Impacts of Afforestation on Soil Organic Carbon Dynamics Along the Aridity Gradient in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sampling
2.3. Soil Physicochemical Properties Analysis
2.4. Soil Fractions Separation
2.5. Measurement of Soil Enzyme Activity
2.6. Statistical Analyses
3. Results
3.1. Variation in Soil Organic Carbon Content and Stocks After Afforestation
3.2. Variation in Soil Organic Carbon Fractions After Afforestation
3.3. Drivers of Soil Organic Carbon in Different Stand Types
4. Discussion
4.1. Effects of Afforestation on Soil Organic Carbon
4.2. MAOC Is the Main Contributor to Soil Organic Carbon Sequestration
4.3. Factors Affecting Soil Organic Carbon Sequestration After Afforestation
4.4. Implications for Afforestation Carbon Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thomson, A.M.; César Izaurralde, R.; Smith, S.J.; Clarke, L.E. Integrated Estimates of Global Terrestrial Carbon Sequestration. Glob. Environ. Change 2008, 18, 192–203. [Google Scholar] [CrossRef]
- Fan, L.; Xue, Y.; Wu, D.; Xu, M.; Li, A.; Zhang, B.; Mo, J.; Zheng, M. Long-term Nitrogen and Phosphorus Addition Have Stronger Negative Effects on Microbial Residual Carbon in Subsoils than Topsoils in Subtropical Forests. Glob. Change Biol. 2024, 30, e17210. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.; Shangguan, Z. Land-Use Conversion and Changing Soil Carbon Stocks in China’s ‘Grain-for-Green’ Program: A Synthesis. Glob. Change Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, K.; Wang, J.; Gui, H.; Xiao, Y.; Chen, Z.; Miao, Y.; Han, S. Effects of Forest Types on Soil Carbon Content in Aggregate Faction under Climate Transition Zone. Front. Environ. Sci. 2023, 10, 1052175. [Google Scholar] [CrossRef]
- Li, W.; Bai, Z.; Jin, C.; Zhang, X.; Guan, D.; Wang, A.; Yuan, F.; Wu, J. The Influence of Tree Species on Small Scale Spatial Heterogeneity of Soil Respiration in a Temperate Mixed Forest. Sci. Total Environ. 2017, 590–591, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Liu, Y.; Wu, J.; Liao, Y.; Li, J.; Yu, J.; Wang, S.; Yu, Z.; Shangguan, Z.; Deng, L. The Distribution of Soil C and N along the Slope Is Regulated by Vegetation Type on the Loess Plateau. Catena 2023, 226, 107094. [Google Scholar] [CrossRef]
- Luo, Z.; Feng, W.; Luo, Y.; Baldock, J.; Wang, E. Soil Organic Carbon Dynamics Jointly Controlled by Climate, Carbon Inputs, Soil Properties and Soil Carbon Fractions. Glob. Change Biol. 2017, 23, 4430–4439. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X.; Chen, L.; Kuzyakov, Y.; Wang, R.; Zhang, H.; Han, X.; Jiang, Y.; Sun, O.J. Global Pattern of Organic Carbon Pools in Forest Soils. Glob. Change Biol. 2024, 30, e17386. [Google Scholar] [CrossRef]
- Xu, S.; Eisenhauer, N.; Zeng, Z.; Mo, X.; Ding, Y.; Lai, D.Y.F.; Wang, J. Drivers of Soil Organic Carbon Recovery under Forest Restoration: A Global Meta-Analysis. Carbon Res. 2024, 3, 80. [Google Scholar] [CrossRef]
- Han, X.; Gao, G.; Li, Z.; Chang, R.; Jiao, L.; Fu, B. Effects of Plantation Age and Precipitation Gradient on Soil Carbon and Nitrogen Changes Following Afforestation in the Chinese Loess Plateau. Land Degrad. Dev. 2019, 30, 2298–2310. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Y.; Li, Q.; Wei, X.; Guo, X.; Niu, D.; Zhang, W.; Zhang, J.; Zhang, L. Sub-Tropic Degraded Red Soil Restoration: Is Soil Organic Carbon Build-up Limited by Nutrients Supply. For. Ecol. Manag. 2013, 300, 77–87. [Google Scholar] [CrossRef]
- Rhoades, C.C.; Eckert, G.E.; Coleman, D.C. Soil Carbon Differences among Forest, Agriculture, and Secondary Vegetation in Lower Montane Ecuador. Ecol. Appl. 2000, 10, 497–505. [Google Scholar] [CrossRef]
- Su, Z.; Shangguan, Z. Nitrogen Addition Decreases the Soil Cumulative Priming Effect and Favours Soil Net Carbon Gains in Robinia Pseudoacacia Plantation Soil. Geoderma 2023, 433, 116444. [Google Scholar] [CrossRef]
- Vesterdal, L.; Ritter, E.; Gundersen, P. Change in Soil Organic Carbon Following Afforestation of Former Arable Land. For. Ecol. Manag. 2002, 169, 137–147. [Google Scholar] [CrossRef]
- Liu, X.; Yang, T.; Wang, Q.; Huang, F.; Li, L. Dynamics of Soil Carbon and Nitrogen Stocks after Afforestation in Arid and Semi-Arid Regions: A Meta-Analysis. Sci. Total Environ. 2018, 618, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, D.; Liu, T.; Wang, C.; Ma, H.; Xu, M.; Zhang, W.; Wu, L. Dynamics and Drivers of Soil Organic Carbon Sequestration by Cropland Afforestation: A Global Meta-Analysis. Land Degrad. Dev. 2025, 1–12. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, H.; Zhang, J.; Li, X.; Wang, B.; Miao, H.; Sial, T.A.; Dong, Q.; Fu, G.; Li, L. Long-term Vegetation Restoration Increases Carbon Sequestration of Different Soil Particles in a Semi-arid Desert. Ecosphere 2021, 12, e03848. [Google Scholar] [CrossRef]
- Gu, X.; Fang, X.; Xiang, W.; Zeng, Y.; Zhang, S.; Lei, P.; Peng, C.; Kuzyakov, Y. Vegetation Restoration Stimulates Soil Carbon Sequestration and Stabilization in a Subtropical Area of Southern China. Catena 2019, 181, 104098. [Google Scholar] [CrossRef]
- He, X.; Sheng, M.; Wang, L.; Zhang, S.; Luo, N. Effects on Soil Organic Carbon Accumulation and Mineralization of Long-Term Vegetation Restoration in Southwest China Karst. Ecol. Indic. 2022, 145, 109622. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, S.; Wang, A.; Huang, S.; Qu, T.; Chen, Q.; Li, X.; Wang, R.; Liu, Z.; Dong, Z. Long-Term Caragana Korshinskii Restoration Enhances SOC Stability but Reduces Sequestration Efficiency over 40 Years in Degraded Loess Soils. Atmosphere 2025, 16, 662. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, S.; Pendall, E.; Smith, P.; Liu, J.; Li, J.; Fang, C.; Li, B.; Nie, M. Unprotected Carbon Dominates Decadal Soil Carbon Increase. Nat. Commun. 2025, 16, 2008. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, J.; Ma, P.; Diwu, G.; Li, T.; Ma, H.; Shangguan, Z.; Deng, L.; Zhong, Y.; Yan, W. Impact of Vegetation Restoration on Soil Organic Carbon Fractions: A Global Meta-Analysis. Ecol. Eng. 2025, 216, 107640. [Google Scholar] [CrossRef]
- Hansen, P.M.; Even, R.; King, A.E.; Lavallee, J.; Schipanski, M.; Cotrufo, M.F. Distinct, Direct and Climate-Mediated Environmental Controls on Global Particulate and Mineral-Associated Organic Carbon Storage. Glob. Change Biol. 2024, 30, e17080. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing Soil Organic Matter into Particulate and Mineral-associated Forms to Address Global Change in the 21st Century. Glob. Change Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef]
- Wu, G.; Huang, G.; Lin, S.; Huang, Z.; Cheng, H.; Su, Y. Changes in Soil Organic Carbon Stocks and Its Physical Fractions along an Elevation in a Subtropical Mountain Forest. J. Environ. Manag. 2024, 351, 119823. [Google Scholar] [CrossRef]
- Su, Z.; Zhong, Y.; Zhu, X.; Wu, Y.; Shen, Z.; Shangguan, Z. Vegetation Restoration Altered the Soil Organic Carbon Composition and Favoured Its Stability in a Robinia pseudoacacia Plantation. Sci. Total Environ. 2023, 899, 165665. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.I.; Wang, J.; Li, P.; Pathan, S.I.; Sial, T.A.; Datta, R.; Mokhtar, A.; Ali, E.F.; Rinklebe, J.; Shaheen, S.M.; et al. Variations of Soil Organic Carbon Fractions in Response to Conservative Vegetation Successions on the Loess Plateau of China. Int. Soil Water Conserv. Res. 2023, 11, 561–571. [Google Scholar] [CrossRef]
- Zhai, D.; Wang, Y.; Liao, C.; Men, X.; Wang, C.; Cheng, X. Soil Carbon Accumulation under Afforestation Is Driven by Contrasting Responses of Particulate and Mineral-associated Organic Carbon. Glob. Biogeochem. Cycles 2024, 38, e2024GB008116. [Google Scholar] [CrossRef]
- Cremer, M.; Kern, N.V.; Prietzel, J. Soil Organic Carbon and Nitrogen Stocks under Pure and Mixed Stands of European Beech, Douglas Fir and Norway Spruce. For. Ecol. Manag. 2016, 367, 30–40. [Google Scholar] [CrossRef]
- Angst, G.; Messinger, J.; Greiner, M.; Häusler, W.; Hertel, D.; Kirfel, K.; Kögel-Knabner, I.; Leuschner, C.; Rethemeyer, J.; Mueller, C.W. Soil Organic Carbon Stocks in Topsoil and Subsoil Controlled by Parent Material, Carbon Input in the Rhizosphere, and Microbial-Derived Compounds. Soil Biol. Biochem. 2018, 122, 19–30. [Google Scholar] [CrossRef]
- Newman, G.S.; Hart, S.C. Nutrient Covariance between Forest Foliage and Fine Roots. For. Ecol. Manag. 2006, 236, 136–141. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Y.; Shao, M.; Jia, X.; Wei, X. Revegetation Re-Carbonizes Soil: Patterns, Mechanisms, and Challenges. Fundam. Res. 2024; in press. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.; Sweeney, S. “Grain for Green” Driven Land Use Change and Carbon Sequestration on the Loess Plateau, China. Sci. Rep. 2014, 4, 7039. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Ma, C.; Xiang, Y.; Wu, J. Restoring Farmland to Forest Increases Phosphorus Limitation Based on Microbial and Soil C:N:P Stoichiometry-a Synthesis across China. For. Ecol. Manag. 2024, 556, 121745. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, M. National-Scale Meta-Analysis of Soil Carbon and Nitrogen Accumulation Potential in China’s Grain for Green Program. Eurasian Soil Sci. 2020, 53, 892–901. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Yu, P.; Li, Y.; Liu, S.; Liu, J.; Ding, Z.; Ma, M.; Tang, X. Afforestation Influences Soil Organic Carbon and Its Fractions Associated with Aggregates in a Karst Region of Southwest China. Sci. Total Environ. 2022, 814, 152710. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Han, X.; Xu, Y.; Zhang, W.; Fu, S.; Liu, W.; Ren, C.; Yang, G.; Ren, G. Effects of Land Use Change on Organic Carbon Dynamics Associated with Soil Aggregate Fractions on the Loess Plateau, China. Land Degrad. Dev. 2019, 30, 1070–1082. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, W.; Zhang, P.; Yu, Y.; Ding, F. A Synthesis of Change in Deep Soil Organic Carbon Stores with Afforestation of Agricultural Soils. For. Ecol. Manag. 2013, 296, 53–63. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; p. 28. (In Chinese) [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Udden, J.A. Mechanical Composition of Clastic Sediments. Geol. Soc. Am. Bull. 1914, 25, 655–744. [Google Scholar] [CrossRef]
- Wu, J.; Joergensen, R.G.; Pommerening, B.; Chaussod, R.; Brookes, P.C. Measurement of Soil Microbial Biomass C by Fumigation-Extraction—An Automated Procedure. Soil Biol. Biochem. 1990, 22, 1167–1169. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Liu, Y.; Hai, X.; Li, M.; Wu, J.; Wang, X.; Shangguan, Z.; Zhou, Z.; Deng, L. Forestation Delivers Significantly More Effective Results in Soil C and N Sequestrations than Natural Succession on Badly Degraded Areas: Evidence from the Central Loess Plateau Case. Catena 2022, 208, 105734. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Hou, Y.; Zhou, S.; Zhu, B. Particulate Organic Carbon Is More Vulnerable to Nitrogen Addition than Mineral-Associated Organic Carbon in Soil of an Alpine Meadow. Plant Soil 2021, 458, 93–103. [Google Scholar] [CrossRef]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The Effects of Long Term Nitrogen Deposition on Extracellular Enzyme Activity in an Acer saccharum Forest Soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and Driving Factors of Biomass Carbon and Soil Organic Carbon Stock in the Indian Himalayan Region. Sci. Total Environ. 2021, 770, 145292. [Google Scholar] [CrossRef]
- Vesterdal, L.; Clarke, N.; Sigurdsson, B.D.; Gundersen, P. Do Tree Species Influence Soil Carbon Stocks in Temperate and Boreal Forests? For. Ecol. Manag. 2013, 309, 4–18. [Google Scholar] [CrossRef]
- Jiang, R.; Gunina, A.; Qu, D.; Kuzyakov, Y.; Yu, Y.; Hatano, R.; Frimpong, K.A.; Li, M. Afforestation of Loess Soils: Old and New Organic Carbon in Aggregates and Density Fractions. Catena 2019, 177, 49–56. [Google Scholar] [CrossRef]
- Li, D.; Niu, S.; Luo, Y. Global Patterns of the Dynamics of Soil Carbon and Nitrogen Stocks Following Afforestation: A Meta-Analysis. New Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef]
- Zheng, Y.; Ye, J.; Pei, J.; Fang, C.; Li, D.; Ke, W.; Song, X.; Sardans, J.; Peñuelas, J. Initial Soil Condition, Stand Age, and Aridity Alter the Pathways for Modifying the Soil Carbon under Afforestation. Sci. Total Environ. 2024, 946, 174448. [Google Scholar] [CrossRef]
- Sokol, N.W.; Whalen, E.D.; Jilling, A.; Kallenbach, C.; Pett-Ridge, J.; Georgiou, K. Global Distribution, Formation and Fate of Mineral-associated Soil Organic Matter under a Changing Climate: A Trait-based Perspective. Funct. Ecol. 2022, 36, 1411–1429. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Wang, B.; Wu, X.; Wang, Z.; Liu, L.; Yang, H. Revegetation Promotes Soil Mineral-Associated Organic Carbon Sequestration and Soil Carbon Stability in the Tengger Desert, Northern China. Soil Biol. Biochem. 2023, 185, 109155. [Google Scholar] [CrossRef]
- Peng, X.; Huang, Y.; Duan, X.; Yang, H.; Liu, J. Particulate and Mineral-Associated Organic Carbon Fractions Reveal the Roles of Soil Aggregates under Different Land-Use Types in a Karst Faulted Basin of China. Catena 2023, 220, 106721. [Google Scholar] [CrossRef]
- Ling, J.; Dungait, J.A.J.; Delgado-Baquerizo, M.; Cui, Z.; Zhou, R.; Zhang, W.; Gao, Q.; Chen, Y.; Yue, S.; Kuzyakov, Y.; et al. Soil Organic Carbon Thresholds Control Fertilizer Effects on Carbon Accrual in Croplands Worldwide. Nat. Commun. 2025, 16, 3009. [Google Scholar] [CrossRef]
- Dong, X.; Tariq, A.; Graciano, C.; Zhang, Z.; Gao, Y.; Keyimu, M.; Cong, M.; Zhao, G.; Yan, J.; Wang, W.; et al. Afforestation-Driven Soil Organic Carbon Stabilization in a Hyper-Arid Desert: Nonlinear Dynamics and Microbial Drivers across a 22-Year Chronosequence. Environ. Res. 2025, 282, 121989. [Google Scholar] [CrossRef]
- Yu, T.; Feng, Q.; Yin, Y.; Han, T.; Chen, W.; Zhu, M.; Zhao, C.; Zhao, J. Divergent Response of Upper Layer Soil Organic and Inorganic Carbon to Biotic and Abiotic Factors in Afforestation by Aerial Seeding in Desert, China. Catena 2024, 246, 108383. [Google Scholar] [CrossRef]
- Zhao, G.; Tariq, A.; Zhang, Z.; Nazim, M.; Graciano, C.; Sardans, J.; Dong, X.; Gao, Y.; Peñuelas, J.; Zeng, F. Afforestation with Xerophytic Shrubs Promoted Soil Organic Carbon Stability in a Hyper-Arid Environment of Desert. Land Degrad. Dev. 2025, 36, 655–667. [Google Scholar] [CrossRef]
- Mao, H.-R.; Cotrufo, M.F.; Hart, S.C.; Sullivan, B.W.; Zhu, X.; Zhang, J.; Liang, C.; Zhu, M. Dual Role of Silt and Clay in the Formation and Accrual of Stabilized Soil Organic Carbon. Soil Biol. Biochem. 2024, 192, 109390. [Google Scholar] [CrossRef]
- Zhu, G.; Shangguan, Z.; Hu, X.; Deng, L. Effects of Land Use Changes on Soil Organic Carbon, Nitrogen and Their Losses in a Typical Watershed of the Loess Plateau, China. Ecol. Indic. 2021, 133, 108443. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Z.; Li, M.; Gao, C.; Zhang, J.; He, N. Soil Mineral-Associated Organic Carbon and Its Relationship to Clay Minerals across Grassland Transects in China. Appl. Sci. 2024, 14, 2061. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Tang, Z.; Shangguan, Z.; Chang, F.; Jia, F.; Chen, Y.; He, X.; Shi, W.; Deng, L. Effects of Grassland Afforestation on Structure and Function of Soil Bacterial and Fungal Communities. Sci. Total Environ. 2019, 676, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Shoumik, B.A.A.; Khan, M.Z.; Błońska, E.; Lasota, J. Dynamics of Soil Organic Carbon and Total Nitrogen in Particulate and Mineral-Associated Organic Matter Fractions under Different Continuous Land Use Patterns across Europe. Agric. Ecosyst. Environ. 2025, 381, 109411. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) Framework Integrates Plant Litter Decomposition with Soil Organic Matter Stabilization: Do Labile Plant Inputs Form Stable Soil Organic Matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Seidel, F.; Lopez C., M.L.; Bonifacio, E.; Kurokawa, H.; Yamanaka, T.; Celi, L. Seasonal Phosphorus and Nitrogen Cycling in Four Japanese Cool-Temperate Forest Species. Plant Soil 2022, 472, 391–406. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y. Synergy and Trade-off between Carbon Sequestration and Soil Water Balance: Impact of Revegetation Choices. Environ. Earth Sci. 2019, 78, 651. [Google Scholar] [CrossRef]
- Poirier, V.; Roumet, C.; Munson, A.D. The Root of the Matter: Linking Root Traits and Soil Organic Matter Stabilization Processes. Soil Biol. Biochem. 2018, 120, 246–259. [Google Scholar] [CrossRef]
- Lei, X.; Shen, Y.; Zhao, J.; Huang, J.; Wang, H.; Yu, Y.; Xiao, C. Root Exudates Mediate the Processes of Soil Organic Carbon Input and Efflux. Plants 2023, 12, 630. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Zhu, B.; Cheng, W. Root Effects on Soil Organic Carbon: A Double-edged Sword. New Phytol. 2021, 230, 60–65. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, X.; Ni, H.; Gai, X.; Huang, Z.; Du, X.; Zhong, Z. Soil Carbon and Associated Bacterial Community Shifts Driven by Fine Root Traits along a Chronosequence of Moso Bamboo (Phyllostachys Edulis) Plantations in Subtropical China. Sci. Total Environ. 2021, 752, 142333. [Google Scholar] [CrossRef]
- Cheng, C.; Gundale, M.J.; Li, B.; Wu, J. Deciphering the Drivers of Plant-Soil Feedbacks and Their Context-Dependence: A Meta-Analysis. Plant Soil 2024, 486, 379–393. [Google Scholar] [CrossRef]
- Gao, F.; Cui, X.; Sang, Y.; Song, J. Changes in Soil Organic Carbon and Total Nitrogen as Affected by Primary Forest Conversion. For. Ecol. Manag. 2020, 463, 118013. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The Importance of Anabolism in Microbial Control over Soil Carbon Storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Augusto, L.; Boča, A. Tree Functional Traits, Forest Biomass, and Tree Species Diversity Interact with Site Properties to Drive Forest Soil Carbon. Nat. Commun. 2022, 13, 1097. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Chang, K.; Wu, B.; Zhang, D.; Wang, C.; Cheng, X. Divergence in Soil Particulate and Mineral-Associated Organic Carbon Reshapes Carbon Stabilization along an Elevational Gradient. Catena 2024, 235, 107682. [Google Scholar] [CrossRef]
- Zuo, W.; Gu, B.; Zou, X.; Peng, K.; Shan, Y.; Yi, S.; Shan, Y.; Gu, C.; Bai, Y. Soil Organic Carbon Sequestration in Croplands Can Make Remarkable Contributions to China’s Carbon Neutrality. J. Clean. Prod. 2023, 382, 135268. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lu, J.; Wang, S.; Dong, Y.; Wang, Y.; Jiang, Y.; Zhang, H.; Lv, W.; Ge, W.; Bai, R.; Deng, L. Impacts of Afforestation on Soil Organic Carbon Dynamics Along the Aridity Gradient in China. Forests 2026, 17, 123. https://doi.org/10.3390/f17010123
Lu J, Wang S, Dong Y, Wang Y, Jiang Y, Zhang H, Lv W, Ge W, Bai R, Deng L. Impacts of Afforestation on Soil Organic Carbon Dynamics Along the Aridity Gradient in China. Forests. 2026; 17(1):123. https://doi.org/10.3390/f17010123
Chicago/Turabian StyleLu, Juxiao, Su Wang, Yajing Dong, Yue Wang, Yafeng Jiang, Hailong Zhang, Wenwen Lv, Wangliang Ge, Ruihua Bai, and Lei Deng. 2026. "Impacts of Afforestation on Soil Organic Carbon Dynamics Along the Aridity Gradient in China" Forests 17, no. 1: 123. https://doi.org/10.3390/f17010123
APA StyleLu, J., Wang, S., Dong, Y., Wang, Y., Jiang, Y., Zhang, H., Lv, W., Ge, W., Bai, R., & Deng, L. (2026). Impacts of Afforestation on Soil Organic Carbon Dynamics Along the Aridity Gradient in China. Forests, 17(1), 123. https://doi.org/10.3390/f17010123

