A Single Point Mutation in the Mumps V Protein Alters Targeting of the Cellular STAT Pathways Resulting in Virus Attenuation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Primary Cells
2.2. RT-PCR and Sequencing
2.3. Construction of Plasmids
2.4. Rescue of Recombinant Virus from cDNA
2.5. In Vitro Growth Kinetics
2.6. In Vivo Characterization of the cDNA Derived 88–1961 Recombinant Viruses
2.7. Assessment of Protein Expression
Algorithm 1: Calculation of Relative quantification values |
Input: Pixel densities measured by Image J Output: Relative quantification values expressed as a percentage
|
3. Results
3.1. Sequence Characterization of r88-1961E95D, rJLWT and rJLE95D
3.2. Characterization of the in vitro Growth Kinetics of r88-1961E95D
3.3. Characterization of the in vivo Virulence and Growth Kinetics of r88-1961 E95D in the Newborn Rat Model
3.4. STAT Protein Degradation In Vitro and In Vivo
3.5. Relative Binding Affinity of the V Protein Variants to Cellular Partners
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mortimer, P.P. Mumps prophylaxis in the light of a new test for antibody. Br. Med. J. 1978, 2, 1523–1524. [Google Scholar] [CrossRef] [PubMed]
- Bangor-Jones, R.D.; Dowse, G.K.; Giele, C.M.; van Buynder, P.G.; Hodge, M.M.; Whitty, M.M. A prolonged mumps outbreak among highly vaccinated Aboriginal people in the Kimberley region of Western Australia. Med. J. Aust. 2009, 191, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Dayan, G.H.; Rubin, S. Mumps outbreaks in vaccinated populations: Are available mumps vaccines effective enough to prevent outbreaks? Clin. Infect. Dis. 2008, 47, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Whelan, J.; van Binnendijk, R.; Greenland, K.; Fanoy, E.; Khargi, M.; Yap, K.; Boot, H.; Veltman, N.; Swaan, C.; van der Bij, A.; et al. Ongoing mumps outbreak in a student population with high vaccination coverage, Netherlands, 2010. Euro Surveill. 2010, 15, 19554. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Update: Mumps outbreak—New York and New Jersey, June 2009–January 2010. MMWR Morb. Mortal.Wkly. Rep. 2010, 59, 125–129. [Google Scholar]
- Pazdiora, P.; Skalova, J.; Kubatova, A.; Jezova, I.; Moravkova, I.; Podlesna, I.; Pruchova, J.; Spacilova, M.; Svecova, M. Mumps outbreak in the Plzen Region in 2011. Epidemiol. Mikrobiol. Imunol. 2015, 64, 242–249. [Google Scholar]
- Sabbe, M.; Vandermeulen, C. The resurgence of mumps and pertussis. Hum. Vaccin. Immunother. 2016. [Google Scholar] [CrossRef]
- Cordeiro, E.; Ferreira, M.; Rodrigues, F.; Palminha, P.; Vinagre, E.; Pimentel, J.P. Mumps Outbreak among Highly Vaccinated Teenagers and Children in the Central Region of Portugal, 2012–2013. Acta Med. Port. 2015, 28, 435–441. [Google Scholar] [CrossRef]
- Litman, N.; Baum, S.G.; Mumps Virus, P. Principles and Practice of Infectious Diseases, 7th ed.; Mandell, G.L., Bennett, J.E., Donlin, R., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2010. [Google Scholar]
- Bang, H.O.; Bang, J. Involvement of the central nervous system in mumps. Acta Med. Scand. 1943, 113, 487–505. [Google Scholar] [CrossRef]
- Brown, J.W.; Kirkland, H.B.; Hein, G.E. Central nervous system involvement during mumps. Am. J. Med. Sci. 1948, 215, 434–441. [Google Scholar] [CrossRef]
- Rubin, S.; Eckhaus, M.; Rennick, L.J.; Bamford, C.G.; Duprex, W.P. Molecular biology, pathogenesis and pathology of mumps virus. J. Pathol. 2015, 235, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.; Goldacre, M.; Pugh, S.; Colville, A.; Farrington, P.; Flower, A.; Nash, J.; MacFarlane, L.; Tettmar, R. Risk of aseptic meningitis after measles, mumps, and rubella vaccine in UK children. Lancet 1993, 341, 979–982. [Google Scholar] [CrossRef]
- Da Silveira, C.M.; Kmetzsch, C.I.; Mohrdieck, R.; Sperb, A.F.; Prevots, D.R. The risk of aseptic meningitis associated with the Leningrad-Zagreb mumps vaccine strain following mass vaccination with measles-mumps-rubella vaccine, Rio Grande do Sul, Brazil, 1997. Int. J. Epidemiol. 2002, 31, 978–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemon, K.; Rima, B.K.; McQuaid, S.; Allen, I.V.; Duprex, W.P. The F gene of rodent brain-adapted mumps virus is a major determinant of neurovirulence. J. Virol. 2007, 81, 8293–8302. [Google Scholar] [CrossRef]
- Malik, T.; Sauder, C.; Wolbert, C.; Zhang, C.; Carbone, K.M.; Rubin, S. A single nucleotide change in the mumps virus F gene affects virus fusogenicity in vitro and virulence in vivo. J. Neurovirol. 2007, 13, 513–521. [Google Scholar] [CrossRef]
- Malik, T.; Shegogue, C.W.; Werner, K.; Ngo, L.; Sauder, C.; Zhang, C.; Duprex, W.P.; Rubin, S. Discrimination of mumps virus small hydrophobic gene deletion effects from gene translation effects on virus virulence. J. Virol. 2011, 85, 6082–6085. [Google Scholar] [CrossRef]
- Malik, T.; Wolbert, C.; Mauldin, J.; Sauder, C.; Carbone, K.M.; Rubin, S.A. Functional consequences of attenuating mutations in the haemagglutinin neuraminidase, fusion and polymerase proteins of a wild-type mumps virus strain. J. Gen. Virol. 2007, 88, 2533–2541. [Google Scholar] [CrossRef]
- Malik, T.H.; Wolbert, C.; Nerret, L.; Sauder, C.; Rubin, S. Single amino acid changes in the mumps virus haemagglutinin-neuraminidase and polymerase proteins are associated with neuroattenuation. J. Gen. Virol. 2009, 90, 1741–1747. [Google Scholar] [CrossRef]
- Sauder, C.J.; Zhang, C.X.; Ngo, L.; Werner, K.; Lemon, K.; Duprex, W.P.; Malik, T.; Carbone, K.; Rubin, S.A. Gene-specific contributions to mumps virus neurovirulence and neuroattenuation. J. Virol. 2011, 85, 7059–7069. [Google Scholar] [CrossRef]
- Sauder, C.J.; Zhang, C.X.; Link, M.A.; Duprex, W.P.; Carbone, K.M.; Rubin, S.A. Presence of lysine at aa 335 of the hemagglutinin-neuraminidase protein of mumps virus vaccine strain Urabe AM9 is not a requirement for neurovirulence. Vaccine 2009, 27, 5822–5829. [Google Scholar] [CrossRef]
- Rubin, S.; Sauder, C.; Carbone, K. Mumps Virus. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Wolters Kluwer, Lippinocott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1024–1041. [Google Scholar]
- Elliott, G.D.; Yeo, R.P.; Afzal, M.A.; Simpson, E.J.; Curran, J.A.; Rima, B.K. Strain-variable editing during transcription of the P gene of mumps virus may lead to the generation of non-structural proteins NS1 (V) and NS2. J. Gen. Virol. 1990, 71 Pt 7, 1555–1560. [Google Scholar] [CrossRef]
- Paterson, R.G.; Lamb, R.A. RNA editing by G-nucleotide insertion in mumps virus P-gene mRNA transcripts. J. Virol. 1990, 64, 4137–4145. [Google Scholar] [PubMed]
- Takeuchi, K.; Hishiyama, M.; Yamada, A.; Sugiura, A. Molecular cloning and sequence analysis of the mumps virus gene encoding the P protein: Mumps virus P gene is monocistronic. J Gen Virol 1988, 69 Pt 8, 2043–2049. [Google Scholar] [CrossRef]
- Takeuchi, K.; Tanabayashi, K.; Hishiyama, M.; Yamada, Y.K.; Yamada, A.; Sugiura, A. Detection and characterization of mumps virus V protein. Virology 1990, 178, 247–253. [Google Scholar] [CrossRef]
- Brgles, M.; Bonta, M.; Santak, M.; Jagusic, M.; Forcic, D.; Halassy, B.; Allmaier, G.; Marchetti-Deschmann, M. Identification of mumps virus protein and lipid composition by mass spectrometry. Virol. J. 2016, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Luthra, P.; Li, Z.; Fuentes, S.; D’Andrea, J.A.; Wu, J.; Rubin, S.; Rota, P.A.; He, B. The V protein of mumps virus plays a critical role in pathogenesis. J. Virol. 2012, 86, 1768–1776. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Z.; Phan, S.; Pickar, A.; He, B. Immunogenicity of novel mumps vaccine candidates generated by genetic modification. J. Virol. 2014, 88, 2600–2610. [Google Scholar] [CrossRef]
- Kubota, T.; Yokosawa, N.; Yokota, S.; Fujii, N. C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon alpha and gamma signal transduction pathway through decrease of STAT 1-alpha. Biochem. Biophys. Res. Commun. 2001, 283, 255–259. [Google Scholar] [CrossRef]
- Nishio, M.; Garcin, D.; Simonet, V.; Kolakofsky, D. The carboxyl segment of the mumps virus V protein associates with Stat proteins in vitro via a tryptophan-rich motif. Virology 2002, 300, 92–99. [Google Scholar] [CrossRef]
- Ulane, C.M.; Rodriguez, J.J.; Parisien, J.P.; Horvath, C.M. STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J. Virol. 2003, 77, 6385–6393. [Google Scholar] [CrossRef]
- Ulane, C.M.; Kentsis, A.; Cruz, C.D.; Parisien, J.P.; Schneider, K.L.; Horvath, C.M. Composition and assembly of STAT-targeting ubiquitin ligase complexes: Paramyxovirus V protein carboxyl terminus is an oligomerization domain. J. Virol. 2005, 79, 10180–10189. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Lemon, K.; Duprex, W.P.; Rima, B.K.; Horvath, C.M. A point mutation, E95D, in the mumps virus V protein disengages STAT3 targeting from STAT1 targeting. J. Virol. 2009, 83, 6347–6356. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, U.J.; Finke, S.; Conzelmann, K.K. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J. Virol. 1999, 73, 251–259. [Google Scholar] [PubMed]
- Niwa, H.; Yamamura, K.; Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991, 108, 193–199. [Google Scholar] [PubMed]
- Rubin, S.A.; Afzal, M.A.; Powell, C.L.; Bentley, M.L.; Auda, G.R.; Taffs, R.E.; Carbone, K.M. The rat-based neurovirulence safety test for the assessment of mumps virus neurovirulence in humans: An international collaborative study. J. Infect. Dis. 2005, 191, 1123–1128. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Parisien, J.P.; Lau, J.F.; Rodriguez, J.J.; Sullivan, B.M.; Moscona, A.; Parks, G.D.; Lamb, R.A.; Horvath, C.M. The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 2001, 283, 230–239. [Google Scholar] [CrossRef]
- Parisien, J.P.; Lau, J.F.; Rodriguez, J.J.; Ulane, C.M.; Horvath, C.M. Selective STAT protein degradation induced by paramyxoviruses requires both STAT1 and STAT2 but is independent of alpha/beta interferon signal transduction. J. Virol. 2002, 76, 4190–4198. [Google Scholar] [CrossRef]
- Ulane, C.M.; Horvath, C.M. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 2002, 304, 160–166. [Google Scholar] [CrossRef]
- Audsley, M.D.; Moseley, G.W. Paramyxovirus evasion of innate immunity: Diverse strategies for common targets. World J. Virol. 2013, 2, 57–70. [Google Scholar] [CrossRef]
- Caignard, G.; Lucas-Hourani, M.; Dhondt, K.P.; Labernardiere, J.L.; Petit, T.; Jacob, Y.; Horvat, B.; Tangy, F.; Vidalain, P.O. The V protein of Tioman virus is incapable of blocking type I interferon signaling in human cells. PLoS ONE 2013, 8, e53881. [Google Scholar] [CrossRef] [PubMed]
- Young, D.F.; Chatziandreou, N.; He, B.; Goodbourn, S.; Lamb, R.A.; Randall, R.E. Single amino acid substitution in the V protein of simian virus 5 differentiates its ability to block interferon signaling in human and murine cells. J. Virol. 2001, 75, 3363–3370. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, X.; Garbutt, K.C.; Zhou, P.; Zheng, N. Structure of DDB1 in complex with a paramyxovirus V protein: Viral hijack of a propeller cluster in ubiquitin ligase. Cell 2006, 124, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Precious, B.; Childs, K.; Fitzpatrick-Swallow, V.; Goodbourn, S.; Randall, R.E. Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J. Virol. 2005, 79, 13434–13441. [Google Scholar] [CrossRef]
- Yokosawa, N.; Yokota, S.; Kubota, T.; Fujii, N. C-terminal region of STAT-1alpha is not necessary for its ubiquitination and degradation caused by mumps virus V protein. J. Virol. 2002, 76, 12683–12690. [Google Scholar] [CrossRef]
- Andrejeva, J.; Poole, E.; Young, D.F.; Goodbourn, S.; Randall, R.E. The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J. Virol. 2002, 76, 11379–11386. [Google Scholar] [CrossRef]
- Lin, G.Y.; Paterson, R.G.; Richardson, C.D.; Lamb, R.A. The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology 1998, 249, 189–200. [Google Scholar] [CrossRef]
- Rubin, S.A.; Amexis, G.; Pletnikov, M.; Li, Z.; Vanderzanden, J.; Mauldin, J.; Sauder, C.; Malik, T.; Chumakov, K.; Carbone, K.M. Changes in mumps virus gene sequence associated with variability in neurovirulent phenotype. J. Virol. 2003, 77, 11616–11624. [Google Scholar] [CrossRef]
- Wang, W.B.; Levy, D.E.; Lee, C.K. STAT3 negatively regulates type I IFN-mediated antiviral response. J. Immunol. 2011, 187, 2578–2585. [Google Scholar] [CrossRef]
- Sen, N.; Che, X.; Rajamani, J.; Zerboni, L.; Sung, P.; Ptacek, J.; Arvin, A.M. Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc. Natl. Acad. Sci. USA 2012, 109, 600–605. [Google Scholar] [CrossRef]
- Zhao, L.J.; He, S.F.; Wang, W.; Ren, H.; Qi, Z.T. Interferon alpha antagonizes STAT3 and SOCS3 signaling triggered by hepatitis C virus. Cytokine 2016, 80, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.H.; Ivashkiv, L.B. Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J. Biol. Chem. 2006, 281, 14111–14118. [Google Scholar] [CrossRef] [PubMed]
- Delgoffe, G.M.; Vignali, D.A. STAT heterodimers in immunity: A mixed message or a unique signal? JAK-STAT 2013, 2, e23060. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, T.; Ngo, L.; Bosma, T.; Rubin, S. A Single Point Mutation in the Mumps V Protein Alters Targeting of the Cellular STAT Pathways Resulting in Virus Attenuation. Viruses 2019, 11, 1016. https://doi.org/10.3390/v11111016
Malik T, Ngo L, Bosma T, Rubin S. A Single Point Mutation in the Mumps V Protein Alters Targeting of the Cellular STAT Pathways Resulting in Virus Attenuation. Viruses. 2019; 11(11):1016. https://doi.org/10.3390/v11111016
Chicago/Turabian StyleMalik, Tahir, Laurie Ngo, Trent Bosma, and Steven Rubin. 2019. "A Single Point Mutation in the Mumps V Protein Alters Targeting of the Cellular STAT Pathways Resulting in Virus Attenuation" Viruses 11, no. 11: 1016. https://doi.org/10.3390/v11111016