Virus Is Infectious and Elicits Extensive Cell Fusion: Consequences for Propagation in the Brain. EMBO J. 1998, 17, 3899–3908. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.B.; Cornu, T.I.; Redwine, J.; Dales, S.; Lewicki, H.; Holz, A.; Thomas, D.; Billeter, M.A.; Oldstone, M.B. Evidence That the Hypermutated M Protein of a Subacute Sclerosing Panencephalitis Measles Virus Actively Contributes to the Chronic Progressive CNS Disease. Virology 2001, 291, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Reuter, T.; Weissbrich, B.; Schneider-Schaulies, S.; Schneider-Schaulies, J. RNA Interference with Measles Virus N, P, and L MRNAs Efficiently Prevents and with Matrix Protein MRNA Enhances Viral Transcription. J. Virol. 2006, 80, 5951–5957. [Google Scholar] [CrossRef]
- Maisner, A.; Klenk, H.; Herrler, G. Polarized Budding of Measles Virus Is Not Determined by Viral Surface Glycoproteins. J. Virol. 1998, 72, 5276–5278. [Google Scholar] [PubMed]
- Kühne, M.; Brown, D.W.G.; Jin, L. Genetic Variability of Measles Virus in Acute and Persistent Infections. Infect. Genet. Evol. 2006, 6, 269–276. [Google Scholar] [CrossRef]
- Kweder, H.; Ainouze, M.; Cosby, S.L.; Muller, C.P.; Lévy, C.; Verhoeyen, E.; Cosset, F.-L.; Manet, E.; Buckland, R. Mutations in the H, F, or M Proteins Can Facilitate Resistance of Measles Virus to Neutralizing Human Anti-MV Sera. Adv. Virol. 2014, 2014, 205617. [Google Scholar] [CrossRef]
- Homma, M.; Tashiro, M.; Konno, H.; Ohara, Y.; Hino, M.; Takase, S. Isolation and Characterization of Subacute Sclerosing Panencephalitis Virus (Yamagata-1 Strain) from a Brain Autopsy. Microbiol. Immunol. 1982, 26, 1195–1202. [Google Scholar] [CrossRef]
- Ito, N.; Ayata, M.; Shingai, M.; Furukawa, K.; Seto, T.; Matsunaga, I.; Muraoka, M.; Ogura, H. Comparison of the Neuropathogenicity of Two SSPE Sibling Viruses of the Osaka-2 Strain Isolated with Vero and B95a Cells. J. Neurovirol. 2002, 8, 6–13. [Google Scholar] [CrossRef]
- Makino, S.; Sasaki, K.; Nakagawa, M.; Saito, M.; Shinohara, Y. Isolation and Biological Characterization of a Measles Virus-like Agent from the Brain of an Autopsied Case of Subacute Sclerosing Panencephalitis (SSPE). Microbiol. Immunol. 1977, 21, 193–205. [Google Scholar] [CrossRef]
- Ogura, H.; Ayata, M.; Hayashi, K.; Seto, T.; Matsuoka, O.; Hattori, H.; Tanaka, K.; Tanaka, K.; Takano, Y.; Murata, R. Efficient Isolation of Subacute Sclerosing Panencephalitis Virus from Patient Brains by Reference to Magnetic Resonance and Computed Tomographic Images. J. Neurovirol. 1997, 3, 304–309. [Google Scholar] [CrossRef]
- Cathomen, T.; Naim, H.Y.; Cattaneo, R. Measles Viruses with Altered Envelope Protein Cytoplasmic Tails Gain Cell Fusion Competence. J. Virol. 1998, 72, 1224–1234. [Google Scholar] [PubMed]
- Schmid, A.; Spielhofer, P.; Cattaneo, R.; Baczko, K.; ter Meulen, V.; Billeter, M.A. Subacute Sclerosing Panencephalitis Is Typically Characterized by Alterations in the Fusion Protein Cytoplasmic Domain of the Persisting Measles Virus. Virology 1992, 188, 910–915. [Google Scholar] [CrossRef]
- Watanabe, S.; Shirogane, Y.; Suzuki, S.O.; Ikegame, S.; Koga, R.; Yanagi, Y. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters. J. Virol. 2013, 87, 2648–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, S.; Ohno, S.; Shirogane, Y.; Suzuki, S.O.; Koga, R.; Yanagi, Y. Measles Virus Mutants Possessing the Fusion Protein with Enhanced Fusion Activity Spread Effectively in Neuronal Cells, but Not in Other Cells, without Causing Strong Cytopathology. J. Virol. 2015, 89, 2710–2717. [Google Scholar] [CrossRef] [Green Version]
- Ader, N.; Brindley, M.; Avila, M.; Örvell, C.; Horvat, B.; Hiltensperger, G.; Schneider-Schaulies, J.; Vandevelde, M.; Zurbriggen, A.; Plemper, R.K.; et al. Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein. J. Virol. 2013, 87, 314–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila, M.; Alves, L.; Khosravi, M.; Ader-Ebert, N.; Origgi, F.; Schneider-Schaulies, J.; Zurbriggen, A.; Plemper, R.K.; Plattet, P. Molecular Determinants Defining the Triggering Range of Prefusion F Complexes of Canine Distemper Virus. J. Virol. 2014, 88, 2951–2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, J.; Prussia, A.; White, L.K.; Sun, A.; Liotta, D.C.; Snyder, J.P.; Compans, R.W.; Plemper, R.K. Two Domains That Control Prefusion Stability and Transport Competence of the Measles Virus Fusion Protein. J. Virol. 2006, 80, 1524–1536. [Google Scholar] [CrossRef]
- Sato, Y.; Watanabe, S.; Fukuda, Y.; Hashiguchi, T.; Yanagi, Y.; Ohno, S. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateo, M.; Navaratnarajah, C.K.; Cattaneo, R. Structural Basis of Efficient Contagion: Measles Variations on a Theme by Parainfluenza Viruses. Curr. Opin. Virol. 2014, 5, 16–23. [Google Scholar] [CrossRef]
- Vongpunsawad, S.; Oezgun, N.; Braun, W.; Cattaneo, R. Selectively Receptor-Blind Measles Viruses: Identification of Residues Necessary for SLAM- or CD46-Induced Fusion and Their Localization on a New Hemagglutinin Structural Model. J. Virol. 2004, 78, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Moeller-Ehrlich, K.; Ludlow, M.; Beschorner, R.; Meyermann, R.; Rima, B.K.; Duprex, W.P.; Niewiesk, S.; Schneider-Schaulies, J. Two Functionally Linked Amino Acids in the Stem 2 Region of Measles Virus Haemagglutinin Determine Infectivity and Virulence in the Rodent Central Nervous System. J. Gen. Virol. 2007, 88, 3112–3120. [Google Scholar] [CrossRef]
- Moeller, K.; Duffy, I.; Duprex, P.; Rima, B.; Beschorner, R.; Fauser, S.; Meyermann, R.; Niewiesk, S.; ter Meulen, V.; Schneider-Schaulies, J. Recombinant Measles Viruses Expressing Altered Hemagglutinin (H) Genes: Functional Separation of Mutations Determining H Antibody Escape from Neurovirulence. J. Virol. 2001, 75, 7612–7620. [Google Scholar] [CrossRef] [Green Version]
- Hotta, H.; Nihei, K.; Abe, Y.; Kato, S.; Jiang, D.-P.; Nagano-Fujii, M.; Sada, K. Full-Length Sequence Analysis of Subacute Sclerosing Panencephalitis (SSPE) Virus, a Mutant of Measles Virus, Isolated from Brain Tissues of a Patient Shortly after Onset of SSPE. Microbiol. Immunol. 2006, 50, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Millar, E.L.; Rennick, L.J.; Weissbrich, B.; Schneider-Schaulies, J.; Duprex, W.P.; Rima, B.K. The Phosphoprotein Genes of Measles Viruses from Subacute Sclerosing Panencephalitis Cases Encode Functional as Well as Non-Functional Proteins and Display Reduced Editing. Virus Res. 2016, 211, 29–37. [Google Scholar] [CrossRef]
- Arai, T.; Terao-Muto, Y.; Uchida, S.; Lin, C.; Honda, T.; Takenaka, A.; Ikeda, F.; Sato, H.; Yoneda, M.; Kai, C. The P Gene of Rodent Brain-Adapted Measles Virus Plays a Critical Role in Neurovirulence. J. Gen. Virol. 2017, 98, 1620–1629. [Google Scholar] [CrossRef]
- Jehmlich, U.; Ritzer, J.; Grosche, J.; Härtig, W.; Liebert, U.G. Experimental Measles Encephalitis in Lewis Rats: Dissemination of Infected Neuronal Cell Subtypes. J. Neurovirol. 2013, 19, 461–470. [Google Scholar] [CrossRef]
- Parhad, I.M.; Johnson, K.P.; Wolinsky, J.S.; Swoveland, P. Measles Retinopathy. A Hamster Model of Acute and Chronic Lesions. Lab Investig. 1980, 43, 52–56. [Google Scholar]
- Burnstein, T.; Jensen, J.H.; Waksman, B.H. The Development of a Neurotropic Strain of Measles Virus in Hamsters and Mice. J. Infect. Dis. 1964, 114, 265–272. [Google Scholar] [CrossRef]
- Ehrengruber, M.U.; Ehler, E.; Billeter, M.A.; Naim, H.Y. Measles Virus Spreads in Rat Hippocampal Neurons by Cell-to-Cell Contact and in a Polarized Fashion. J. Virol. 2002, 76, 5720–5728. [Google Scholar] [CrossRef] [Green Version]
- Neighbour, P.A.; Rager-Zisman, B.; Bloom, B.R. Susceptibility of Mice to Acute and Persistent Measles Infection. Infect. Immun. 1978, 21, 764–770. [Google Scholar]
- Schubert, S.; Möller-Ehrlich, K.; Singethan, K.; Wiese, S.; Duprex, W.P.; Rima, B.K.; Niewiesk, S.; Schneider-Schaulies, J. A Mouse Model of Persistent Brain Infection with Recombinant Measles Virus. J. Gen. Virol. 2006, 87, 2011–2019. [Google Scholar] [CrossRef]
- Abe, Y.; Hashimoto, K.; Watanabe, M.; Ohara, S.; Sato, M.; Kawasaki, Y.; Hashimoto, Y.; Hosoya, M. Characteristics of Viruses Derived from Nude Mice with Persistent Measles Virus Infection. J. Virol. 2013, 87, 4170–4175. [Google Scholar] [CrossRef] [Green Version]
- Horvat, B.; Rivailler, P.; Varior-Krishnan, G.; Cardoso, A.; Gerlier, D.; Rabourdin-Combe, C. Transgenic Mice Expressing Human Measles Virus (MV) Receptor CD46 Provide Cells Exhibiting Different Permissivities to MV Infections. J. Virol. 1996, 70, 6673–6681. [Google Scholar]
- Sellin, C.I.; Davoust, N.; Guillaume, V.; Baas, D.; Belin, M.-F.; Buckland, R.; Wild, T.F.; Horvat, B. High Pathogenicity of Wild-Type Measles Virus Infection in CD150 (SLAM) Transgenic Mice. J. Virol. 2006, 80, 6420–6429. [Google Scholar] [CrossRef] [Green Version]
- Figueira, T.N.; Palermo, L.M.; Veiga, A.S.; Huey, D.; Alabi, C.A.; Santos, N.C.; Welsch, J.C.; Mathieu, C.; Horvat, B.; Niewiesk, S.; et al. In Vivo Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Welsch, J.C.; Talekar, A.; Mathieu, C.; Pessi, A.; Moscona, A.; Horvat, B.; Porotto, M. Fatal Measles Virus Infection Prevented by Brain-Penetrant Fusion Inhibitors. J. Virol. 2013, 87, 13785–13794. [Google Scholar] [CrossRef] [Green Version]
- Van Binnendijk, R.S.; van der Heijden, R.W.J.; van Amerongen, G.; UytdeHaag, F.G.C.M.; Osterhaus, A.D.M.E. Viral Replication and Development of Specific Immunity in Macaques after Infection with Different Measles Virus Strains. J. Infect. Dis. 1994, 170, 443–448. [Google Scholar] [CrossRef]
- Devaux, P.; Hudacek, A.W.; Hodge, G.; Reyes-del Valle, J.; McChesney, M.B.; Cattaneo, R. A Recombinant Measles Virus Unable To Antagonize STAT1 Function Cannot Control Inflammation and Is Attenuated in Rhesus Monkeys. J. Virol. 2011, 85, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Leonard, V.H.J.; Sinn, P.L.; Hodge, G.; Miest, T.; Devaux, P.; Oezguen, N.; Braun, W.; McCray, P.B.; McChesney, M.B.; Cattaneo, R.; et al. Measles Virus Blind to Its Epithelial Cell Receptor Remains Virulent in Rhesus Monkeys but Cannot Cross the Airway Epithelium and Is Not Shed. J. Clin. Investig. 2008, 118, 2448–2458. [Google Scholar] [CrossRef]
- El Mubarak, H.S.; Yuksel, S.; van Amerongen, G.; Mulder, P.G.H.; Mukhtar, M.M.; Osterhaus, A.D.M.E.; de Swart, R.L. Infection of Cynomolgus Macaques (Macaca Fascicularis) and Rhesus Macaques (Macaca Mulatta) with Different Wild-Type Measles Viruses. J. Gen. Virol. 2007, 88, 2028–2034. [Google Scholar] [CrossRef]
- Remfry, J. A Measles Epizootic with 5 Deaths in Newly-Imported Rhesus Monkeys ( Macaca Mulatta ). Lab. Anim. 1976, 10, 49–57. [Google Scholar] [CrossRef]
- Choi, Y.K.; Simon, M.A.; Kim, D.Y.; Yoon, B.I.; Kwon, S.W.; Lee, K.W.; Seo, I.B.; Kim, D.Y. Fatal Measles Virus Infection in Japanese Macaques (Macaca Fuscata). Vet. Pathol. 1999, 36, 594–600. [Google Scholar] [CrossRef]
- Schumacher, H.P.; Albrecht, P.; Clark, R.G.; Kirschstein, R.L.; Tauraso, N.M. Intracerebral Inoculation of Rhesus Monkeys with a Strain of Measles Virus Isolated from a Case of Subacute Sclerosing Panencephalitis. Infect. Immun. 1971, 4, 419–424. [Google Scholar] [Green Version]
- Albrecht, P.; Shabo, A.L.; Burns, G.R.; Tauraso, N.M. Experimental Measles Encephalitis in Normal and Cyclophosphamide-Treated Rhesus Monkeys. J. Infect. Dis. 1972, 126, 154–161. [Google Scholar] [CrossRef]
- da Fontoura Budaszewski, R.; von Messling, V. Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus. Viruses 2016, 8, 274. [Google Scholar] [CrossRef]
- Lorenz, D.; Albrecht, P. Susceptibility of Tamarins (Saguinus) to Measles Virus. Lab. Anim. Sci. 1980, 30, 661–665. [Google Scholar]
- Albrecht, P.; Lorenz, D.; Klutch, M.J.; Vickers, J.H.; Ennis, F.A. Fatal Measles Infection in Marmosets Pathogenesis and Prophylaxis. Infect. Immun. 1980, 27, 969–978. [Google Scholar]
- Albrecht, P.; Lorenz, D.; Klutch, M.J. Encephalitogenicity of Measles Virus in Marmosets. Infect. Immun. 1981, 34, 581–587. [Google Scholar]
- Oldstone, M.B.; Lewicki, H.; Thomas, D.; Tishon, A.; Dales, S.; Patterson, J.; Manchester, M.; Homann, D.; Naniche, D.; Holz, A. Measles Virus Infection in a Transgenic Model: Virus-Induced Immunosuppression and Central Nervous System Disease. Cell 1999, 98, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Rall, G.F.; Manchester, M.; Daniels, L.R.; Callahan, E.M.; Belman, A.R.; Oldstone, M.B. A Transgenic Mouse Model for Measles Virus Infection of the Brain. Proc. Natl. Acad. Sci. USA 1997, 94, 4659–4663. [Google Scholar] [CrossRef] [PubMed]
- Blixenkrone-Møller, M.; Bernard, A.; Bencsik, A.; Sixt, N.; Diamond, L.E.; Logan, J.S.; Wild, T.F. Role of CD46 in Measles Virus Infection in CD46 Transgenic Mice. Virology 1998, 249, 238–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evlashev, A.; Moyse, E.; Valentin, H.; Azocar, O.; Trescol-Biemont, M.-C.; Marie, J.C.; Rabourdin-Combe, C.; Horvat, B. Productive Measles Virus Brain Infection and Apoptosis in CD46 Transgenic Mice. J. Virol. 2000, 74, 1373–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrkic, B.; Pavlovic, J.; Rülicke, T.; Volpe, P.; Buchholz, C.J.; Hourcade, D.; Atkinson, J.P.; Aguzzi, A.; Cattaneo, R. Measles Virus Spread and Pathogenesis in Genetically Modified Mice. J. Virol. 1998, 72, 7420–7427. [Google Scholar] [Green Version]
- Hahm, B.; Arbour, N.; Oldstone, M.B. Measles Virus Interacts with Human SLAM Receptor on Dendritic Cells to Cause Immunosuppression. Virology 2004, 323, 292–302. [Google Scholar] [CrossRef]
- Hahm, B.; Cho, J.-H.; Oldstone, M.B.A. Measles Virus-Dendritic Cell Interaction via SLAM Inhibits Innate Immunity: Selective Signaling through TLR4 but Not Other TLRs Mediates Suppression of IL-12 Synthesis. Virology 2007, 358, 251–257. [Google Scholar] [CrossRef]
- Shingai, M.; Inoue, N.; Okuno, T.; Okabe, M.; Akazawa, T.; Miyamoto, Y.; Ayata, M.; Honda, K.; Kurita-Taniguchi, M.; Matsumoto, M.; et al. Wild-Type Measles Virus Infection in Human CD46/CD150-Transgenic Mice: CD11c-Positive Dendritic Cells Establish Systemic Viral Infection. J. Immunol. 2005, 175, 3252–3261. [Google Scholar] [CrossRef] [Green Version]
- Ohno, S.; Ono, N.; Seki, F.; Takeda, M.; Kura, S.; Tsuzuki, T.; Yanagi, Y. Measles Virus Infection of SLAM (CD150) Knockin Mice Reproduces Tropism and Immunosuppression in Human Infection. J. Virol. 2007, 81, 1650–1659. [Google Scholar] [CrossRef] [Green Version]
- Welsch, J.C.; Charvet, B.; Dussurgey, S.; Allatif, O.; Aurine, N.; Horvat, B.; Gerlier, D.; Mathieu, C. Type I Interferon Receptor Signaling Drives Selective Permissiveness of Astrocytes and Microglia to Measles Virus during Brain Infection. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Welstead, G.G.; Iorio, C.; Draker, R.; Bayani, J.; Squire, J.; Vongpunsawad, S.; Cattaneo, R.; Richardson, C.D. Measles Virus Replication in Lymphatic Cells and Organs of CD150 (SLAM) Transgenic Mice. Proc. Natl. Acad. Sci. USA 2005, 102, 16415–16420. [Google Scholar] [CrossRef]
- Chan, S.P.K. Induction of Chronic Measles Encephalitis in C57BL/6 Mice. J. Gen. Virol. 1985, 66, 2071–2076. [Google Scholar] [CrossRef]
- Liebert, U.G. Measles Virus Infections of the Central Nervous System. Intervirology 1997, 40, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Bankamp, B.; Brinckmann, U.G.; Reich, A.; Niewiesk, S.; ter Meulen, V.; Liebert, U.G. Measles Virus Nucleocapsid Protein Protects Rats from Encephalitis. J. Virol. 1991, 65, 1695–1700. [Google Scholar] [PubMed]
- Niewiesk, S. Cotton Rats (Sigmodon Hispidus): An Animal Model to Study the Pathogenesis of Measles Virus Infection. Immunol. Lett. 1999, 65, 47–50. [Google Scholar] [CrossRef]
- Niewiesk, S.; Schneider-Schaulies, J.; Ohnimus, H.; Jassoy, C.; Schneider-Schaulies, S.; Diamond, L.; Logan, J.S.; ter Meulen, V. CD46 Expression Does Not Overcome the Intracellular Block of Measles Virus Replication in Transgenic Rats. J. Virol. 1997, 71, 7969–7973. [Google Scholar]
- Liebert, U.G.; Meulen, V.T. Virological Aspects of Measles Virus-Induced Encephalomyelitis in Lewis and BN Rats. J. Gen. Virol. 1987, 68, 1715–1722. [Google Scholar] [CrossRef]
- Katz, M.; Rorke, L.B.; Masland, W.S.; Brodano, G.B.; Koprowski, H. Subacute Sclerosing Panencephalitis: Isolation of a Virus Encephalitogenic for Ferrets. J. Infect. Dis. 1970, 121, 188–195. [Google Scholar] [CrossRef]
- Thormar, H.; Mehta, P.D.; Lin, F.H.; Brown, H.R.; Wisniewski, H.M. Presence of Oligoclonal Immunoglobulin G Bands and Lack of Matrix Protein Antibodies in Cerebrospinal Fluids and Sera of Ferrets with Measles Virus Encephalitis. Infect. Immun. 1983, 41, 1205–1211. [Google Scholar]
- Cosby, S.L.; Brankin, B. Measles Virus Infection of Cerebral Endothelial Cells and Effect on Their Adhesive Properties. Vet. Microbiol. 1995, 44, 135–139. [Google Scholar] [CrossRef]
- Laksono, B.M.; de Vries, R.D.; McQuaid, S.; Duprex, W.P.; de Swart, R.L. Measles Virus Host Invasion and Pathogenesis. Viruses 2016, 8, 210. [Google Scholar] [CrossRef]
- Bechmann, I.; Galea, I.; Perry, V.H. What Is the Blood-Brain Barrier (Not)? Trends Immunol. 2007, 28, 5–11. [Google Scholar] [CrossRef]
- Allen, I.V.; McQuaid, S.; McMahon, J.; Kirk, J.; McConnell, R. The Significance of Measles Virus Antigen and Genome Distribution in the CNS in SSPE for Mechanisms of Viral Spread and Demyelination. J. Neuropathol. Exp. Neurol. 1996, 55, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delpeut, S.; Noyce, R.S.; Siu, R.W.C.; Richardson, C.D. Host Factors and Measles Virus Replication. Curr. Opin. Virol. 2012, 2, 773–783. [Google Scholar] [CrossRef] [PubMed]
- McQuaid, S.; Cosby, S.L. An Immunohistochemical Study of the Distribution of the Measles Virus Receptors, CD46 and SLAM, in Normal Human Tissues and Subacute Sclerosing Panencephalitis. Lab. Investig. 2002, 82, 403–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thormar, H.; Brown, H.R.; Goller, N.L.; Barshatzky, M.R.; Wisniewski, H.M. Transmission of Measles Virus Encephalitis to Ferrets by Intracardiac Inoculation of a Cell-Associated SSPE Virus Strain. APMIS 1988, 96, 1125–1128. [Google Scholar] [CrossRef]
- Woyciechowska, J.; Breschkin, A.M.; Rapp, F. Measles Virus Meningoencephalitis. Immunofluorescence Study of Brains Infected with Virus Mutants. Lab. Investig. 1977, 36, 233–236. [Google Scholar]
- Shirogane, Y.; Hashiguchi, T.; Yanagi, Y. Weak Cis and Trans Interactions of the Hemagglutinin with Receptors Trigger Fusion Proteins of Neuropathogenic Measles Virus Isolates. J. Virol. 2019. [Google Scholar] [CrossRef]
- Hofman, F.M.; Hinton, D.R.; Baemayr, J.; Weil, M.; Merrill, J.E. Lymphokines and Immunoregulatory Molecules in Subacute Sclerosing Panencephalitis. Clin. Immunol. Immunopathol. 1991, 58, 331–342. [Google Scholar] [CrossRef]
- Manchester, M.; Eto, D.S.; Oldstone, M.B. Characterization of the Inflammatory Response during Acute Measles Encephalitis in NSE-CD46 Transgenic Mice. J. Neuroimmunol. 1999, 96, 207–217. [Google Scholar] [CrossRef]
- Welsch, J.; Lionnet, C.; Terzian, C.; Horvat, B.; Gerlier, D.; Mathieu, C. Organotypic Brain Cultures: A Framework for Studying CNS Infection by Neurotropic Viruses and Screening Antiviral Drugs. Bio-Protocol 2017, 7. [Google Scholar] [CrossRef]
- Sheppard, R.D.; Raine, C.S.; Burnstein, T.; Bornstein, M.B.; Feldman, L.A. Cell-Associated Subacute Sclerosing Panencephalitis Agent Studied in Organotypic Central Nervous System Cultures: Viral Rescue Attempts and Morphology. Infect. Immun. 1975, 12, 891–900. [Google Scholar] [PubMed]
- Preibisch, S.; Saalfeld, S.; Tomancak, P. Globally Optimal Stitching of Tiled 3D Microscopic Image Acquisitions. Bioinformatics 2009, 25, 1463–1465. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.M.; Patterson, C.E.; Gales, T.L.; D’Orazio, J.L.; Vaughn, M.M.; Rall, G.F. Measles Virus Spread between Neurons Requires Cell Contact but Not CD46 Expression, Syncytium Formation, or Extracellular Virus Production. J. Virol. 2000, 74, 1908–1918. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, L.A.; Conway, S.; Rose, R.W.; Nicolas, E.; Slifker, M.; Balachandran, S.; Rall, G.F. STAT1-Independent Control of a Neurotropic Measles Virus Challenge in Primary Neurons and Infected Mice. J. Immunol. 2012, 188, 1915–1923. [Google Scholar] [CrossRef] [Green Version]
- Duprex, W.P.; McQuaid, S.; Roscic-Mrkic, B.; Cattaneo, R.; McCallister, C.; Rima, B.K. In Vitro and in Vivo Infection of Neural Cells by a Recombinant Measles Virus Expressing Enhanced Green Fluorescent Protein. J. Virol. 2000, 74, 7972–7979. [Google Scholar] [CrossRef]
- Ludlow, M.; McQuaid, S.; Cosby, S.L.; Cattaneo, R.; Rima, B.K.; Duprex, W.P. Measles Virus Superinfection Immunity and Receptor Redistribution in Persistently Infected NT2 Cells. J. Gen. Virol. 2005, 86, 2291–2303. [Google Scholar] [CrossRef]
- McQuaid, S.; Campbell, S.; Wallace, I.J.; Kirk, J.; Cosby, S.L. Measles Virus Infection and Replication in Undifferentiated and Differentiated Human Neuronal Cells in Culture. J. Virol. 1998, 72, 5245–5250. [Google Scholar] [Green Version]
- Brawner, A.T.; Xu, R.; Liu, D.; Jiang, P. Generating CNS Organoids from Human Induced Pluripotent Stem Cells for Modeling Neurological Disorders. Int. J. Physiol. Pathophysiol. Pharmacol. 2017, 9, 101–111. [Google Scholar]
- Qian, X.; Nguyen, H.N.; Song, M.M.; Hadiono, C.; Ogden, S.C.; Hammack, C.; Yao, B.; Hamersky, G.R.; Jacob, F.; Zhong, C.; et al. Brain-Region-Specific Organoids Using Mini-Bioreactors for Modeling ZIKV Exposure. Cell 2016, 165, 1238–1254. [Google Scholar] [CrossRef]
- Sabella, C. Measles: Not Just a Childhood Rash. Cleve. Clin. J. Med. 2010, 77, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Ordman, C.W.; Jennings, C.G.; Janeway, C.A. Chemical, Clinical, and Immunological Studies on the Products of Human Plasma Fractionation. XII. The Use of Concentrated Normal Human Serum Gamma Globulin (Human Immune Serum Globulin) in the Prevention and Attenuation of Measles. J. Clin. Investig. 1944, 23, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Bigham, M.; Murti, M.; Fung, C.; Hemming, F.; Loadman, S.; Stam, R.; Van Buynder, P.; Lem, M. Estimated Protective Effectiveness of Intramuscular Immune Serum Globulin Post-Exposure Prophylaxis during a Measles Outbreak in British Columbia, Canada, 2014. Vaccine 2017, 35, 2723–2727. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, Y.A.; Lawrence, E.C.; DeHovitz, R.; Hartzell, H.; Albrecht, P. Early Loss of Passive Measles Antibody in Infants of Mothers with Vaccine-Induced Immunity. Pediatrics 1995, 96, 447–450. [Google Scholar] [PubMed]
- Rammohan, K.W.; McFarland, H.F.; McFarlin, D.E. Subacute Sclerosing Panencephalitis after Passive Immunization and Natural Measles Infection: Role of Antibody in Persistence of Measles Virus. Neurology 1982, 32, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Liebert, U.G.; Schneider-Schaulies, S.; Baczko, K.; ter Meulen, V. Antibody-Induced Restriction of Viral Gene Expression in Measles Encephalitis in Rats. J. Virol. 1990, 64, 706–713. [Google Scholar] [PubMed]
- Rammohan, K.W.; McFarland, H.F.; McFarlin, D.E. Induction of Subacute Murine Measles Encephalitis by Monoclonal Antibody to Virus Haemagglutinin. Nature 1981, 290, 588–589. [Google Scholar] [CrossRef]
- Wear, D.J.; Rapp, F. Latent Measles Virus Infection of the Hamster Central Nervous System. J. Immunol. 1971, 107, 1593–1598. [Google Scholar]
- Mori, K.; Hiraoka, O.; Ikeda, M.; Ariumi, Y.; Hiramoto, A.; Wataya, Y.; Kato, N. Adenosine Kinase Is a Key Determinant for the Anti-HCV Activity of Ribavirin. Hepatology 2013, 58, 1236–1244. [Google Scholar] [CrossRef]
- Crotty, S.; Cameron, C.; Andino, R. Ribavirin’s Antiviral Mechanism of Action: Lethal Mutagenesis? J. Mol. Med. 2002, 80, 86–95. [Google Scholar] [CrossRef]
- Stogner, S.W.; King, J.W.; Black-Payne, C.; Bocchini, J. Ribavirin and Intravenous Immune Globulin Therapy for Measles Pneumonia in HIV Infection. South. Med. J. 1993, 86, 1415–1418. [Google Scholar] [CrossRef]
- Solomon, T.; Hart, C.A.; Vinjamuri, S.; Beeching, N.J.; Malucci, C.; Humphrey, P. Treatment of Subacute Sclerosing Panencephalitis with Interferon-Alpha, Ribavirin, and Inosiplex. J. Child Neurol. 2002, 17, 703–705. [Google Scholar] [CrossRef]
- Hosoya, M.; Mori, S.; Tomoda, A.; Mori, K.; Sawaishi, Y.; Kimura, H.; Shigeta, S.; Suzuki, H. Pharmacokinetics and Effects of Ribavirin Following Intraventricular Administration for Treatment of Subacute Sclerosing Panencephalitis. Antimicrob. Agents Chemother. 2004, 48, 4631–4635. [Google Scholar] [CrossRef]
- Tomoda, A.; Nomura, K.; Shiraishi, S.; Hamada, A.; Ohmura, T.; Hosoya, M.; Miike, T.; Sawaishi, Y.; Kimura, H.; Takashima, H.; et al. Trial of Intraventricular Ribavirin Therapy for Subacute Sclerosing Panencephalitis in Japan. Brain Dev. 2003, 25, 514–517. [Google Scholar] [CrossRef]
- Kwak, M.; Yeh, H.-R.; Yum, M.-S.; Kim, H.-J.; You, S.J.; Ko, T.-S. A Long-Term Subacute Sclerosing Panencephalitis Survivor Treated with Intraventricular Interferon-Alpha for 13 Years. Korean J. Pediatr. 2019, 62, 108–112. [Google Scholar] [CrossRef]
- Miyazaki, K.; Hashimoto, K.; Suyama, K.; Sato, M.; Abe, Y.; Watanabe, M.; Kanno, S.; Maeda, H.; Kawasaki, Y.; Hosoya, M. Maintaining Concentration of Ribavirin in Cerebrospinal Fluid by a New Dosage Method; 3 Cases of Subacute Sclerosing Panencephalitis Treated Using a Subcutaneous Continuous Infusion Pump. Pediatr. Infect. Dis. J. 2019, 38, 496–499. [Google Scholar] [CrossRef]
- Gokcil, Z.; Odabasi, Z.; Demirkaya, S.; Eroglu, E.; Vural, O. Alpha-Interferon and Isoprinosine in Adult-Onset Subacute Sclerosing Panencephalitis. J. Neurol. Sci. 1999, 162, 62–64. [Google Scholar] [CrossRef]
- Gutierrez, J.; Issacson, R.S.; Koppel, B.S. Subacute Sclerosing Panencephalitis: An Update. Dev. Med. Child Neurol. 2010, 52, 901–907. [Google Scholar] [CrossRef]
- Ravikumar, S.; Crawford, J.R. Role of Carbamazepine in the Symptomatic Treatment of Subacute Sclerosing Panencephalitis: A Case Report and Review of the Literature. Case Rep. Neurol. Med. 2013, 2013, 327647. [Google Scholar] [CrossRef]
- Blank, T.; Prinz, M. Type I Interferon Pathway in CNS Homeostasis and Neurological Disorders. Glia 2017, 65, 1397–1406. [Google Scholar] [CrossRef]
- Rima, B.K.; Davidson, W.B.; Martin, S.J. The Role of Defective Interfering Particles in Persistent Infection of Vero Cells by Measles Virus. J. Gen. Virol. 1977, 35, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Yount, J.S.; Gitlin, L.; Moran, T.M.; López, C.B. MDA5 Participates in the Detection of Paramyxovirus Infection and Is Essential for the Early Activation of Dendritic Cells in Response to Sendai Virus Defective Interfering Particles. J. Immunol. 2008, 180, 4910–4918. [Google Scholar] [CrossRef] [PubMed]
- Bello, S.; Meremikwu, M.M.; Ejemot-Nwadiaro, R.I.; Oduwole, O. Routine Vitamin A Supplementation for the Prevention of Blindness Due to Measles Infection in Children. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Barclay, A.J.; Foster, A.; Sommer, A. Vitamin A Supplements and Mortality Related to Measles: A Randomised Clinical Trial. Br. Med. J. (Clin. Res. Ed). 1987, 294, 294–296. [Google Scholar] [CrossRef]
- Coutsoudis, A.; Broughton, M.; Coovadia, H.M. Vitamin A Supplementation Reduces Measles Morbidity in Young African Children: A Randomized, Placebo-Controlled, Double-Blind Trial. Am. J. Clin. Nutr. 1991, 54, 890–895. [Google Scholar] [CrossRef]
- Hussey, G.D.; Klein, M. Routine High-Dose Vitamin A Therapy for Children Hospitalized with Measles. J. Trop. Pediatr. 1993, 39, 342–345. [Google Scholar] [CrossRef]
- WHO. Measles Vaccines: WHO Position Paper—April 2017. Wkly Epidemiol Rec. 2017, 92, 205–227. [Google Scholar]
- Bichon, A.; Aubry, C.; Benarous, L.; Drouet, H.; Zandotti, C.; Parola, P.; Lagier, J.-C. Case Report. Medicine (Baltimore) 2017, 96, e9154. [Google Scholar] [CrossRef]
- Loo, Y.-M.; Gale, M. Immune Signaling by RIG-I-like Receptors. Immunity 2011, 34, 680–692. [Google Scholar] [CrossRef] [Green Version]
- Gerlier, D.; Lyles, D.S. Interplay between Innate Immunity and Negative-Strand RNA Viruses: Towards a Rational Model. Microbiol. Mol. Biol. Rev. 2011, 75, 468–490. [Google Scholar] [CrossRef]
- Plumet, S.; Herschke, F.; Bourhis, J.-M.; Valentin, H.; Longhi, S.; Gerlier, D. Cytosolic 5′-Triphosphate Ended Viral Leader Transcript of Measles Virus as Activator of the RIG I-Mediated Interferon Response. PLoS ONE 2007, 2, e279. [Google Scholar] [CrossRef]
- Yoneyama, M.; Onomoto, K.; Jogi, M.; Akaboshi, T.; Fujita, T. Viral RNA Detection by RIG-I-like Receptors. Curr. Opin. Immunol. 2015, 32, 48–53. [Google Scholar] [CrossRef]
- Trottier, C.; Chabot, S.; Mann, K.K.; Colombo, M.; Chatterjee, A.; Miller, W.H.; Ward, B.J. Retinoids Inhibit Measles Virus in Vitro via Nuclear Retinoid Receptor Signaling Pathways. Antivir. Res. 2008, 80, 45–53. [Google Scholar] [CrossRef]
- Trottier, C.; Colombo, M.; Mann, K.K.; Miller, W.H.; Ward, B.J. Retinoids Inhibit Measles Virus through a Type I IFN-Dependent Bystander Effect. FASEB J. 2009, 23, 3203–3212. [Google Scholar] [CrossRef]
- Soye, K.J.; Trottier, C.; Richardson, C.D.; Ward, B.J.; Miller, W.H. RIG-I Is Required for the Inhibition of Measles Virus by Retinoids. PLoS ONE 2011, 6, e22323. [Google Scholar] [CrossRef]
- Kelly, J.T.; Human, S.; Alderman, J.; Jobe, F.; Logan, L.; Rix, T.; Gonçalves-Carneiro, D.; Leung, C.; Thakur, N.; Birch, J.; et al. BST2/Tetherin Overexpression Modulates Morbillivirus Glycoprotein Production to Inhibit Cell–Cell Fusion. Viruses 2019, 11, 692. [Google Scholar] [CrossRef]
- Smith, S.E.; Busse, D.C.; Binter, S.; Weston, S.; Diaz Soria, C.; Laksono, B.M.; Clare, S.; Van Nieuwkoop, S.; Van den Hoogen, B.G.; Clement, M.; et al. Interferon-Induced Transmembrane Protein 1 Restricts Replication of Viruses That Enter Cells via the Plasma Membrane. J. Virol. 2018, 93. [Google Scholar] [CrossRef]
- Barnard, D.L. Inhibitors of Measles Virus. Antivir. Chem. Chemother. 2004, 15, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Schönberger, K.; Ludwig, M.-S.; Wildner, M.; Weissbrich, B. Epidemiology of Subacute Sclerosing Panencephalitis (SSPE) in Germany from 2003 to 2009: A Risk Estimation. PLoS ONE 2013, 8, e68909. [Google Scholar] [CrossRef]
- Otaki, M.; Sada, K.; Kadoya, H.; Nagano-Fujii, M.; Hotta, H. Inhibition of Measles Virus and Subacute Sclerosing Panencephalitis Virus by RNA Interference. Antivir. Res. 2006, 70, 105–111. [Google Scholar] [CrossRef]
- Keita, D.; Servan de Almeida, R.; Libeau, G.; Albina, E. Identification and Mapping of a Region on the MRNA of Morbillivirus Nucleoprotein Susceptible to RNA Interference. Antivir. Res. 2008, 80, 158–167. [Google Scholar] [CrossRef]
- Brunel, J.; Chopy, D.; Dosnon, M.; Bloyet, L.-M.; Devaux, P.; Urzua, E.; Cattaneo, R.; Longhi, S.; Gerlier, D. Sequence of Events in Measles Virus Replication: Role of Phosphoprotein-Nucleocapsid Interactions. J. Virol. 2014, 88, 10851–10863. [Google Scholar] [CrossRef] [Green Version]
- Zinke, M.; Kendl, S.; Singethan, K.; Fehrholz, M.; Reuter, D.; Rennick, L.; Herold, M.J.; Schneider-Schaulies, J. Clearance of Measles Virus from Persistently Infected Cells by Short Hairpin RNA. J. Virol. 2009, 83, 9423–9431. [Google Scholar] [CrossRef] [Green Version]
- Plumet, S.; Duprex, W.P.; Gerlier, D. Dynamics of Viral RNA Synthesis during Measles Virus Infection. J. Virol. 2005, 79, 6900–6908. [Google Scholar] [CrossRef] [Green Version]
- Bloyet, L.-M.; Welsch, J.; Enchery, F.; Mathieu, C.; de Breyne, S.; Horvat, B.; Grigorov, B.; Gerlier, D. HSP90 Chaperoning in Addition to Phosphoprotein Required for Folding but Not for Supporting Enzymatic Activities of Measles and Nipah Virus L Polymerases. J. Virol. 2016, 90, 6642–6656. [Google Scholar] [CrossRef] [Green Version]
- Geller, R.; Andino, R.; Frydman, J. Hsp90 Inhibitors Exhibit Resistance-Free Antiviral Activity against Respiratory Syncytial Virus. PLoS ONE 2013, 8, e56762. [Google Scholar] [CrossRef]
- Lo, M.K.; Jordan, R.; Arvey, A.; Sudhamsu, J.; Shrivastava-Ranjan, P.; Hotard, A.L.; Flint, M.; McMullan, L.K.; Siegel, D.; Clarke, M.O.; et al. GS-5734 and Its Parent Nucleoside Analog Inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017, 7, 43395. [Google Scholar] [CrossRef]
- Jordan, P.C.; Liu, C.; Raynaud, P.; Lo, M.K.; Spiropoulou, C.F.; Symons, J.A.; Beigelman, L.; Deval, J. Initiation, Extension, and Termination of RNA Synthesis by a Paramyxovirus Polymerase. PLoS Pathog. 2018, 14, e1006889. [Google Scholar] [CrossRef]
- Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; et al. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola Virus in Rhesus Monkeys. Nature 2016, 531, 381–385. [Google Scholar] [CrossRef]
- White, L.K.; Yoon, J.-J.; Lee, J.K.; Sun, A.; Du, Y.; Fu, H.; Snyder, J.P.; Plemper, R.K. Nonnucleoside Inhibitor of Measles Virus RNA-Dependent RNA Polymerase Complex Activity. Antimicrob. Agents Chemother. 2007, 51, 2293–2303. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.-J.; Krumm, S.A.; Ndungu, J.M.; Hoffman, V.; Bankamp, B.; Rota, P.A.; Sun, A.; Snyder, J.P.; Plemper, R.K. Target Analysis of the Experimental Measles Therapeutic AS-136A. Antimicrob. Agents Chemother. 2009, 53, 3860–3870. [Google Scholar] [CrossRef] [Green Version]
- Ndungu, J.M.; Krumm, S.A.; Yan, D.; Arrendale, R.F.; Reddy, G.P.; Evers, T.; Howard, R.; Natchus, M.G.; Saindane, M.T.; Liotta, D.C.; et al. Non-Nucleoside Inhibitors of the Measles Virus RNA-Dependent RNA Polymerase: Synthesis, Structure-Activity Relationships, and Pharmacokinetics. J. Med. Chem. 2012, 55, 4220–4230. [Google Scholar] [CrossRef]
- Tahara, M.; Ohno, S.; Sakai, K.; Ito, Y.; Fukuhara, H.; Komase, K.; Brindley, M.A.; Rota, P.A.; Plemper, R.K.; Maenaka, K.; et al. The Receptor-Binding Site of the Measles Virus Hemagglutinin Protein Itself Constitutes a Conserved Neutralizing Epitope. J. Virol. 2013, 87, 3583–3586. [Google Scholar] [CrossRef] [Green Version]
- Tadokoro, T.; Jahan, M.L.; Ito, Y.; Tahara, M.; Chen, S.; Imai, A.; Sugimura, N.; Yoshida, K.; Saito, M.; Ose, T.; et al. Biophysical Characterization and Single-chain Fv Construction of a Neutralizing Antibody to Measles Virus. FEBS J. 2019, febs.14991. [Google Scholar] [CrossRef]
- Plemper, R.K.; Erlandson, K.J.; Lakdawala, A.S.; Sun, A.; Prussia, A.; Boonsombat, J.; Aki-Sener, E.; Yalcin, I.; Yildiz, I.; Temiz-Arpaci, O.; et al. A Target Site for Template-Based Design of Measles Virus Entry Inhibitors. Proc. Natl. Acad. Sci. USA 2004, 101, 5628–5633. [Google Scholar] [CrossRef]
- Ha, M.N.; Delpeut, S.; Noyce, R.S.; Sisson, G.; Black, K.M.; Lin, L.-T.; Bilimoria, D.; Plemper, R.K.; Privé, G.G.; Richardson, C.D. Mutations in the Fusion Protein of Measles Virus That Confer Resistance to the Membrane Fusion Inhibitors Carbobenzoxy-d-Phe-l-Phe-Gly and 4-Nitro-2-Phenylacetyl Amino-Benzamide. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Porotto, M.; Yokoyama, C.C.; Palermo, L.M.; Mungall, B.; Aljofan, M.; Cortese, R.; Pessi, A.; Moscona, A. Viral Entry Inhibitors Targeted to the Membrane Site of Action. J. Virol. 2010, 84, 6760–6768. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.E. Emergence and Re-Emergence of Viral Diseases of the Central Nervous System. Prog. Neurobiol. 2010, 91, 95–101. [Google Scholar] [CrossRef]
Animal | Purpose | Route of Infection |
---|---|---|
MICE | ||
NSE-CD46: Expression of BC1 isoform of human CD46 under the control of the neuron-specific enolase (NSE) [159,160] YAC-CD46: Similar expression level and location than in human [159] CD46 [143,161,162] CD46-IFNAR−/− [163] | Vaccinal MeV behavior in the brain. Ability to disseminate in the brain. Pathogenesis of MeV infection in the CNS. Permissiveness. Immune response. | Intranasally (i.n.)Intracranially (i.c.) |
SLAM: Ubiquitous expression [144] SLAM: Dendritic cell expression only [164,165] CD46/TLR induced CD150 [166] CD46/TLR induced CD150-IFNAR−/− | Innate immune response Spreading and pathogenicity of Edmonston and wild-type Ichinose (IC) strains | i.n. i.c. |
SLAM IFNAR−/− [167] (Figure in Section 9.3) IFNAR−/− [42,168] (Figure in Section 9.3) | Tropism Dissemination within CNS | Intraperitoneal (i.p.) i.n. |
SLAM+/+/Stat 1−/−: Same expression level than human [169] | Innate immune response | i.p. i.n. |
CD46 IFN-α/βKO [163] | Induction of MeV encephalitis with Edmonston | i.c. |
CD46 RagKO [96,103] | Study of the establishment of SSPE Role of the immunosuppression in the MeV persistence Drug testing | Multiple |
CD46 Neurokinin-1 KO [96] | Trans-synaptic viral dissemination | i.c. |
C57BL/6 [170] (Figure in Section 9.3) | Viral persistence Tropism | i.c. |
RAT | ||
Lewis rat [136,139,171] | Tropism | i.c. |
Cotton rat (Sigmodon hispidus) [12,172,173] | Treatment development. Respiratory infection MeV induced immunosuppression CNS infection Immune suppression | i.n. |
CD46 Sprague-Dawley rat [174] | permissiveness | Multiple |
Brown Norway rat [175] | Immune response in MeV associated neurologic disease | i.c. |
HAMSTER | ||
Syrian Golden Hamster [123] (Figure in Section 9.3) | Tropism Dissemination and invasion by mutated viruses | i.c. |
FERRET | ||
Ferret [97,155,176,177] | To mimic SSPE Transmission Pathogenesis of CDV infection to model MeV infection | i.c. i.n. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferren, M.; Horvat, B.; Mathieu, C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019, 11, 1017. https://doi.org/10.3390/v11111017
Ferren M, Horvat B, Mathieu C. Measles Encephalitis: Towards New Therapeutics. Viruses. 2019; 11(11):1017. https://doi.org/10.3390/v11111017
Chicago/Turabian StyleFerren, Marion, Branka Horvat, and Cyrille Mathieu. 2019. "Measles Encephalitis: Towards New Therapeutics" Viruses 11, no. 11: 1017. https://doi.org/10.3390/v11111017