Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy
Abstract
:1. Introduction
2. The Evolution Dynamics of Resistance
3. Emergences of Phage Resistance in Animal Models
3.1. E. coli Diarrhoea in Cattle
3.2. E. coli and Enterococcus faecalis Intestinal Colonization in Mice
3.3. Control of Poultry Pathogens
3.4. Vibrio Cholerae
3.5. Experimental Meningitis and Endocarditis
3.6. Sepsis and Acute Infections
4. Phage Resistant Variants for Vaccine Production and Studying Virulence Factors
5. The Biological Cost of Antibiotic Resistance and the Combined Action of Phage and Antibiotics
6. Phage-Resistance in the Setting of Phage Therapy
7. Conclusions and Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Sugden, R.; Kelly, R.; Davies, S. Combatting antimicrobial resistance globally. Nat. Microbiol. 2016, 1, 16187. [Google Scholar] [CrossRef] [PubMed]
- Salmond, G.P.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.R.; Debarbieux, L. Phage therapy: Awakening a sleeping giant. Emerg. Top. Life Sci. 2017, 1, 93. [Google Scholar] [CrossRef]
- Harper, D.R. Criteria for selecting suitable infectious diseases for phage therapy. Viruses 2018, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Koskella, B.; Brockhurst, M.A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 2014, 38, 916–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León, M.; Bastías, R. Virulence reduction in bacteriophage resistant bacteria. Front. Microbiol. 2015, 6, 343. [Google Scholar] [CrossRef] [PubMed]
- Vasu, K.; Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 2013, 77, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Vale, P.F.; Lafforgue, G.; Gatchitch, F.; Gardan, R.; Moineau, S.; Gandon, S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc. R. Soc. B 2015, 282, 20151270. [Google Scholar] [CrossRef] [PubMed]
- Loc Carrillo, C.; Atterbury, R.J.; el-Shibiny, A.; Connerton, P.L.; Dillon, E.; Scott, A.; Connerton, I.F. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 2005, 71, 6554–6563. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.E.; Timms, A.R.; Connerton, P.L.; Loc Carrillo, C.; Adzfa Radzum, K.; Connerton, I.F. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog. 2007, 3, e119. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.M.; Gannon, B.W.; Halfhide, D.E.; Santos, S.B.; Hayes, C.M.; Roe, J.M.; Azeredo, J. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol. 2010, 10, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.W.; Huggins, M.B. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J. Gen. Microbiol. 1983, 129, 2659–2675. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.W.; Huggins, M.B.; Shaw, K.M. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. Microbiology 1987, 133, 1111–1126. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Knecht, H.J.; Kudva, I.T.; Hovde, C.J. Application of bacteriophages to control intestinal Escherichia coli o157:H7 levels in ruminants. Appl. Environ. Microbiol. 2006, 72, 5359–5366. [Google Scholar] [CrossRef] [PubMed]
- Majewska, J.; Beta, W.; Lecion, D.; Hodyra-Stefaniak, K.; Klopot, A.; Kazmierczak, Z.; Miernikiewicz, P.; Piotrowicz, A.; Ciekot, J.; Owczarek, B.; et al. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 2015, 7, 4783–4799. [Google Scholar] [CrossRef] [PubMed]
- Maura, D.; Morello, E.; du Merle, L.; Bomme, P.; Le Bouguenec, C.; Debarbieux, L. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 2012, 14, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Duerkop, B.A.; Huo, W.; Bhardwaj, P.; Palmer, K.L.; Hooper, L.V. Molecular basis for lytic bacteriophage resistance in enterococci. mBio 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Sklar, I.B.; Joerger, R.D. Attempts to utilize bacteriophage to combat salmonella enterica serovar entemtidis infection in chickens. J. Food Saf. 2001, 21, 15–29. [Google Scholar] [CrossRef]
- Atterbury, R.J.; van Bergen, M.A.; Ortiz, F.; Lovell, M.A.; Harris, J.A.; de Boer, A.; Wagenaar, J.A.; Allen, V.M.; Barrow, P.A. Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Appl. Environ. Microbiol. 2007, 73, 4543–4549. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.; Cairns, L.S.; Camilli, A. A cocktail of three virulent bacteriophages prevents vibrio cholerae infection in animal models. Nat. Commun. 2017, 8, 14187. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.W.; Huggins, M.B. Successful treatment of experimental escherichia coli infections in mice using phage: Its general superiority over antibiotics. J. Gen. Microbiol. 1982, 128, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Oechslin, F.; Piccardi, P.; Mancini, S.; Gabard, J.; Moreillon, P.; Entenza, J.M.; Resch, G.; Que, Y.A. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J. Infect. Dis. 2017, 215, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Pouillot, F.; Chomton, M.; Blois, H.; Courroux, C.; Noelig, J.; Bidet, P.; Bingen, E.; Bonacorsi, S. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone o25b:H4-st131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother. 2012, 56, 3568–3575. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.H.; Kuo, C.F.; Wang, C.H.; Wu, C.M.; Tsao, N. Experimental phage therapy in treating klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob. Agents Chemother. 2011, 55, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Lerondelle, C.; Poutrel, B. Bacteriophage treatment trials on staphylococcal udder infection in lactating cows. Ann. Rech. Vet. 1980, 11, 421–426. [Google Scholar] [PubMed]
- Park, S.C.; Shimamura, I.; Fukunaga, M.; Mori, K.I.; Nakai, T. Isolation of bacteriophages specific to a fish pathogen, pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol. 2000, 66, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Liu, X.; Li, Y.; Han, W.; Lei, L.; Yang, Y.; Zhao, H.; Gao, Y.; Song, J.; Lu, R.; et al. A method for generation phage cocktail with great therapeutic potential. PLoS ONE 2012, 7, e31698. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, R.; Nocerino, N.; Iannaccone, M.; Ercolini, D.; Parlato, M.; Chiara, M.; Iannelli, D. Bacteriophage therapy of salmonella enterica: A fresh appraisal of bacteriophage therapy. J. Infect. Dis. 2010, 201, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.R.; Leung, C.Y.; Henry, M.; Morello, E.; Singh, D.; Di Santo, J.P.; Weitz, J.S.; Debarbieux, L. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 2017, 22, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Seed, K.D.; Faruque, S.M.; Mekalanos, J.J.; Calderwood, S.B.; Qadri, F.; Camilli, A. Phase variable o antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in vibrio cholerae o1. PLoS Pathog. 2012, 8, e1002917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesper, J.; Kapfhammer, D.; Klose, K.E.; Merkert, H.; Reidl, J. Characterization of vibrio cholerae O1 antigen as the bacteriophage K139 receptor and identification of IS1004 insertions aborting O1 antigen biosynthesis. J. Bacteriol. 2000, 182, 5097–5104. [Google Scholar] [CrossRef] [PubMed]
- Attridge, S.R.; Fazeli, A.; Manning, P.A.; Stroeher, U.H. Isolation and characterization of bacteriophage-resistant mutants of Vibrio cholerae O139. Microb. Pathog. 2001, 30, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, R.; Nocerino, N.; Lanzetta, R.; Silipo, A.; Amoresano, A.; Giangrande, C.; Becker, K.; Blaiotta, G.; Evidente, A.; Cimmino, A.; et al. Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS ONE 2010, 5, e11720. [Google Scholar] [CrossRef] [PubMed]
- Filippov, A.A.; Sergueev, K.V.; He, Y.; Huang, X.Z.; Gnade, B.T.; Mueller, A.J.; Fernandez-Prada, C.M.; Nikolich, M.P. Bacteriophage-resistant mutants in yersinia pestis: Identification of phage receptors and attenuation for mice. PLoS ONE 2011, 6, e25486. [Google Scholar] [CrossRef] [PubMed]
- Laanto, E.; Bamford, J.K.H.; Laakso, J.; Sundberg, L.R. Phage-driven loss of virulence in a fish pathogenic bacterium. PLoS ONE 2012, 7, e53157. [Google Scholar] [CrossRef] [PubMed]
- Heierson, A.; Sidén, I.; Kivaisi, A.; Boman, H.G. Bacteriophage-resistant mutants of Bacillus thuringiensis with decreased virulence in pupae of Hyalophora cecropia. J. Bacteriol. 1986, 167, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Flyg, C.; Kenne, K.; Boman, H.G. Insect pathogenic properties of serratia marcescens: Phage-resistant mutants with a decreased resistance to cecropia immunity and a decreased virulence to drosophila. J. Gen. Microbiol. 1980, 120, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Flyg, C.; Xanthopoulos, K.G. Insect pathogenic properties of serratia marcescens. Passive and active resistance to insect immunity studied with protease-deficient and phage-resistant mutants. J. Gen. Microbiol. 1983, 129, 453–464. [Google Scholar] [CrossRef]
- Buckling, A.; Rainey, P.B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. R. Soc. B 2002, 269, 931–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riede, I.; Eschbach, M.L. Evidence that trat interacts with ompa of Escherichia coli. FEBS Lett. 1986, 205, 241–245. [Google Scholar] [CrossRef]
- Hanlon, G.W.; Denyer, S.P.; Olliff, C.J.; Ibrahim, L.J. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 2001, 67, 2746–2753. [Google Scholar] [CrossRef] [PubMed]
- Destoumieux-Garzón, D.; Duquesne, S.; Peduzzi, J.; Goulard, C.; Desmadril, M.; Letellier, L.; Rebuffat, S.; Boulanger, P. The iron–siderophore transporter fhua is the receptor for the antimicrobial peptide microcin J25: Role of the microcin val(11)–pro(16) β-hairpin region in the recognition mechanism. Biochem. J. 2005, 389, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Luria, S.E.; Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943, 28, 491–511. [Google Scholar] [PubMed]
- Dennehy, J.J. What can phages tell us about host-pathogen coevolution? Int. J. Evol. Biol. 2012, 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Lenski, R.E.; Levin, B.R. Constraints on the coevolution of bacteria and virulent phage: A model, some experiments, and predictions for natural communities. Am. Nat. 1985, 125, 585–602. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Morita, M.; Fischer, C.R.; Yoichi, M.; Tanji, Y.; Unno, H. Coevolution of bacteriophage pp01 and Escherichia coli o157:H7 in continuous culture. Appl. Environ. Microbiol. 2003, 69, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Spanakis, E.; Horne, M.T. Co-adaptation of Escherichia coli and coliphage lambda vir in continuous culture. J. Gen. Microbiol. 1987, 133, 353–360. [Google Scholar] [PubMed]
- Meyer, J.R.; Dobias, D.T.; Weitz, J.S.; Barrick, J.E.; Quick, R.T.; Lenski, R.E. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 2012, 335, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.R.; Scanlan, P.D.; Buckling, A. Bacteria-phage coevolution and the emergence of generalist pathogens. Am. Nat. 2011, 177, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Buckling, A.; Rainey, P.B. The role of parasites in sympatric and allopatric host diversification. Nature 2002, 420, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.R.; Scanlan, P.D.; Morgan, A.D.; Buckling, A. Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol. Lett. 2011, 14, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Lennon, J.T.; Khatana, S.A.; Marston, M.F.; Martiny, J.B. Is there a cost of virus resistance in marine cyanobacteria? ISME J. 2007, 1, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Quance, M.A.; Travisano, M. Effects of temperature on the fitness cost of resistance to bacteriophage t4 in Escherichia coli. Evolution 2009, 63, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
- Marston, M.F.; Pierciey, F.J., Jr.; Shepard, A.; Gearin, G.; Qi, J.; Yandava, C.; Schuster, S.C.; Henn, M.R.; Martiny, J.B. Rapid diversification of coevolving marine synechococcus and a virus. Proc. Natl. Acad. Sci. USA 2012, 109, 4544–4549. [Google Scholar] [CrossRef] [PubMed]
- Buckling, A.; Wei, Y.; Massey, R.C.; Brockhurst, M.A.; Hochberg, M.E. Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc. R. Soc. B 2006, 273, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, P.; Ashby, B.; Buckling, A. Population mixing promotes arms race host–parasite coevolution. Proc. R. Soc. B 2015, 282, 20142297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friman, V.P.; Buckling, A. Effects of predation on real-time host-parasite coevolutionary dynamics. Ecol. Lett. 2013, 16, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Friman, V.P.; Buckling, A. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities. ISME J. 2014, 8, 1820–1830. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Macia, M.D.; Oliver, A.; Schachar, I.; Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 2007, 450, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Gomez, P.; Buckling, A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 2013, 7, 2242–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, P.; Buckling, A. Bacteria-phage antagonistic coevolution in soil. Science 2011, 332, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; Roberts, I.S. Capsular polysaccharides and their role in virulence. Contrib. Microbiol. 2005, 12, 55–66. [Google Scholar] [PubMed]
- Reyes, A.; Wu, M.; McNulty, N.P.; Rohwer, F.L.; Gordon, J.I. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc. Natl. Acad. Sci. USA 2013, 110, 20236. [Google Scholar] [CrossRef] [PubMed]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.C.H.; van Alphen, L.B.; Fodor, C.; Crowley, S.M.; Christensen, B.B.; Szymanski, C.M.; Brøndsted, L. Phase variable expression of capsular polysaccharide modifications allows Campylobacter jejuni to avoid bacteriophage infection in chickens. Front. Cell. Infect. Microbiol. 2012, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Connerton, P.L.; Loc Carrillo, C.M.; Swift, C.; Dillon, E.; Scott, A.; Rees, C.E.; Dodd, C.E.; Frost, J.; Connerton, I.F. Longitudinal study of Campylobacter jejuni bacteriophages and their hosts from broiler chickens. Appl. Environ. Microbiol. 2004, 70, 3877–3883. [Google Scholar] [CrossRef] [PubMed]
- Waldor, M.K.; Mekalanos, J.J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996, 272, 1910–1914. [Google Scholar] [CrossRef] [PubMed]
- Faruque, S.M.; Naser, I.B.; Islam, M.J.; Faruque, A.S.G.; Ghosh, A.N.; Nair, G.B.; Sack, D.A.; Mekalanos, J.J. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc. Natl. Acad. Sci. USA 2005, 102, 1702–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faruque, S.M.; Islam, M.J.; Ahmad, Q.S.; Faruque, A.S.G.; Sack, D.A.; Nair, G.B.; Mekalanos, J.J. Self-limiting nature of seasonal cholera epidemics: Role of host-mediated amplification of phage. Proc. Natl. Acad. Sci. USA 2005, 102, 6119–6124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahid, M.S.H.; Udden, S.M.N.; Faruque, A.S.G.; Calderwood, S.B.; Mekalanos, J.J.; Faruque, S.M. Effect of phage on the infectivity of vibrio cholerae and emergence of genetic variants. Infect. Immun. 2008, 76, 5266–5273. [Google Scholar] [CrossRef] [PubMed]
- Seed, K.D.; Bodi, K.L.; Kropinski, A.M.; Ackermann, H.-W.; Calderwood, S.B.; Qadri, F.; Camilli, A. Evidence of a dominant lineage of vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. mBio 2011, 2, e00334-10. [Google Scholar] [CrossRef] [PubMed]
- Seed, K.D.; Yen, M.; Shapiro, B.J.; Hilaire, I.J.; Charles, R.C.; Teng, J.E.; Ivers, L.C.; Boncy, J.; Harris, J.B.; Camilli, A. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife 2014, 3, e03497. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.W.; Huggins, M.B. The association of the O18, K1 and H7 antigens and the CO1V plasmid of a strain of Escherichia coli with its virulence and immunogenicity. J. Gen. Microbiol. 1980, 121, 387–400. [Google Scholar] [PubMed]
- Regeimbal, J.M.; Jacobs, A.C.; Corey, B.W.; Henry, M.S.; Thompson, M.G.; Pavlicek, R.L.; Quinones, J.; Hannah, R.M.; Ghebremedhin, M.; Crane, N.J.; et al. Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrob. Agents Chemother. 2016, 60, 5806–5816. [Google Scholar] [CrossRef] [PubMed]
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature 2004, 432, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [PubMed]
- Schrag, S.J.; Perrot, V.; Levin, B.R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. B 1997, 264, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Bouma, J.E.; Lenski, R.E. Evolution of a bacteria/plasmid association. Nature 1988, 335, 351–352. [Google Scholar] [CrossRef] [PubMed]
- Marcusson, L.L.; Frimodt-Møller, N.; Hughes, D. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog. 2009, 5, e1000541. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R. Analysis of antibiotic resistance regions in gram-negative bacteria. FEMS Microbiol. Rev. 2011, 35, 820–855. [Google Scholar] [CrossRef] [PubMed]
- Enne, V.I.; Bennett, P.M.; Livermore, D.M.; Hall, L.M. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J. Antimicrob. Chemother. 2004, 53, 958–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Barcelo, C.; Hochberg, M.E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 2016, 24, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Harjai, K.; Chhibber, S. Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae b5055 by complementary bacteriophage treatment. J. Antimicrob. Chemother. 2009, 64, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Kirby, A.E. Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS ONE 2012, 7, e51017. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barcelo, C.; Arias-Sanchez, F.I.; Vasse, M.; Ramsayer, J.; Kaltz, O.; Hochberg, M.E. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS ONE 2014, 9, e106628. [Google Scholar] [CrossRef] [PubMed]
- Kamal, F.; Dennis, J.J. Burkholderia cepacia complex phage-antibiotic synergy (PAS): Antibiotics stimulate lytic phage activity. Appl. Environ. Microbiol. 2015, 81, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Sistrom, M.; Wertz, J.E.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 26717. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J.; Becks, L.; Jalasvuori, M.; Hiltunen, T. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philos. Trans. R. Soc. B 2017, 372, 20160040. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.C.; Pfrunder-Cardozo, K.R.; Meinel, D.; Egli, A.; Hall, A.R. Associations among antibiotic and phage resistance phenotypes in natural and clinical Escherichia coli isolates. mBio 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.R.; Bull, J.J. Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol. 2004, 2, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Abedon, S.T. Phage therapy pharmacology phage cocktails. Adv. Appl. Microbiol. 2012, 78, 1–23. [Google Scholar] [PubMed]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef] [PubMed]
- O’Flynn, G.; Ross, R.P.; Fitzgerald, G.F.; Coffey, A. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli o157:H7. Appl. Environ. Microbiol. 2004, 70, 3417–3424. [Google Scholar] [CrossRef] [PubMed]
- Tanji, Y.; Shimada, T.; Yoichi, M.; Miyanaga, K.; Hori, K.; Unno, H. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl. Microbiol. Biotechnol. 2004, 64, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirnay, J.P.; De Vos, D.; Verbeken, G.; Merabishvili, M.; Chanishvili, N.; Vaneechoutte, M.; Zizi, M.; Laire, G.; Lavigne, R.; Huys, I.; et al. The phage therapy paradigm: Pret-a-porter or sur-mesure? Pharm. Res. 2011, 28, 934–937. [Google Scholar] [CrossRef] [PubMed]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; et al. Chapter 3—clinical aspects of phage therapy. In Advances in Virus Research; Łobocka, M., Szybalski, W., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 83, pp. 73–121. [Google Scholar]
- Górski, A.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Rogóż, P.; Jończyk-Matysiak, E.; Dąbrowska, K.; Majewska, J.; Borysowski, J. Phage therapy: Combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front. Microbiol. 2016, 7, 1515. [Google Scholar] [CrossRef] [PubMed]
- Zhvania, P.; Hoyle, N.S.; Nadareishvili, L.; Nizharadze, D.; Kutateladze, M. Phage therapy in a 16-year-old boy with netherton syndrome. Front. Med. 2017, 4, 94. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Yung, G.; Dan, J.; Reed, S.; LeFebvre, M.; Logan, C.; Taplitz, R.; Law, N.; Golts, E.; Afshar, K.; et al. (373)—Bacteriophage treatment in a lung transplant recipient. J. Heart Lung Transplant. 2018, 37, S155–S156. [Google Scholar] [CrossRef]
- Khawaldeh, A.; Morales, S.; Dillon, B.; Alavidze, Z.; Ginn, A.N.; Thomas, L.; Chapman, S.J.; Dublanchet, A.; Smithyman, A.; Iredell, J.R. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J. Med. Microbiol. 2011, 60, 1697–1700. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.R.; Parracho, H.M.R.T.; Walker, J.; Sharp, R.; Hughes, G.; Werthén, M.; Lehman, S.; Morales, S. Bacteriophages and biofilms. Antibiotics 2014, 3, 270–284. [Google Scholar] [CrossRef]
- Forde, A.; Daly, C.; Fitzgerald, G.F. Identification of four phage resistance plasmids from Lactococcus lactis subsp. Cremoris HO2. Appl. Environ. Microbiol. 1999, 65, 1540–1547. [Google Scholar] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649. [Google Scholar] [CrossRef] [PubMed]
- Flores, C.O.; Meyer, J.R.; Valverde, S.; Farr, L.; Weitz, J.S. Statistical structure of host–phage interactions. Proc. Natl. Acad. Sci. USA 2011, 108, E288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischetti, V.A. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 2008, 11, 393–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuch, R.; Nelson, D.; Fischetti, V.A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 2002, 418, 884. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, J.M.; Nelson, D.; Fischetti, V.A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 2001, 294, 2170–2172. [Google Scholar] [CrossRef] [PubMed]
- Totte, J.E.E.; van Doorn, M.B.; Pasmans, S. Successful treatment of chronic staphylococcus aureus-related dermatoses with the topical endolysin staphefekt sa.100: A report of 3 cases. Case Rep. Dermatol. 2017, 9, 19–25. [Google Scholar] [CrossRef] [PubMed]
Bacterium | Model | Phage Type | Treatment Outcome | Resistant Found in after Treatment? | Impact of Resistance on Virulence | Receptor | Ref. | |
---|---|---|---|---|---|---|---|---|
Intestinal colonization | Campylobacter jejuni | Chicken intestinal colonization | CP8 and CP34 | Bacterial decrease between 0.5 and 5 log10 CFU/g of caecal contents compared to untreated controls over a 5-day period post-administration. | Yes, at a freq. of 4% | Less infective at low dose. Rapid phenotypic reversion when reintroduced in chicken. | ND | [11,12] |
Campylobacter jejuni | Chicken intestinal colonization | phiCcoIBB35, phiCcoIBB37, and phiCcoIBB12 | Phage cocktail decreases the titre of C. jejuni in faeces by approximately 2 log10 CFU/g when administered orally. | Yes, at a freq. of 13% | Not less infective. No phenotypic reversion when reintroduced in chicken. | ND | [13] | |
Escherichia coli | Calf, piglet, lamb Ta diarrhoea | B44/1, B44/2, B44/3, P433/1, and P433/2 | Protected calves against a potentially lethal infection, cured diarrhoea in piglets, improved the course of disease in lambs. | Most calves that did not respond to phage treatment had a high number of phage-resistant variants. No phage-resistant mutants were isolated from lambs. | Decreased virulence | Capsular polysaccharides | [14] | |
Escherichia coli | Calf diarrhoea | B41/1 | Rapid reduction of bacterial titres to numbers that are harmless. | Yes | Reduced virulence | Capsular polysaccharides | [15] | |
Escherichia coli | Sheep, mouse, steer intestinal colonization | KH1 and SH1 | Oral phage treatment did not decrease intestinal E. coli in sheep. Decreased the number of E. coli CFU in cattle. Phage therapy cleared the bacteria in a mouse model of intestinal E. coli O157 carriage. | No | - | ND | [16] | |
Escherichia coli | Mouse intestinal colonization | T4 phage, oral | ND | Phage resistant bacterial strains dominated gut after 92 days. | ND | ND | [17] | |
Escherichia coli | Mouse intestinal colonization | cocktail made of phages CLB_P1, CLB_P2, and CLB_P3 | No bacterial level change in the faeces after treatment. | No | - | ND | [18] | |
Enterococcus faecalis | Gnotobiotic mouse intestinal colonization | φ VPE25 | Threefold drop in E. faecalis total intestinal load after 24 h of VPE25 treatment. | Phage resistant variant replaced WT during treatment. | Resistant variants can colonize intestine. | Integral membrane protein PIPEF | [19] | |
Salmonella enterica | Chicken intestinal colonization | cocktail of phages, EP2, MUT3, M4, and YP | Significant difference between phage-treated and untreated groups. | Yes | ND | ND | [20] | |
Salmonella enterica | Chicken intestinal colonization | φ10, φ25, and φ151 | Phages reduced caecal colonization. | Phage-resistance occurred at a frequency commensurate with the titre of phage being administered. | Colonization levels of resistant variants in the ceca did not differ from the controls. Reversion observed after infection. | ND | [21] | |
Vibrio cholerae | Infant mouse and rabbit cholera model | ICP1, ICP2, and ICP3 | Oral administration of phages up to 24 h before V. cholerae challenge reduced colonization of the intestinal tract and prevented cholera-like diarrhoea. | Yes | Variants can colonize intestine. | O-Antigen | [22] | |
Meningitis | Escherichia coli | Mouse meningitis | phage R | One dose of phage was at least equivalent to multiple doses of antibiotics, whether administered intramuscularly or intrathecally. | Yes | Supposably reduced virulence as described in [14]. | Capsular polysaccharides | [23] |
Endocarditis | Pseudomonas aeruginosa | Rat infective endocarditis | cocktail made of phages 12 bacteriophages | 3 log reduction or valve sterilisation when combined with antibiotics. | No | Reduced virulence | LPS and pilus | [24] |
Sepsis | Escherichia coli | Rat neonatal sepsis | phage EC200PP | Phage administered 7 h postinfection rescued 100% of the animals and 50% after 24 h. | Phage resistant variant were found when phage treatment was delayed for 24 h. | Avirulence | ND | [25] |
Klebsiella pneumoniae | Mouse liver abscess and bacteraemia | Phage φNK5 | Intraperitoneal and intragastric administration of phage 30 min after infection protected mice from death in a dose-dependent manner. Decreased bacterial burden and liver damage. | No | Reduced virulence | ND | [26] | |
Staphylococcus aureus | Experimental cow mastitis | Bacteriophage K | Decreased bacterial load after treatment. | Yes | ND | ND | [27] | |
Pseudomonas plecoglossicida | Fish haemorrhagic ascites | PPpW-3 and PPpW-4. Oral | Protective effects of phage treatment with lower and delayed mortality 1 or 24 h after bacterial challenge. | No | Reduced virulence | ND | [28] | |
Klebsiella pneumoniae | Mice acute bacteraemia | GH-K1, GH-K2, and GH-K3 | Phage cocktail significantly enhanced the protection of bacteremic mice against lethal infection. | ND | Reduced virulence | ND | [29] | |
Salmonella enterica Parathyphi B | Mouse sepsis | phage φ1 | Phage given concurrently with a lethal dose of bacteria rescued 100% of the animals. | ND | Avirulence | O-Antigen | [30] | |
pneumonia | Pseudomonas aeruginosa | Mouse acute pneumonia | PAK_P1 | Treatment failed to prevent fatality due to subsequent bacterial outgrowth after 24 h in immunocompromised mice. 100% of bacteria recovered from phage-treated at 24 h were resistant. | Yes, in immunocompromised mice | ND | ND | [31] |
Phage resistant variants for vaccine production and studying virulence factors | Vibrio cholerae | Infant mouse cholera model | ICP1 | ND | ND | Attenuated in vivo. | O-Antigen | [32] |
Vibrio cholerae | Infant mouse cholera model | K139 | ND | ND | Significantly reduced in its ability to colonize the mouse small intestine. | Core oligosaccharide | [33] | |
Vibrio cholerae | Infant mouse cholera model | phage JA1 | ND | ND | Impaired colonization | Capsule/O-antigen | [34] | |
Staphylococcus aureus | Mouse vaccination | MSa phage | ND | ND | Avirulence | Teichoic acids | [35] | |
Yersinia pestis | Mouse vaccination | L-413C, P2 vir1, φ JA1a, φ A1122, T7, T7Ype, Pokrovskaya, Y, PST, Rh | ND | ND | Atenuated or avirulent. | LPS | [36] | |
Flavobacterium columnare | Zebrafish | FCL-1 and FCL-2 | ND | ND | Avirulence | ND | [37] | |
Bacillus thuringiensis | Cecropia moth | φ42, φ51,and φ64 | ND | ND | Decreased virulence | ND | [38] | |
Serratia marcescens | Cecropia moth, Drosophila | Phages φJ and φK | ND | ND | Decreased virulence | ND | [39] | |
Serratia marcescens | Cecropia moth | Phages φJ | ND | ND | Decreased virulence | ND | [40] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oechslin, F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018, 10, 351. https://doi.org/10.3390/v10070351
Oechslin F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses. 2018; 10(7):351. https://doi.org/10.3390/v10070351
Chicago/Turabian StyleOechslin, Frank. 2018. "Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy" Viruses 10, no. 7: 351. https://doi.org/10.3390/v10070351