The Effect of Fuel Bed Edges on Fire Dynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Physical Problem
2.2. Experimental Study
2.3. Evolution of ROS
2.4. Fire Intensity
2.5. Evolution of Flame Height and Tilt
2.6. Statistical Analysis
3. Results
3.1. Evolution of Normalized Rate of Spread (R′)
| Instant Measure | R′1 | R′2 | R′3 | R′4 | R′5 | R′6 |
|---|---|---|---|---|---|---|
| 1 | 0.53 ± 0.29 | 1.28 ± 1.16 | 2.64 ± 3.35 | 0.72 ± 0.13 | 1.63 ± 0.69 | 3.22 ± 6.32 |
| 2 | 0.81 ± 0.73 | 4.24 ± 0.32 | 2.12 ± 1.9 | 1.11 ± 0.66 | 2.24 ± 1.74 | 3.56 ± 2.68 |
| 3 | 0.85 ± 0.07 | 3.29 ± 4.14 | 9.88 ± 11.38 | 1.1 ± 0.76 | 1.68 ± 2.38 | 10.47 ± 4.67 |
| 4 | 1.64 ± 0.27 | 2.85 ± 1.8 | 18.19 ± 15.01 | 1.2 ± 0.92 | 3.96 ± 2.81 | 8.99 ± 14.17 |
| 5 | 1.46 ± 0.38 | 3.88 ± 0.16 | 13.02 ± 7.94 | 1.34 ± 0.07 | 3.22 ± 2.24 | 11.05 ± 13.02 |
| 6 | 1.6 ± 0.7 | 3.6 ± 0.9 | 9.63 ± 5.19 | 1.04 ± 0.71 | 3.25 ± 2.3 | 12.18 ± 5.7 |
| 7 | 1.39 ± 0.33 | 2.92 ± 1.87 | 8.78 ± 11.45 | 1.31 ± 0.76 | 2.28 ± 2.07 | 13.76 ± 6.01 |
| 8 | 1.33 ± 0.38 | 5.46 ± 4.61 | 3.3 ± 2.45 | 1.21 ± 0.31 | 2.54 ± 1.3 | 5.29 ± 4 |
| 9 | 1.19 ± 0.2 | 3.26 ± 3.02 | 3.16 ± 3.91 | 1.42 ± 0.35 | 3.28 ± 3.03 | 3.14 ± 3.64 |
| 10 | 1.54 ± 0.33 | 2.05 ± 0.18 | 1.16 ± 0.64 | 1.42 ± 0.42 | 2.41 ± 1.73 | 3.1 ± 4.81 |
| 11 | 0.88 ± 0.16 | 3.19 ± 2.76 | 1.86 ± 3.18 | 1.61 ± 0.09 | 2.16 ± 1.53 | 1.96 ± 1.29 |
| 12 | 1.15 ± 0.36 | 1.36 ± 1.11 | 1.43 ± 0.81 | 1.46 ± 0.36 | 2.63 ± 1.42 | 1.62 ± 0.7 |
| 13 | 1.27 ± 0.3 | 0.65 ± 0.37 | 1.39 ± 0.08 | 1.99 ± 1.19 | ||
| 14 | 0.81 ± 0.71 | 0.45 ± 0.05 | 1.12 ± 0.17 | 1.63 ± 1.26 | ||
| 15 | 0.97 ± 0.03 | 0.44 ± 0.02 | 0.86 ± 0.26 | 1.53 ± 2.41 | ||
| 16 | 1.03 ± 0.64 | 0.82 ± 0.03 | 0.62 ± 0.44 | 1.38 ± 1.48 | ||
| 17 | 0.82 ± 0.85 | 0.41 ± 0.47 | 0.98 ± 0.86 | |||
| 18 | 0.19 ± 0.12 | 0.25 ± 0.03 | 0.74 ± 0.03 | |||
| 19 | 0.34 ± 0.02 |
3.2. Evolution of Fire Intensity
| Instant Measure | Ib1 | Ib2 | Ib3 | Ib4 | Ib5 | Ib6 |
|---|---|---|---|---|---|---|
| 1 | 0.22 ± 0.42 | 0.15 ± 0 | 0.06 ± 0.1 | 0.13 ± 0.07 | 0.1 ± 0.04 | 0.24 ± 0.35 |
| 2 | 0.23 ± 0.02 | 0.22 ± 0.03 | 0.34 ± 0.2 | 0.31 ± 0.12 | 0.33 ± 0.31 | 0.86 ± 1.17 |
| 3 | 0.29 ± 0.24 | 0.59 ± 0.39 | 1.34 ± 0.92 | 0.28 ± 0.12 | 0.42 ± 0.17 | 1.36 ± 0.55 |
| 4 | 0.31 ± 0.05 | 0.59 ± 0.26 | 2.27 ± 2.25 | 0.31 ± 0 | 0.46 ± 0.27 | 1.81 ± 0.78 |
| 5 | 0.53 ± 0.2 | 0.68 ± 0.32 | 2.6 ± 2.62 | 0.37 ± 0.12 | 0.4 ± 0.08 | 2.75 ± 1.2 |
| 6 | 0.42 ± 0.13 | 1.02 ± 0.45 | 3.6 ± 2.91 | 0.19 ± 0.03 | 0.59 ± 0.43 | 3.14 ± 1.7 |
| 7 | 0.46 ± 0.11 | 0.71 ± 0.47 | 2.97 ± 2.8 | 0.31 ± 0.25 | 0.71 ± 0.07 | 2.66 ± 1.02 |
| 8 | 0.51 ± 0.19 | 1.08 ± 0.94 | 3.24 ± 3.16 | 0.39 ± 0.13 | 0.72 ± 0.11 | 2.8 ± 2.33 |
| 9 | 0.49 ± 0.51 | 0.63 ± 0.21 | 2.76 ± 3.41 | 0.38 ± 0.26 | 0.96 ± 0.21 | 2.69 ± 2.64 |
| 10 | 0.27 ± 0.06 | 0.7 ± 0.63 | 2.72 ± 3.09 | 0.53 ± 0.01 | 1.11 ± 0.73 | 2.53 ± 1.65 |
| 11 | 0.27 ± 0.08 | 0.99 ± 0.42 | 1.62 ± 2.25 | 0.38 ± 0.26 | 1.33 ± 1.3 | 2.39 ± 2.54 |
| 12 | 0.33 ± 0.43 | 1.29 ± 0.97 | 1.5 ± 2.56 | 0.72 ± 0.6 | 1.11 ± 0.58 | 2.18 ± 0.27 |
| 13 | 0.4 ± 0.03 | 1.24 ± 0.01 | 0.56 ± 0.04 | 0.99 ± 0.75 | ||
| 14 | 0.33 ± 0.12 | 0.72 ± 0.8 | 0.45 ± 0.02 | 1.03 ± 0.35 | ||
| 15 | 0.26 ± 0.11 | 0.75 ± 0.01 | 0.5 ± 0.16 | 0.78 ± 0.68 | ||
| 16 | 0.28 ± 0.07 | 0.76 ± 0.01 | 0.35 ± 0.19 | 0.6 ± 0.23 | ||
| 17 | 0.35 ± 0.21 | 0.85 ± 1 | 0.46 ± 0.01 | |||
| 18 | 0.19 ± 0.02 | 0.4 ± 0.01 | 0.38 ± 0.25 | |||
| 19 | 0.01 ± 0.01 |
3.3. Evolution of Flame Height
| Instant Measure | Hf1 | Hf2 | Hf3 | Hf4 | Hf5 | Hf6 |
|---|---|---|---|---|---|---|
| 1 | 70.5 ± 94.32 | 72 ± 6.09 | 37.65 ± 31.89 | 63.75 ± 25.86 | 57.25 ± 21.49 | 70.99 ± 61.74 |
| 2 | 88.5 ± 9.13 | 72 ± 24.34 | 78.5 ± 21.62 | 95.25 ± 13.69 | 92.95 ± 69.07 | 109.65 ± 53.6 |
| 3 | 87.15 ± 24.65 | 98.78 ± 27.54 | 118.1 ± 79.03 | 90 ± 30.43 | 99 ± 10.54 | 98.33 ± 52.93 |
| 4 | 94.5 ± 3.04 | 108.75 ± 47.16 | 91.95 ± 47.87 | 93 ± 6.09 | 98 ± 8.05 | 103.54 ± 29.2 |
| 5 | 121.5 ± 9.13 | 121.88 ± 22.06 | 91.65 ± 18.9 | 94.5 ± 3.04 | 105 ± 9.13 | 107.51 ± 95.7 |
| 6 | 106.5 ± 21.3 | 100.5 ± 51.73 | 102 ± 15.81 | 69.23 ± 29.97 | 108.95 ± 74.8 | 107.59 ± 88.06 |
| 7 | 115.5 ± 27.38 | 126 ± 85.2 | 120 ± 18.26 | 90 ± 42.6 | 118 ± 31.77 | 102.56 ± 75.78 |
| 8 | 127.58 ± 27.23 | 150.08 ± 60.7 | 89 ± 13.26 | 106.28 ± 26.93 | 113 ± 8.05 | 98.55 ± 53.73 |
| 9 | 118.5 ± 69.98 | 124.5 ± 15.21 | 98 ± 37.39 | 94.35 ± 33.17 | 124.85 ± 35.19 | 68.96 ± 33.96 |
| 10 | 94.5 ± 15.21 | 106.5 ± 39.55 | 80.8 ± 31.88 | 120 ± 12.17 | 112 ± 10.97 | 74.25 ± 38.98 |
| 11 | 96 ± 12.17 | 150.15 ± 0.3 | 93 ± 66.94 | 105 ± 18.26 | 110 ± 47.24 | 63.2 ± 14.15 |
| 12 | 88.65 ± 52.03 | 166.65 ± 51.42 | 79.5 ± 76.07 | 150.15 ± 72.72 | 139.1 ± 70.13 | 57.15 ± 36.82 |
| 13 | 116.1 ± 4.26 | 173.03 ± 16.58 | 122.18 ± 38.19 | 133.55 ± 20.48 | ||
| 14 | 100.5 ± 9.13 | 124.5 ± 88.24 | 121.5 ± 9.13 | 143.95 ± 32.95 | ||
| 15 | 87 ± 18.26 | 147 ± 0.2 | 126 ± 30.43 | 119 ± 39.9 | ||
| 16 | 94.5 ± 9.13 | 150 ± 0.1 | 108 ± 30.43 | 101.25 ± 47.92 | ||
| 17 | 102 ± 30.43 | 156 ± 97.37 | 90.75 ± 4.56 | |||
| 18 | 79.43 ± 9.28 | 114 ± 0.2 | 87 ± 0.1 | |||
| 19 | 18 ± 0.2 |
3.4. Evolution of Flame Tilt
| Instant Measure | θf1 | θf2 | θf3 | θf4 | θf5 | θf6 |
|---|---|---|---|---|---|---|
| 1 | 24.58 ± 4.61 | 22.7 ± 10.05 | 39.03 ± 12.9 | 27.33 ± 16 | 27.07 ± 25.26 | 43.91 ± 18.46 |
| 2 | 20.5 ± 8.75 | 36.66 ± 29.78 | 44.46 ± 21.73 | 27.29 ± 4.01 | 30.12 ± 32.4 | 52.97 ± 16.19 |
| 3 | 29.9 ± 12.27 | 39.91 ± 15.59 | 54.25 ± 29.88 | 28.14 ± 15.6 | 34.49 ± 15.27 | 63.3 ± 17.94 |
| 4 | 28.04 ± 12.19 | 32.53 ± 3.48 | 68.67 ± 12.68 | 30.87 ± 5.86 | 36.51 ± 21.01 | 65.45 ± 4.53 |
| 5 | 26.91 ± 11.91 | 37.67 ± 3.04 | 69.74 ± 9.97 | 35.21 ± 10.14 | 30.15 ± 7.86 | 66.91 ± 21.65 |
| 6 | 30.73 ± 5.04 | 42.37 ± 19.78 | 71.2 ± 8.48 | 34.42 ± 29.77 | 40.26 ± 23.53 | 66.26 ± 13.93 |
| 7 | 27.24 ± 13.86 | 35.99 ± 29.58 | 65.18 ± 9.88 | 32.46 ± 8.13 | 35.11 ± 27.7 | 55.34 ± 35.85 |
| 8 | 19.75 ± 6.19 | 36.67 ± 1.64 | 72.26 ± 10.17 | 27.38 ± 11.17 | 39.85 ± 18.86 | 63.47 ± 21.23 |
| 9 | 24.62 ± 10.4 | 33.96 ± 2.63 | 68.26 ± 8.87 | 36.43 ± 2.45 | 39.31 ± 15.33 | 69.55 ± 17.42 |
| 10 | 20.15 ± 7.94 | 45.82 ± 3.61 | 71.53 ± 12.19 | 29.98 ± 9.04 | 39.78 ± 30.14 | 65.26 ± 28.89 |
| 11 | 19.69 ± 2.36 | 33.77 ± 16.49 | 64.37 ± 0.76 | 22.84 ± 21.3 | 53.81 ± 33.61 | 75.84 ± 6.84 |
| 12 | 29.29 ± 12.35 | 35.4 ± 4.14 | 65.5 ± 2.65 | 30.31 ± 12.71 | 41.02 ± 20.79 | 74.44 ± 7.92 |
| 13 | 18.51 ± 0.63 | 32.32 ± 8.94 | 27.83 ± 29.62 | 41.38 ± 13.94 | ||
| 14 | 23.8 ± 9.64 | 36.65 ± 12.46 | 19.15 ± 8.94 | 39.18 ± 16.01 | ||
| 15 | 28.61 ± 0.58 | 25.14 ± 0.82 | 20.24 ± 14.21 | 41.5 ± 17.23 | ||
| 16 | 24.61 ± 2.55 | 23.7 ± 0.51 | 18.81 ± 4.93 | 39.3 ± 10.93 | ||
| 17 | 25.26 ± 0.87 | 18.28 ± 3.76 | 41.57 ± 4.95 | |||
| 18 | 21.8 ± 8.07 | 21.54 ± 0.42 | 28.89 ± 0.66 | |||
| 19 | 39.52 ± 0.55 |
4. Discussion
Comparison with Other Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ∆Hf | Power of the fuel [MJ/kg] |
| hf | Fuel bed height [cm] |
| βf | Packing ratio |
| ρb | Fuel bed bulk density |
| ρp | Fuel particle density |
| σf | Particle surface-area-to-volume ratio |
| Ib | Fire intensity [MW/m2] |
| Lf | Flame length [m] |
| mf | Fuel moisture content [%] |
| NFB | Normal Fire Behaviour |
| R0 | Basic rate of spread [cm/s] |
| R′ | Nondimensional rate of spread |
| ROS | Rate of spread [m/s] |
| S | Distances travelled by the fire line from the origin |
| U | Flow Velocity [m/s] |
| Wf | Fuel load [kg/m2] |
References
- Comissão Técnica Independente Análise e Apuramento dos Factos Relativos aos Incêndios que Ocorreram em Pedrogão Grande. Available online: https://www.parlamento.pt/ArquivoDocumentacao/Documents/Incendios_Junho%202017_Relatorio.pdf (accessed on 28 December 2025).
- Domingos Xavier Viegas O complexo de Incêndios de Pedrógão Grande e Concelhos Limítrofes, Iniciado a 17 de Junho de 2017. Available online: https://www.portugal.gov.pt/pt/gc21/comunicacao/documento?i=o-complexo-de-incendios-de-pedrogao-grande-e-concelhos-limitrofes-iniciado-a-17-de-junho-de-2017 (accessed on 28 December 2025).
- Domingos Xavier Viegas Análise dos Incêndios Florestais Ocorridos a 15 de Outubro de 2017. Available online: https://www.portugal.gov.pt/pt/gc21/comunicacao/documento?i=analise-dos-incendios-florestais-ocorridos-a-15-de-outubro-de-2017 (accessed on 28 December 2025).
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef]
- Viegas, D.X. Parametric study of an eruptive fire behaviour model. Int. J. Wildland Fire 2006, 15, 169–177. [Google Scholar] [CrossRef]
- Filkov, A.I.; Duff, T.J.; Penman, T.D. Frequency of Dynamic Fire Behaviours in Australian Forest Environments. Fire 2020, 3, 1. [Google Scholar] [CrossRef]
- Thomas, C.M.; Sharples, J.J.; Evans, J.P. Modelling the dynamic behaviour of junction fires with a coupled atmosphere–fire model. Int. J. Wildland Fire 2017, 26, 331–344. [Google Scholar] [CrossRef]
- Lahaye, S.; Sharples, J.; Matthews, S.; Heemstra, S.; Price, O.; Badlan, R. How do weather and terrain contribute to firefighter entrapments in Australia? Int. J. Wildland Fire 2018, 27, 85–98. [Google Scholar] [CrossRef]
- Bishop, S.R.; Drysdale, D. Fires in compartments: The phenomenon of flashover. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 356, 2855–2872. [Google Scholar] [CrossRef]
- Drysdale, D. An Introduction to Fire Dynamics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 475–526. [Google Scholar]
- Vaz, G.; Raposo, J.; Reis, L.; Monteiro, P.; Viegas, D. Rigid Protection System of Infrastructures against Forest Fires. Fire 2022, 5, 145. [Google Scholar] [CrossRef]
- Barbosa, T.F.; Reis, L.; Raposo, J.; Viegas, D.X. A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire. Fire 2022, 5, 63. [Google Scholar] [CrossRef]
- Raposo, J.R.N.; Raposo, H.D.N.; Reis, L.; Almeida, E.; Rodrigues, A. Fire in house: Investigation of the outbreak and spread of the fire in a countryside house. Proc. Inst. Civ. Eng.-Forensic Eng. 2024, 178, 1–7. [Google Scholar] [CrossRef]
- Madrzykowski, D. Fire Dynamics: The Science of Fire Fighting. Int. Fire Serv. J. Leadersh. Manag. 2013, 7, 7–15. [Google Scholar]
- Cruz, A.C.; Correa, R.E. Forest Management: Technology, Practices and Impact; Nova Science Publishers Inc.: New York, NY, USA, 2012. [Google Scholar]
- Werth, P.A.; Potter, B.E.; Clements, C.B.; Finney, M.A.; Goodrick, S.L.; Alexander, M.E.; Cruz, M.G.; Forthofer, J.A.; McAllister, S.S. Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers; U.S. Department of Agriculture, Forest Service: Portland, OR, USA, 2011.
- Dold, J.W. Flow attachment in eruptive fire growth. In Proceedings of the 6th International Conference on Forest Fire Research, Coimbra, Portugal, 18–19 November 2010. [Google Scholar]
- Byram, G.M. Combustion of Forest Fuels. In Forest Fire: Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Morvan, D. Physical Phenomena and Length Scales Governing the Behaviour of Wildfires: A Case for Physical Modelling. Fire Technol. 2011, 47, 437–460. [Google Scholar] [CrossRef]
- Modarres, M. Experimental and Numerical Analysis of Fire Behaviour in Typical Fuels at the Wildland-Urban Interface; ADAI: Coimbra, Portugal, 2025. [Google Scholar]
- Fernandes, P. FIRE PARADOX: A European initiative on Integrated Wildland Fire Management. In Proceedings of the Fire, Environment and Society, from Research into Practice—the International Bushfire Conference Incorporating the 15th AFAC Conference, Adelaide, SA, Australia, 1–3 September 2008. [Google Scholar]
- Ribeiro, C.; Reis, L.; Raposo, J.; Rodrigues, A.; Viegas, D.X.; Sharples, J. Interaction between two parallel fire fronts under different wind conditions. Int. J. Wildland Fire 2022, 31, 492–506. [Google Scholar] [CrossRef]
- Dlugogorski, B.; Hirunpraditkoon, S.; Kennedy, E. Ignition Temperature and Surface Emissivity of Heterogeneous Loosely Packed Materials from Pyrometric Measurements. Fire Saf. Sci. 2014, 11, 262–275. [Google Scholar] [CrossRef]
- Ytong Parameters. 2025. Available online: https://topeca.pt/Imgs/produtos/004/37/50/ficheiros_pt/Ficha_tecnica_bloco_ytong_550_kg.pdf (accessed on 19 September 2025).
- EN 771-4:2011+A1:2015; Specification for Masonry Units—Part 4: Autoclaved Aerated Concrete Masonry Units; German Version. German Institute for Standardisation: Berlin, Germany, 2015.
- Cruz, M.G. Guia Fotográfico para Identificação de Combustíveis Florestais—Região Centro de Portugal; Centro de Estudos sobre Incêndios Florestais, Associação para o Desenvolvimento da Aerodinâmica Industrial (ADAI), Universidade de Coimbra: Coimbra, Portugal, 2005. [Google Scholar]
- Martins Fernandes, P.A. Fire spread prediction in shrub fuels in Portugal. For. Ecol. Manag. 2001, 144, 67–74. [Google Scholar] [CrossRef]
- Alves, D.; Almeida, M.; Reis, L.; Raposo, J.; Viegas, D.X. The Role of Field Measurements of Fine Dead Fuel Moisture Content in the Canadian Fire Weather Index System—A Study Case in the Central Region of Portugal. Forests 2024, 15, 1429. [Google Scholar] [CrossRef]
- Viegas, D.X.F.C.; Raposo, J.R.N.; Ribeiro, C.F.M.; Reis, L.C.D.; Abouali, A.; Viegas, C.X.P. On the non-monotonic behaviour of fire spread. Int. J. Wildland Fire 2021, 30, 702–719. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: Fire Area Simulator—Model Development and Evaluation; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998.
- Viegas, D.X.; Pita, L.P. Fire spread in canyons. Int. J. Wildland Fire 2004, 13, 253–274. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Cruz, M.G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 2012, 194, 606–609. [Google Scholar] [CrossRef]
- Catchpole, E.A.; Catchpole, W.R.; Viney, N.R.; McCaw, W.L.; Marsden-Smedley, J.B. Estimating fuel response time and predicting fuel moisture content from field data. Int. J. Wildland Fire 2001, 10, 215–222. [Google Scholar] [CrossRef]
- Àgueda, A.; Pastor, E.; Pérez, Y.; Viegas, D.X.; Planas, E. Fire intensity reduction in straw fuel beds treated with a long-term retardant. Fire Saf. J. 2011, 46, 41–47. [Google Scholar] [CrossRef]
- Viegas, D.X.; Neto, L.P.C. Wall Shear-Stress as a Parameter to Correlate the Rate of Spread of a Wind Induced Forest Fire. Int. J. Wildland Fire 1991, 1, 177–188. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Assessing the effect of foliar moisture on the spread rate of crown fires. Int. J. Wildland Fire 2012, 22, 415–427. [Google Scholar] [CrossRef]
- Lopes, S.; Viegas, D.; Lemos, L.; Viegas, M. Equilibrium moisture content and timelag of dead Pinus pinaster needles. Int. J. Wildland Fire 2014, 23, 721–732. [Google Scholar] [CrossRef]
- Rossi, J.L.; Chatelon, F.J.; Marcelli, T. Fire Intensity. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–6. [Google Scholar]
- Weise, D.R.; Biging, G.S. Effects of wind velocity and slope on flame properties. Can. J. For. Res. 1996, 26, 1849–1858. [Google Scholar] [CrossRef]
- Li, H.; Liu, N.; Xie, X.; Zhang, L.; Yuan, X.; He, Q.; Viegas, D.X. Effect of Fuel Bed Width on Upslope Fire Spread: An Experimental Study. Fire Technol. 2021, 57, 1063–1076. [Google Scholar] [CrossRef]
- Grumstrup, T.; McAllister, S.; Finney, M. Qualitative flow visualization of flame attachment on slopes. In Proceedings of the 10th U.S. National Combustion Meeting Organized by the Eastern States Section of the Combustion Institute, College Park, MD, USA, 23–26 April 2017. [Google Scholar]
- Campbell-Lochrie, Z.; Walker-Ravena, C.; Gallagher, M.; Skowronski, N.; Mueller, E.; Hadden, R. Effect of Fuel Bed Structure on the Controlling Heat Transfer Mechanisms in Quiescent Porous Flame Spread. In Advances in Forest Fire Research 2022, Proceedings of the IX International Conference on Forest Fire Research, Coimbra, Portugal, 11–18 November 2022; Viegas, D.X., Ribeiro, L.M., Eds.; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2022; pp. 1443–1448. [Google Scholar]
- Wotton, B.M.; McAlpine, R.S.; Hobbs, M.W. The effect of fire front width on surface fire behaviour. Int. J. Wildland Fire 2000, 9, 247–253. [Google Scholar] [CrossRef]
- Cheney, N.; Gould, J.; Catchpole, W. Prediction of Fire Spread in Grasslands. Int. J. Wildland Fire 1998, 8, 1–13. [Google Scholar] [CrossRef]
- Rossa, C.G.; Fernandes, P.M. An Empirical Model for the Effect of Wind on Fire Spread Rate. Fire 2018, 1, 31. [Google Scholar] [CrossRef]
- Drysdale, D.D.; Macmillan, A.J.R.; Shilitto, D. The King’s Cross fire: Experimental verification of the ‘Trench effect’. Fire Saf. J. 1992, 18, 75–82. [Google Scholar] [CrossRef]
- Sharples, J.; Gill, A.M.; Dold, J.W. The trench effect and eruptive wildfires: Lessons from the King’s Cross Underground disaster. In Proceedings of the Australian Fire and Emergency Service Authorities Council 2010 Conference, Darwin, Australia, 10 September 2010. [Google Scholar]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S. The effect of fuel bed height in grass fire spread: Addressing the findings and recommendations of Moinuddin et al. (2018). Int. J. Wildland Fire 2020, 30, 215–220. [Google Scholar] [CrossRef]





| Harmonized standard: | EN 771-4:2011+A1:2015 [25] |
| Reaction to fire | Euroclass A1, non-combustible |
| Gross dry bulk density, mean | 550 [kg/m3] |
| Water absorption—10 min/30 min/90 min | 45/60/80 [g/(m2·s0.5)] |
| Water vapour diffusion coefficient, μ | 5/10 [-] (Tabulated value according to EN 1745) |
| Thermal conductivity | λ10dry (p = 50%) ≤ 0.14 [W/(m K)] λ10dry (p = 90%) ≤ 0.14 [W/(m K)] |
| Reference | Flow Velocity U (m/s) | Fuel Bed Edges | Average Moisture Content mf (%) | R0 (cm/s) |
|---|---|---|---|---|
| Test 1 | 0 | No | 11.8 | 1.009 |
| Test 2 | 1 | No | 10.6 | |
| Test 3 | 3 | No | 12.7 | |
| Test 4 | 0 | Yes | 12.4 | |
| Test 5 | 1 | Yes | 12.1 | |
| Test 6 | 3 | Yes | 12.6 |
| Reference | Fireline Intensity [MW/m] | Normalized Rate of Spread [m/s] | Flow Velocity U (m/s) | Fuel Bed Edges | ||
|---|---|---|---|---|---|---|
| Maximum Value | Cum | Maximum Value | Cum | |||
| Experiment 1 | 0.42 | 5.25 | 1.39 | 17.51 | 0 | No |
| Experiment 2 | 1.15 | 10.52 | 3.82 | 35.08 | 1 | No |
| Experiment 3 | 3.40 | 20.80 | 11.34 | 69.32 | 3 | No |
| Experiment 4 | 0.47 | 5.83 | 1.56 | 19.43 | 0 | Yes |
| Experiment 5 | 1.17 | 11.62 | 3.88 | 38.73 | 1 | Yes |
| Experiment 6 | 3.98 | 22.86 | 13.28 | 76.21 | 3 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Reis, L.; Raposo, J.; Raposo, H.; Rodrigues, A. The Effect of Fuel Bed Edges on Fire Dynamics. Forests 2026, 17, 124. https://doi.org/10.3390/f17010124
Reis L, Raposo J, Raposo H, Rodrigues A. The Effect of Fuel Bed Edges on Fire Dynamics. Forests. 2026; 17(1):124. https://doi.org/10.3390/f17010124
Chicago/Turabian StyleReis, Luis, Jorge Raposo, Hugo Raposo, and André Rodrigues. 2026. "The Effect of Fuel Bed Edges on Fire Dynamics" Forests 17, no. 1: 124. https://doi.org/10.3390/f17010124
APA StyleReis, L., Raposo, J., Raposo, H., & Rodrigues, A. (2026). The Effect of Fuel Bed Edges on Fire Dynamics. Forests, 17(1), 124. https://doi.org/10.3390/f17010124

