Resin Production in Pinus: A Review of the Relevant Influencing Factors and Silvicultural Practices
Abstract
1. Introduction
2. Methodology
3. Factors Affecting Resin Productivity
3.1. Tree-Related Factors
3.1.1. Dendrometric Characteristics of the Tree
3.1.2. Crown Management
3.2. Factors External to the Tree
3.2.1. Environmental Factors
3.2.2. Resin Tapping Season
3.3. Silvicultural Practices Used in Stand Management That May Influence Resin Production
3.3.1. Thinning
3.3.2. Pruning
3.3.3. Prescribed Burning
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zulak, K.G.; Bohlmann, J. Terpenoid Biosynthesis and Specialized Vascular Cells of Conifer Defense. J. Integr. Plant Biol. 2010, 52, 86–97. [Google Scholar] [CrossRef]
- Neis, F.A.; de Costa, F.; de Araújo, A.T.; Fett, J.P.; Fett-Neto, A.G. Multiple Industrial Uses of Non-Wood Pine Products. Ind. Crops Prod. 2019, 130, 248–258. [Google Scholar] [CrossRef]
- Vázquez-González, C.; López-Goldar, X.; Alía, R.; Bustingorri, G.; Lario, F.J.; Lema, M.; de la Mata, R.; Sampedro, L.; Touza, R.; Zas, R. Genetic Variation in Resin Yield and Covariation with Tree Growth in Maritime Pine. For. Ecol. Manag. 2021, 482, 118843. [Google Scholar] [CrossRef]
- Behtash Oskuie, A.; Nasrollahi, S.A.; Nafisi, S. Design, Synthesis of Novel Vesicular Systems Using Turpentine as a Skin Permeation Enhancer. J. Drug Deliv. Sci. Technol. 2018, 43, 327–332. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Zhang, Q.; Shan, Y.; Gu, W.; Wang, S. Design, Synthesis and Biological Evaluation of Novel β-Pinene-Based Thiazole Derivatives as Potential Anticancer Agents via Mitochondrial-Mediated Apoptosis Pathway. Bioorg. Chem. 2019, 84, 468–477. [Google Scholar] [CrossRef]
- Liao, S.; Shang, S.; Shen, M.; Rao, X.; Si, H.; Song, J.; Song, Z. One-Pot Synthesis and Antimicrobial Evaluation of Novel 3-Cyanopyridine Derivatives of (−)-β-Pinene. Bioorg. Med. Chem. Lett. 2016, 26, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.K.; Gidwani, B.; Vyas, A. Rosin: Recent Advances and Potential Applications in Novel Drug Delivery System. J. Bioact. Compat. Polym. 2016, 31, 111–126. [Google Scholar] [CrossRef]
- Phun, L.; Snead, D.; Hurd, P.; Jing, F. Industrial Applications of Pine-Chemical-Based Materials. Sustain. Polym. Biomass 2017, 151–179. [Google Scholar] [CrossRef]
- Bottaro, G.; Roco, L.; Pettenella, D.; Micheletti, S.; Vanhulst, J. Forest Plantations’ Externalities: An Application of the the Analytic Hierarchy Process to Non-Industrial Forest Owners in Central Chile. Forests 2018, 9, 141. [Google Scholar] [CrossRef]
- Perez, S.O.; Robredo, F.G.; Tellez, E.A.; Belda, C.F. Effects of the Crisis in the Resin Sector on the Demography of Rural Municipalities in Spain. For. Syst. 2013, 22, 39–46. [Google Scholar] [CrossRef]
- Soliño, M.; Yu, T.; Alía, R.; Auñón, F.; Bravo-Oviedo, A.; Chambel, M.R.; de Miguel, J.; del Río, M.; Justes, A.; Martínez-Jauregui, M.; et al. Resin-Tapped Pine Forests in Spain: Ecological Diversity and Economic Valuation. Sci. Total Environ. 2018, 625, 1146–1155. [Google Scholar] [CrossRef]
- Demko, J.; Machava, J. Tree Resin, a Macroergic Source of Energy, a Possible Tool to Lower the Rise in Atmospheric CO2 Levels. Sustainability 2022, 14, 3506. [Google Scholar] [CrossRef]
- da Rodrigues-Honda, K.C.S.; de Junkes, C.F.O.; de Lima, J.C.; de Waldow, V.A.; Rocha, F.S.; Sausen, T.L.; Bayer, C.; Talamini, E.; Fett-Neto, A.G. Carbon Sequestration in Resin-Tapped Slash Pine (Pinus elliottii Engelm.) Subtropical Plantations. Biology 2023, 12, 324. [Google Scholar] [CrossRef]
- Prokofieva, I.; Lovric, M.; Pettenella, D.; Weiß, G.; Wolfslehner, B.; Wong, J. What Is the Potential contribution of Non-Wood Forest products to the European Forest-Based? In What Makes a European Forest-Based Bioeconomy Competitive? European Forest Institute: Joensuu, Finland, 2017; ISBN 9789525980417. [Google Scholar]
- Yang, Z. Genetic Improvement of Key Wood and Resin Properties of Pinus massoniana Lamb.; Beijing Forestry University: Beijing, China, 2012; pp. 67–84. [Google Scholar]
- Tsaktsira, M.; Tsoulpha, P.; Economou, A.; Scaltsoyiannes, A. Mitigation of Global Climate Change through Genetic Improvement of Resin Production from Resinous Pines: The Case of Pinus halepensis in Greece. Sustainability 2023, 15, 8052. [Google Scholar] [CrossRef]
- Moura, M.; Campelo, F.; Carvalho, A.; Nabais, C.; Garcia-Forner, N. Growth and Climate Drive Resin Production in Pinus pinaster and Pinus pinea. Trees Struct. Funct. 2025, 39, 22. [Google Scholar] [CrossRef]
- Novick, K.A.; Katul, G.G.; McCarthy, H.R.; Oren, R. Increased Resin Flow in Mature Pine Trees Growing under Elevated CO2 and Moderate Soil Fertility. Tree Physiol. 2012, 32, 752–763. [Google Scholar] [CrossRef]
- Rygalova, N.V.; Mordvin, E.Y.; Bondarovich, A.A. Productivity and Carbon Sequestration of Pinus sylvestris L. Ribbon Forests in the Dry Steppe of Western Siberia According to Dendrochronology and MODIS Satellite Measurements. Contemp. Probl. Ecol. 2024, 17, 881–891. [Google Scholar] [CrossRef]
- Riofrío, J.; del Río, M.; Pretzsch, H.; Bravo, F. Changes in Structural Heterogeneity and Stand Productivity by Mixing Scots Pine and Maritime Pine. For. Ecol. Manag. 2017, 405, 219–228. [Google Scholar] [CrossRef]
- Jörgensen, K.; Granath, G.; Lindahl, B.D.; Strengbom, J. Forest Management to Increase Carbon Sequestration in Boreal Pinus sylvestris Forests. Plant Soil. 2021, 466, 165–178. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Ruiz-Gómez, F.J.; Camarero, J.J.; Castillo, V.; Barberá, G.G.; Palacios-Rodríguez, G.; Navarro, F.B.; Blanco, J.A.; Imbert, J.B.; Cachinero-Vivar, A.M.; et al. Long-Term Carbon Sequestration in Pine Forests under Different Silvicultural and Climatic Regimes in Spain. Forests 2022, 13, 450. [Google Scholar] [CrossRef]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Aun, K.; Lõhmus, K.; Soosaar, K.; Astover, A.; Uri, M.; et al. The Dynamics of the Carbon Storage and Fluxes in Scots Pine (Pinus sylvestris) Chronosequence. Sci. Total Environ. 2022, 817, 152973. [Google Scholar] [CrossRef]
- de Junkes, C.F.O.; Duz, J.V.V.; Kerber, M.R.; Wieczorek, J.; Galvan, J.L.; Fett, J.P.; Fett-Neto, A.G. Resinosis of Young Slash Pine (Pinus elliottii Engelm.) as a Tool for Resin Stimulant Paste Development and High Yield Individual Selection. Ind. Crops Prod. 2019, 135, 179–187. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zhao, F.; Zeng, M.; Li, F.; Chen, L.; Wu, H.; Che, X.; Li, Y.; Deng, L.; et al. Efficient Resin Production Using Stimulant Pastes in Pinus elliottii × P. caribaea Families. Sci. Rep. 2022, 12, 13129. [Google Scholar] [CrossRef]
- Cunningham, A. Visión Internacional Sobre El Mercado de La Miera; España, 2022. Proceedings Jornada Técnica el Sector Resinero Nacional Un Oficio Profesional, Innovador y de Calidad (2022). Available online: https://go-resinlab.com/jornada-tecnica-segovia (accessed on 1 September 2025).
- Lai, M.; Dong, L.; Yi, M.; Sun, S.; Zhang, Y.; Fu, L.; Xu, Z.; Lei, L.; Leng, C.; Zhang, L. Genetic Variation, Heritability and Genotype × Environment Interactions of Resin Yield, Growth Traits and Morphologic Traits for Pinus elliottii at Three Progeny Trials. Forests 2017, 8, 409. [Google Scholar] [CrossRef]
- Lai, M.; Zhang, L.; Lei, L.; Liu, S.; Jia, T.; Yi, M. Inheritance of Resin Yield and Main Resin Components in Pinus elliottii Engelm. at Three Locations in Southern China. Ind. Crops Prod. 2020, 144, 112065. [Google Scholar] [CrossRef]
- Yi, M.; Jia, T.; Dong, L.; Zhang, L.; Leng, C.; Liu, S.; Lai, M. Resin Yield in Pinus elliottii Engelm. Is Related to the Resin Flow Rate, Resin Components and Resin Duct Characteristics at Three Locations in Southern China. Ind. Crops Prod. 2021, 160, 113141. [Google Scholar] [CrossRef]
- Rodrigues, K.C.S.; Azevedo, P.C.N.; Sobreiro, L.E.; Pelissari, P.; Fett-Neto, A.G. Oleoresin Yield of Pinus elliottii Plantations in a Subtropical Climate: Effect of Tree Diameter, Wound Shape and Concentration of Active Adjuvants in Resin Stimulating Paste. Ind. Crops Prod. 2008, 27, 322–327. [Google Scholar] [CrossRef]
- Susaeta, A.; Peter, G.F.; Hodges, A.W.; Carter, D.R. Oleoresin Tapping of Planted Slash Pine (Pinus elliottii Engelm. Var. Elliottii) Adds Value and Management Flexibility to Landowners in the Southern United States. Biomass Bioenergy 2014, 68, 55–61. [Google Scholar] [CrossRef]
- Wu, H.R.; Fan, Y.R.; Niu, X.Y.; Luan, Q.F.; Li, Y.J.; Jiang, J.M.; Jin, J.E. Effects of Resin-Tapping Year on Wood Properties of Living Pinus elliottii. For. Res. 2022, 35, 31–39. [Google Scholar] [CrossRef]
- Lukmandaru, G.; Amri, S.; Sunarta, S.; Listyanto, T.; Pujiarti, R.; Widyorini, R. The Effect of Stimulants and Environmental Factors on Resin Yield of Pinus Merkussi Tapping. BioResources 2021, 16, 163. [Google Scholar]
- Nugrahanto, G.; Na’iem, M.; Indrioko, S.; Faridah, E.; Widiyatno, W.; Abdillah, E. Genetic Parameters for Resin Production of Pinus merkusii Progeny Test Collected from Three Seed Sources in Banyumas Barat Forest District, Indonesia. Biodiversitas 2022, 23, 2010–2016. [Google Scholar] [CrossRef]
- Feriawan, Y.; Nugroho, W.D. Effect of Ethephon on the Formation of Traumatic Resin Ducts in Pinus merkusii Seedlings. Forestist 2025, 75, 1–6. [Google Scholar] [CrossRef]
- IUCN Species Survival Commission. International Union for Conservation of Nature and Natural Resources—IUCN Red List Categories and Criteria, Version 3.1; IUCN Species Survival Commission: Glan, Switzerland, 2001; ISBN 978-2831706337. [Google Scholar]
- Nghia, N.H. Pinus Merkusii Jungh et de Vriese; Kuala Lumpur, Malaysia. 2004. Available online: https://www.apforgen.org (accessed on 4 August 2025).
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Anthony, S. Agroforestree Database: A Tree Reference and Selection Guide, Version 4.0. Available online: http://www.worldagroforestry.org/treedb (accessed on 4 May 2025).
- Wang, H.-L.; Yang, W.-Y.; Gao, C.-J.; Li, K.; Xiong, H.; Yang, F.-C. Anatomical Comparison of Resin Canals in Pinus yunnanensis with Different Oleoresin Yield. For. Res. 2015, 28, 352–357. [Google Scholar]
- Liu, Y.F.; Yang, B.C.; Song, Z.M.; Qiao, L.Q.; Peng, R.; Feng, W.S.; Cheng, Y.X.; Wang, Y.Z. Seven Diterpenoids from the Resin of Pinus yunnanensis Franch and Their Anti-Inflammatory Activity. Fitoterapia 2023, 165, 105396. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, Z.; Gao, C.; Li, S.; Huang, X.; Lang, X.; Su, J. Radial Growth Response of Pinus yunnanensis to Rising Temperature and Drought Stress on the Yunnan Plateau, Southwestern China. For. Ecol. Manag. 2020, 474, 118357. [Google Scholar] [CrossRef]
- Feng, J.; Wang, B.; Xian, M.; Zhou, S.; Huang, C.; Cui, X. Prediction of Future Potential Distributions of Pinus yunnanensis Varieties under Climate Change. Front. For. Glob. Change 2023, 6, 1308416. [Google Scholar] [CrossRef]
- Dos Santos, W.; Souza, D.C.L.; De Moraes, M.L.T.; De Aguiar, A.V. Genetic Variation of Wood and Resin Production in Pinus caribaea Var. Hondurensis Barret & Golfari. Silvae Genet. 2016, 65, 31–37. [Google Scholar] [CrossRef]
- Kakraba, L.; Boadu, K.B.; Govina, J.K. Tissue and Resin Canal Biometry of Pinus radiata D. Don. and Pinus caribaea Morelet Wood from Plantation Forest. J. Indian. Acad. Wood Sci. 2022, 19, 45–51. [Google Scholar] [CrossRef]
- de Lima, I.L.; Ranzini, M.; Fioruci, W.J.; Bucci, L.A.; Longui, E.L.; Zanata, M.; Garcia, J.N. Physical and Mechanical Wood Properties of Two Varieties of Pinus caribaea. Res. Soc. Dev. 2023, 12, e7712943146. [Google Scholar] [CrossRef]
- García-Iruela, A.; Esteban, L.G.; De Palacios, P.; García-Fernández, F.; De, Á.; Torres, M.; Iriarte, E.V.; Simón, C. Resinous wood of Pinus pinaster Ait.: Physico-mechanical properties. BioResources 2016, 11, 5230–5241. [Google Scholar] [CrossRef]
- Garcia-Forner, N.; Campelo, F.; Carvalho, A.; Vieira, J.; Rodríguez-Pereiras, A.; Ribeiro, M.; Salgueiro, A.; Silva, M.E.; Louzada, J.L. Growth-Defence Trade-Offs in Tapped Pines on Anatomical and Resin Production. For. Ecol. Manag. 2021, 496, 119406. [Google Scholar] [CrossRef]
- Moura, M.; Campelo, F.; Nabais, C.; Garcia-Forner, N. Resin Tapping Influence on Maritime Pine Growth Depends on Tree Age and Stand Characteristics. Eur. J. For. Res. 2023, 142, 965–980. [Google Scholar] [CrossRef]
- Calama, R.; Martínez, C.; Gordo, J.; Del Río, M.; Menéndez-Miguélez, M.; Pardos, M. The Impact of Climate and Management on Recent Mortality in Pinus pinaster Resin-Tapped Forests of Inland Spain. Forestry 2024, 97, 120–132. [Google Scholar] [CrossRef]
- Fernández-Blas, C.; Ruiz-Benito, P.; Gazol, A.; Granda, E.; Samblás, E.; Granado-Díaz, I.; Zavala, M.A.; Valeriano, C.; Camarero, J.J. Historical Forest Use Constrains Tree Growth Responses to Drought: A Case Study on Tapped Maritime Pine (Pinus pinaster). Trees For. People 2024, 18, 100699. [Google Scholar] [CrossRef]
- Pascual, J.; López-Hidalgo, C.; Feito, I.; Majada, J.; Meijón, M. An Analysis of Natural Variation in Pinus pinaster through the Lens of Systems Biology. Environ. Exp. Bot. 2024, 225, 105828. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Rubio-Cuadrado, Á.; Oliveira, N.; Hernández Mateo, L.; Alberdi, I.; Adame, P.; Cañellas, I. Divergent Spatio-Temporal Tree Growth Trends in Pinus pinaster Ait. in South-Western European Forests. Sci. Total Environ. 2024, 935, 173465. [Google Scholar] [CrossRef]
- Valledor, L.; Guerrero, S.; García-Campa, L.; Meijón, M. Proteometabolomic Characterization of Apical Bud Maturation in Pinus pinaster. Tree Physiol. 2020, 41, 508–521. [Google Scholar] [CrossRef]
- Abad Viñas, R.; Caudullo, G.; Oliveira, S.; Rigo, D. Pinus Pinaster in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e012d5. [Google Scholar]
- Pietrzykowski, M. Soil Quality Index as a Tool for Scots Pine (Pinus Sylvestris) Monoculture Conversion Planning on Afforested, Reclaimed Mine Land. J. For. Res. 2014, 25, 63–74. [Google Scholar] [CrossRef]
- van der Maaten, E.; Mehl, A.; Wilmking, M.; van der Maaten-Theunissen, M. Tapping the Tree-Ring Archive for Studying Effects of Resin Extraction on the Growth and Climate Sensitivity of Scots Pine. For. Ecosyst. 2017, 4, 7. [Google Scholar] [CrossRef]
- Rissanen, K.; Hölttä, T.; Barreira, L.F.M.; Hyttinen, N.; Kurtén, T.; Bäck, J. Temporal and Spatial Variation in Scots Pine Resin Pressure and Composition. Front. For. Glob. Change 2019, 2, 23. [Google Scholar] [CrossRef]
- Zaluma, A.; Strike, Z.; Rieksts-Riekstiņš, R.; Gaitnieks, T.; Vasaitis, R. Long-Term Pathological Consequences of Resin Tapping Wounds on Stems of Scots Pine (Pinus sylvestris L.). Trees Struct. Funct. 2022, 36, 1507–1514. [Google Scholar] [CrossRef]
- Fabián-Plesníková, I.; Sáenz-Romero, C.; Terrazas, T.; Reyes-Ramos, A.; Martínez-Trujillo, M.; Cruz-De-León, J.; Sánchez-Vargas, N.M. Traumatic Ducts Size Varies Genetically and Is Positively Associated to Resin Yield of Pinus oocarpa Open-Pollinated Progenies. Silvae Genet. 2022, 71, 10–19. [Google Scholar] [CrossRef]
- Sarria-Villa, R.A.; Gallo-Corredor, J.A.; Benítez-Benítez, R. Characterization and Determination of the Quality of Rosins and Turpentines Extracted from Pinus oocarpa and Pinus patula Resin. Heliyon 2021, 7, e07834. [Google Scholar] [CrossRef]
- Velasco-García, M.V.; Hernández-Hernández, A. Geographic and Climatic Variation in Resin Components and Quality of Pinus oocarpa in Southern Mexico Provenances. Plants 2024, 13, 1755. [Google Scholar] [CrossRef]
- Rodríguez-García, A.; López, R.; Martín, J.A.; Pinillos, F.; Gil, L. Resin Yield in Pinus pinaster Is Related to Tree Dendrometry, Stand Density and Tapping-Induced Systemic Changes in Xylem Anatomy. For. Ecol. Manag. 2014, 313, 47–54. [Google Scholar] [CrossRef]
- Silva, M.E.; Gaspar, M.J.; Pires, J.; Ribeiro, M.; Loureiro, C.; Coutinho, J.P.; Santos, E.; Carvalho, A.; Brito, J.L.; Salgueiro, A.; et al. RESIMPROVE—Desenvolvimento de Processos de Produção e Extração de Resina de Pinheiro Para a Melhoria Da Eficiência, Racionalização e Expansão Da Atividade; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2018; ISBN 978-989-704-264-5. [Google Scholar]
- Zas, R.; Touza, R.; Sampedro, L.; Lario, F.J.; Bustingorri, G.; Lema, M. Variation in Resin Flow among Maritime Pine Populations: Relationship with Growth Potential and Climatic Responses. For. Ecol. Manag. 2020, 474, 118351. [Google Scholar] [CrossRef]
- López-Álvarez, Ó.; Zas, R.; Martínez, E.; Marey-Perez, M. Resin Yield Response to Different Tapping Methods and Stimulant Pastes in Pinus pinaster Ait. Eur. J. For. Res. 2023, 142, 1281–1292. [Google Scholar] [CrossRef]
- Caglayan, İ.; Dolu, A.; Kabak, Ö.; Rodríguez-García, A.; Demirel, T.; Özkan, U.Y.; Makineci, E.; Yeşil, A.; Ayberk, H. Dynamics of Resin Yield in Pinus brutia: A Quantitative Analysis Using Bark Streak Tapping. Ind. Crops Prod. 2024, 221, 119344. [Google Scholar] [CrossRef]
- Ashton, M.S.; Kelty, M.J. The Practice of Silviculture: Applied Forest Ecology; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Nyland, R.D. Silviculture: Concepts and Applications, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2016; ISBN 978-1478627142. [Google Scholar]
- O’Hara, K.L. What Is Close-to-Nature Silviculture in a Changing World? Forestry 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Sánchez-Salguero, R.; Linares, J.C.; Camarero, J.J.; Madrigal-González, J.; Hevia, A.; Sánchez-Miranda, Á.; Ballesteros-Cánovas, J.A.; Alfaro-Sánchez, R.; García-Cervigón, A.I.; Bigler, C.; et al. Disentangling the Effects of Competition and Climate on Individual Tree Growth: A Retrospective and Dynamic Approach in Scots Pine. For. Ecol. Manag. 2015, 358, 12–25. [Google Scholar] [CrossRef]
- Zas, R.; Quiroga, R.; Touza, R.; Vázquez-González, C.; Sampedro, L.; Lema, M. Resin Tapping Potential of Atlantic Maritime Pine Forests Depends on Tree Age and Timing of Tapping. Ind. Crops Prod. 2020, 157, 112940. [Google Scholar] [CrossRef]
- López-Álvarez, Ó.; Zas, R.; Marey-Perez, M. Resin Tapping: A Review of the Main Factors Modulating Pine Resin Yield. Ind. Crops Prod. 2023, 202, 117105. [Google Scholar] [CrossRef]
- López-Álvarez, Ó.; Franco-Vázquez, L.; Marey-Perez, M. Base-Age Invariant Models for Predicting Individual Tree Accumulated Annual Resin Yield Using Two Tapping Methods in Maritime Pine (Pinus pinaster Ait.) Forests in North-Western Spain. For. Ecol. Manag. 2023, 549, 121501. [Google Scholar] [CrossRef]
- Gómez-García, E.; Martínez Chamorro, E.; García-Méijome, A.; Rozados Lorenzo, M.J. Modelling Resin Production Distributions for Pinus pinaster Ait. Stands in NW Spain. Ind. Crops Prod. 2022, 176, 114316. [Google Scholar] [CrossRef]
- Sebbenn, A.M.; Aguiar, A.V.; Oliveira, E.B.; Iede, E.T.; Shimizu, J.Y.; Ribaski, J.; Tuoto, M.; Caldato, N.; Dedecek, R.A.; Penteado, S.R.C.; et al. Pínus Na Silvicultura Brasileira; Embrapa Florestas: Colombo, Brazil, 2008; ISBN 9788589281263. [Google Scholar]
- Decreto-Lei n.o 181/2015 Regime Jurídico Da Resinagem e Da Circulação Da Resina de Pinheiro No Território Do Continente; 2015. Available online: https://diariodarepublica.pt/dr/detalhe/decreto-lei/181-2015-70133815 (accessed on 6 March 2025).
- Xunta da Galicia Decreto 73/2020, de 24 de Abril. Regulan Los Aprovechamientos Madereros y Leñosos, de Corcho, de Pastos, Micológicos y de Resinas En Montes o Terrenos Forestales de Gestión Privada En La Comunidad Autónoma de Galicia. Diário Of. Da Galicia No 97. 2020, pp. 20716–20807. Available online: https://www.xunta.gal/dog/Publicados/2020/20200520/AnuncioG0426-080520-0001_es.html (accessed on 6 March 2025).
- Elvira-Recuenco, M.; Iturritxa, E.; Majada, J.; Alia, R.; Raposo, R. Adaptive Potential of Maritime Pine (Pinus pinaster) Populations to the Emerging Pitch Canker Pathogen, Fusarium Circinatum. PLoS ONE 2014, 9, e114971. [Google Scholar] [CrossRef]
- Hood, S.; Sala, A. Ponderosa Pine Resin Defenses and Growth: Metrics Matter. Tree Physiol. 2015, 35, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Slack, A.W.; Kane, J.M.; Knapp, E.E. Growth and Defense Inform Large Sugar Pine (Pinus lambertiana) Mortality in a Fire-excluded Forest of the Central Sierra Nevada. Trees Struct. Funct. 2021, 35, 1053–1063. [Google Scholar] [CrossRef]
- Almeida, P.A.C. Produção de Resina No Ensaio Clonal de Pinheiro-Bravo Na Mata Nacional de Escaroupim. Master’s Thesis, Universidade de Lisboa, Lisbon, Portugal, 2023. [Google Scholar]
- Caglayan, I. Seasonal Resin Production in Pinus pinaster Ait. Plantations: Dendrometric and Meteorological. Bioresources 2025, 20, 548. [Google Scholar] [CrossRef]
- Ribas, C.; Gurgel Garrido, L.M.A.; Garrido, M.A.O.; Assini, J.L.; Boas, O.V. Produção de Resina e Influência No Crescimento Dendrométrico Em Árvores de Pinus elliottii Eng. Var. Elliottii, de Diferentes Diametros; Boletim Técnico do Instituto Florestal: São Paulo, Brazil, 1984; Volume 38, pp. 155–163.
- Gurgel Filho, O.A.; Gurgel Garrido, L.M.A.G. Influência Do Diâmetro e Da Copa Na Produção de Resina. Bras. Florest. 1977, 8, 27–32. [Google Scholar]
- Sood, Y.P.K.; Bharti, M.; Gupta, R.K. Correlation and Regression Studies on Estimation of Resin Yield in Pinus roxburghii. Indian. J. Pure Appl. Biosci. 2019, 7, 63–66. [Google Scholar] [CrossRef]
- Wainhouse, D.; Staley, J.; Johnston, J.; Boswell, R. The Effect of Environmentally Induced Changes in the Bark of Young Conifers on Feeding Behaviour and Reproductive Development of Adult Hylobius Abietis (Coleoptera: Curculionidae). Bull. Entomol. Res. 2005, 95, 151–159. [Google Scholar] [CrossRef]
- Erbilgin, N.; Colgan, L.J. Differential Effects of Plant Ontogeny and Damage Type on Phloem and Foliage Monoterpenes in Jack Pine (Pinus banksiana). Tree Physiol. 2012, 32, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Celedon, J.M.; Bohlmann, J. Oleoresin Defenses in Conifers: Chemical Diversity, Terpene Synthases and Limitations of Oleoresin Defense under Climate Change. New Phytol. 2019, 224, 1444–1463. [Google Scholar] [CrossRef]
- Luchi, N.; Ma, R.; Capretti, P.; Bonello, P. Systemic Induction of Traumatic Resin Ducts and Resin Flow in Austrian Pine by Wounding and Inoculation with Sphaeropsis Sapinea and Diplodia Scrobiculata. Planta 2005, 221, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Zeneli, G.; Krokene, P.; Christiansen, E.; Krekling, T.; Gershenzon, J. Methyl Jasmonate Treatment of Mature Norway Spruce (Picea Abies) Trees Increases the Accumulation of Terpenoid Resin Components and Protects against Infection by Ceratocystis Polonica, a Bark Beetle-Associated Fungus. Tree Physiol. 2006, 26, 977–988. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Z.; Wei, Y.; Shen, D.; Feng, Z.; Hong, S. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb) by Transcriptomic Analysis. PLoS ONE 2015, 10, e0132624. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.C.; Kim, K.J.; Kim, D.S.; Han, J.S. Seasonal Variations of Monoterpene Emissions from Coniferous Trees of Different Ages in Korea. Chemosphere 2005, 59, 1685–1696. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.C.; Gspaltl, M.; Forrester, D.I. Light Absorption and Use Efficiency in Forests: Why Patterns Differ for Trees and Stands. For. Ecol. Manag. 2013, 288, 5–13. [Google Scholar] [CrossRef]
- Pretzsch, H. Canopy Space Filling and Tree Crown Morphology in Mixed-Species Stands Compared with Monocultures. For. Ecol. Manag. 2014, 327, 251–264. [Google Scholar] [CrossRef]
- Seidel, D.; Schall, P.; Gille, M.; Ammer, C. Relationship between Tree Growth and Physical Dimensions of Fagus Sylvatica Crowns Assessed from Terrestrial Laser Scanning. IForest 2015, 8, 735–742. [Google Scholar] [CrossRef]
- Hardiman, B.S.; Gough, C.M.; Halperin, A.; Hofmeister, K.L.; Nave, L.E.; Bohrer, G.; Curtis, P.S. Maintaining High Rates of Carbon Storage in Old Forests: A Mechanism Linking Canopy Structure to Forest Function. For. Ecol. Manag. 2013, 298, 111–119. [Google Scholar] [CrossRef]
- Strigul, N.; Pristinski, D.; Purves, D.; Dushoff, J.; Pacala, S. Scaling from Trees to Forests: Tractable Macroscopic Equations for Forest Dynamics. Ecol. Monogr. 2008, 78, 523–545. [Google Scholar] [CrossRef]
- Shenkin, A.; Bentley, L.P.; Oliveras, I.; Salinas, N.; Adu-Bredu, S.; Marimon-Junior, B.H.; Marimon, B.S.; Peprah, T.; Choque, E.L.; Trujillo Rodriguez, L.; et al. The Influence of Ecosystem and Phylogeny on Tropical Tree Crown Size and Shape. Front. For. Glob. Change 2020, 3, 501757. [Google Scholar] [CrossRef]
- Albaugh, T.J.; Maier, C.A.; Campoe, O.C.; Yáñez, M.A.; Carbaugh, E.D.; Carter, D.R.; Cook, R.L.; Rubilar, R.A.; Fox, T.R. Crown Architecture, Crown Leaf Area Distribution, and Individual Tree Growth Efficiency Vary across Site, Genetic Entry, and Planting Density. Trees Struct. Funct. 2020, 34, 73–88. [Google Scholar] [CrossRef]
- Uria-Diez, J.; Pommerening, A. Crown Plasticity in Scots Pine (Pinus sylvestris L.) as a Strategy of Adaptation to Competition and Environmental Factors. Ecol. Modell. 2017, 356, 117–126. [Google Scholar] [CrossRef]
- Begon, M.; Townsend, C.R.; Harper, J.L. Ecology: From Individuals to Ecosystems, 4th ed.; Blackwell Publishing: Oxford, UK, 2006; ISBN 978-1405111171. [Google Scholar]
- Lambers, H.; Chapin, F.S., III; Pons, T.L. Plant Physiological Ecology, 2nd ed.; Springer Nature: Berlin/Heidelberg, Germany, 2008; ISBN 978-0-387-78340-6. [Google Scholar]
- Clements, R.W. Manual Modern Gum Naval Stores Methods; 1974. Available online: https://research.fs.usda.gov/treesearch/928 (accessed on 6 March 2025).
- Baena, E.S. Análise Da Viabilidade Econômica Da Resinagem Em Pinus elliottíi Engelm. Var. Elliottii Nas Regiões Sul Do Estado Do Paraná e Sudoeste Do Estado de São Paulo. Tese de Doutorado; Curso de Pós-Graduação em Engenharia Florestal, Universidade Federal do Paraná: Curitiba, Brazil, 1994; 94p. [Google Scholar]
- Schopmeyer, C.S.; Larson, P.R. Effects of Diameter, Crown Ratio, and Growth Rate on Gum Yields of Slash and Longleaf Pine. J. For. 1955, 53, 822–826. [Google Scholar]
- Williams, L.J.; Butler, E.E.; Cavender-Bares, J.; Stefanski, A.; Rice, K.E.; Messier, C.; Paquette, A.; Reich, P.B. Enhanced Light Interception and Light Use Efficiency Explain Overyielding in Young Tree Communities. Ecol. Lett. 2021, 24, 996–1006. [Google Scholar] [CrossRef]
- Phillips, M.; Croteau, R. Resin-Based Defenses in Conifers. Trends Plant Sci. 1999, 4, 184–190. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Q.; Zhou, Z.; Feng, Z. Difference of Photosynthetic Characteristics in Pinus massoniana Clones with Different Resin Yield. J. Northeast. For. Univ. 2015, 43, 36–41. [Google Scholar]
- Gaylord, M.L.; Kolb, T.E.; Wallin, K.F.; Wagner, M.R. Seasonal Dynamics of Tree Growth, Physiology, and Resin Defenses in a Northern Arizona Ponderosa Pine Forest. Can. J. For. Res. 2007, 37, 1173–1183. [Google Scholar] [CrossRef]
- He, L.; Zhang, X.; Wang, X.; Ullah, H.; Liu, Y.; Duan, J. Tree Crown Affects Biomass Allocation and Its Response to Site Conditions and the Density of Platycladus Orientalis Linnaeus Plantation. Forests 2023, 14, 2433. [Google Scholar] [CrossRef]
- Tong, X.; Mu, Y.; Zhang, J.; Meng, P.; Li, J. Water Stress Controls on Carbon Flux and Water Use Efficiency in a Warm-Temperate Mixed Plantation. J. Hydrol. 2019, 571, 669–678. [Google Scholar] [CrossRef]
- Munjonji, L.; Ayisi, K.K.; Vandewalle, B.; Dhau, I.; Boeckx, P.; Haesaert, G. YIELD PERFORMANCE, CARBON ASSIMILATION and SPECTRAL RESPONSE of TRITICALE to WATER STRESS. Exp. Agric. 2017, 53, 100–117. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, X.; Guan, H.; Meng, Y.; Ruan, J.; Wang, Z. Effect of Thinning on the Spatial Structure of a Larix Gmelinii Rupr. Secondary Forest in the Greater Khingan Mountains. Forests 2018, 9, 720. [Google Scholar] [CrossRef]
- Santos, V.A.H.F.; Modolo, G.S.; Ferreira, M.J. How Do Silvicultural Treatments Alter the Microclimate in a Central Amazon Secondary Forest? A Focus on Light Changes. J. Environ. Manag. 2020, 254, 109816. [Google Scholar] [CrossRef] [PubMed]
- Mohotti, A.J.; Lawlor, D.W. Diurnal Variation of Photosynthesis and Photoinhibition in Tea: Effects of Irradiance and Nitrogen Supply during Growth in the Field. J. Exp. Bot. 2002, 53, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, A.; Martín, J.A.; López, R.; Mutke, S.; Pinillos, F.; Gil, L. Influence of Climate Variables on Resin Yield and Secretory Structures in Tapped Pinus Pinaster Ait. in Central Spain. Agric. For. Meteorol. 2015, 202, 83–93. [Google Scholar] [CrossRef]
- Sharma, K.R.; Kumar, R.; Dutt, B.; Attri, V. Effect of Morphological and Environmental Factors on Oleoresin Yield in Pinus Roxburghii Sargent. Bull. Environ. Pharmacol. Life Sci. 2018, 7, 75–78. [Google Scholar]
- Gurgel, O.A.; Faria, A.J. Fatores Que Influem Na Resinagem de Pinus. Circ. Técnica Inst. Pesqui. Estud. Florestais 1978, 37, 1–12. [Google Scholar]
- Rodríguez-García, A.; Martín, J.A.; López, R.; Sanz, A.; Gil, L. Effect of Four Tapping Methods on Anatomical Traits and Resin Yield in Maritime Pine (Pinus pinaster Ait.). Ind. Crops Prod. 2016, 86, 143–154. [Google Scholar] [CrossRef]
- Neis, F.A.; de Costa, F.; Füller, T.N.; de Lima, J.C.; da Silva Rodrigues-Corrêa, K.C.; Fett, J.P.; Fett-Neto, A.G. Biomass Yield of Resin in Adult Pinus elliottii Engelm. Trees Is Differentially Regulated by Environmental Factors and Biochemical Effectors. Ind. Crops Prod. 2018, 118, 20–25. [Google Scholar] [CrossRef]
- Will, R.E.; Barron, G.A.; Colter Burkes, E.; Shiver, B.; Teskey, R.O. Relationship between Intercepted Radiation, Net Photosynthesis, Respiration, and Rate of Stem Volume Growth of Pinus Taeda and Pinus Elliottii Stands of Different Densities. For. Ecol. Manag. 2001, 154, 155–163. [Google Scholar] [CrossRef]
- Rissanen, K.; Hölttä, T.; Vanhatalo, A.; Aalto, J.; Nikinmaa, E.; Rita, H.; Bäck, J. Diurnal Patterns in Scots Pine Stem Oleoresin Pressure in a Boreal Forest. Plant Cell Environ. 2016, 39, 527–538. [Google Scholar] [CrossRef]
- Gajšek, D.; Brecelj, M.; Jarni, K.; Brus, R. Resin Yield of Pinus nigra and Pinus sylvestris in the Slovenian Karst. Acta Silvae Ligni 2018, 115, 21–28. [Google Scholar] [CrossRef]
- Gurgel Garrido, L.M.A.; Garrido, M.A.O.; Silva, H.M.; Carballal, M.R. Estudo Matemático de Alguns Componentes Da Produção Diária de Resina; Boletim Técnico do Instituto Florestal: São Paulo, Brazil, 1984; Volume 38. [Google Scholar]
- Brito, J.O.; Barrichelo, L.E.G.; Gutierrez, L.E.; Trevisan, J.F. Resinagem e Qualidade de Resinas de Pinheiros Topicais: Comparações Entre Espécies e Época de Resinagem. Circ. Técnica IPEF Piracicaba 1978, 35, 1–20. [Google Scholar]
- García-Méijome, A.; Rozados Lorenzo, M.J.; Fernández Blanco, E.; Martínez Chamorro, E.; Gómez-García, E. Resin-Tapping Production in Pinus pinaster Ait. Stands in Galicia (NW Spain): Effects of Location, Number of Faces, Wound Width and Production Year. Forests 2023, 14, 128. [Google Scholar] [CrossRef]
- Touza, R.; Lema, M.; Zas, R. Short Communication: Timing of Resin-Tapping Operations in Maritime Pine Forests in Northern Spain. For. Syst. 2021, 30, eSC05. [Google Scholar] [CrossRef]
- Bhattarai, B.; Gaire, N.P.; Maraseni, T.; Devkota, B.P.; Bhattarai, B.; Tripathi, S.; Aryal, K.R.; Adhikari, H. Impact of Resin Tapping on the Radial Growth and Climate Sensitivity of Naturally- Regenerated Pinus roxburghii (Chir Pine) in Western Nepal. Trees For. People 2025, 19, 100795. [Google Scholar] [CrossRef]
- Allen, M.G.; Burkhart, H.E. Growth-Density Relationships in Loblolly Pine Plantations. For. Sci. 2019, 65, 250–264. [Google Scholar] [CrossRef]
- Moreau, G.; Chagnon, C.; Achim, A.; Caspersen, J.; D’Orangeville, L.; Sánchez-Pinillos, M.; Thiffault, N. Opportunities and Limitations of Thinning to Increase Resistance and Resilience of Trees and Forests to Global Change. For. An. Int. J. For. Res. 2022, 95, 595–615. [Google Scholar] [CrossRef]
- Savill, P.; Evans, J.; Auclair, D.; Falck, J. Plantation Silviculture in Europe; Oxford University Press: Oxford, UK, 1997; ISBN 9780198549086. [Google Scholar]
- Smith, D.M.; Larson, B.C.; Kelty, M.J.; Ashton, P.M. The Practice of Silviculture—Applied Forest Ecology; Forest Science: Seattle, WA, USA, 1997; Volume 43. [Google Scholar]
- Andrews, C.M.; D’Amato, A.W.; Fraver, S.; Palik, B.; Battaglia, M.A.; Bradford, J.B. Low Stand Density Moderates Growth Declines during Hot Droughts in Semi-Arid Forests. J. Appl. Ecol. 2020, 57, 1089–1102. [Google Scholar] [CrossRef]
- Zhang, S.; Burkhart, H.E.; Amateis, R.L. The Influence of Thinning on Tree Height and Diameter Relationships in Loblolly Pine Plantations. South. J. Appl. For. 1997, 21, 199–205. [Google Scholar] [CrossRef]
- Pretzsch, H. Density and Growth of Forest Stands Revisited. Effect of the Temporal Scale of Observation, Site Quality, and Thinning. For. Ecol. Manag. 2020, 460, 117879. [Google Scholar] [CrossRef]
- Schaedel, M.S.; Larson, A.J.; Affleck, D.L.R.; Belote, R.T.; Goodburn, J.M.; Page-Dumroese, D.S. Early Forest Thinning Changes Aboveground Carbon Distribution among Pools, but Not Total Amount. For. Ecol. Manag. 2017, 389, 187–198. [Google Scholar] [CrossRef]
- Erdozain, M.; Bonet, J.A.; Martínez de Aragón, J.; de-Miguel, S. Forest Thinning and Climate Interactions Driving Early-Stage Regeneration Dynamics of Maritime Pine in Mediterranean Areas. For. Ecol. Manag. 2023, 539. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Sánchez-Salguero, R.; Rodriguez, C.; Duque Lazo, J.; Moreno-Rojas, J.M.; Palacios-Rodriguez, G.; Camarero, J.J. Is Thinning an Alternative When Trees Could Die in Response to Drought? The Case of Planted Pinus nigra and P. Sylvestris Stands in Southern Spain. For. Ecol. Manag. 2019, 433, 313–324. [Google Scholar] [CrossRef]
- Low, K.E.; Collins, B.M.; Bernal, A.; Sanders, J.E.; Pastor, D.; Manley, P.; White, A.M.; Stephens, S.L. Longer-Term Impacts of Fuel Reduction Treatments on Forest Structure, Fuels, and Drought Resistance in the Lake Tahoe Basin. For. Ecol. Manag. 2021, 479, 118609. [Google Scholar] [CrossRef]
- Oliveira, C.A. Manual de Silvicultura Do Pinheiro Bravo; Centro PINUS—Associação para a Valorização da Floresta de Pinho: Viana do Castelo, Portugal, 1999; Volume 20. [Google Scholar]
- Gonçalves, A.C. Thinning: An Overview. In Silviculture; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Gonçalves, A.C. Models of Silviculture for Portuguese Species: Old and New Guidelines. Silva Lusit. 2022, 30, 17–40. [Google Scholar] [CrossRef]
- Fonseca, T.; Lousada, J. Management of Maritime Pine: Energetic Potential with Alternative Silvicultural Guidelines. In Forest Biomass—From Trees to Energy; IntechOpen: London, UK, 2021. [Google Scholar]
- Kerr, G.; Haufe, J. Thinning Practice A Silvicultural Guide A Silvicultural Guide; 2011. Available online: https://cdn.forestresearch.gov.uk/2011/01/silviculture_thinning_guide_v1_jan2011.pdf (accessed on 2 April 2025).
- Hood, S.M.; Baker, S.; Sala, A. Fortifying the Forest: Thinning and Burning Increase Resistance to a Bark Beetle Outbreak and Promote Forest Resilience. Ecol. Appl. 2016, 26, 1984–2000. [Google Scholar] [CrossRef]
- Williams, R.; Nauman, C.; Zhu, J. The Effects of Resin Tapping on the Radial Growth of Masson Pine Trees in South China-A Case Study. Agric. Res. Technol. 2017, 8. [Google Scholar] [CrossRef]
- Miina, J.; Kurttila, M.; Calama, R.; de-Miguel, S.; Pukkala, T. Modelling Non-Timber Forest Products for Forest Management Planning in Europe. Curr. For. Rep. 2020, 6, 309–322. [Google Scholar] [CrossRef]
- Sandim, A.; Araújo, D.; Fonseca, T.; Silva, M.E. Influence of Forest Management on the Sustainability of Community Areas in Northern Inland Portugal: A Simulated Case Study Assessment. Sustainability 2024, 16, 8006. [Google Scholar] [CrossRef]
- De Lima, B.A.; Nicoletti, M.F.; Stepka, T.F.; Da Silva, M.T.S.; Soares, P.R.C. Impactos Dendrométricos e Econômicos de Um Povoamento de Pinus elliottii Submetidos a Produção de Resina. Adv. For. Sci. 2021, 8, 1475–1487. [Google Scholar] [CrossRef]
- Soares, P.; Ribeiro, C.; Ribeiro, M.; Silva, M.E. Resina Natural Em Portugal- Desafios Estratégicos. Rev. Ciências Agrárias 2024, 47, 479–490. [Google Scholar] [CrossRef]
- Cesefor Análisis Del Sistema Territorial de Las Comarcas Españolas Con Alto Potencial Resinero Del Espacio SUDOE. Inventario Del Sistema Territorial de Las Comarcas Españolas Con Alto Potencial de Resinero Del Espacio SUDOE; 2019. Available online: https://www.sust-forest.eu/sites/default/files/sustforest_plus_estrategia_para_el_aprovechamiento_forestal_sostenible.pdf (accessed on 12 May 2025).
- Martínez, E.; Riesco, G.; Méijome, A.G.; Gómez, E.; Rodríguez, R. Propuesta de Modelo Selvícola Combinando Producción de Madera y Resina Para Pinares Atlánticos de Pinus Pinaster. In Proceedings of the Comunicación XII Congreso de Economía Agraria (AEEA 2019), Lugo, Spain, 4–6 September 2019; pp. 709–712. [Google Scholar]
- Dufour-Kowalski, S.; Courbaud, B.; Dreyfus, P.; Meredieu, C.; De Coligny, F. Capsis: An Open Software Framework and Community for Forest Growth Modelling. Ann. For. Sci. 2012, 69, 221–233. [Google Scholar] [CrossRef]
- Shepherd, K.R. Plantation Silviculture; Martinus Nijhoff: Den Haag, Holanda, 1986; ISBN 978-9024733798. [Google Scholar]
- Montagu, K.D.; Kearney, D.E.; Smith, R.G.B. The Biology and Silviculture of Pruning Planted Eucalypts for Clear Wood Production—A Review. For. Ecol. Manag. 2003, 179, 1–13. [Google Scholar] [CrossRef]
- Neilsen, W.A.; Pinkard, E.A. Effects of Green Pruning on Growth of Pinus radiata. Can. J. For. Res. 2003, 33, 2067–2073. [Google Scholar] [CrossRef]
- Pinkard, E.A.; Mohammed, C.; Beadle, C.L.; Hall, M.F.; Worledge, D.; Mollon, A. Growth Responses, Physiology and Decay Associated with Pruning Plantation-Grown Eucalyptus Globulus Labill. and E. Nitens (Deane and Maiden) Maiden. For. Ecol. Manag. 2004, 200, 263–277. [Google Scholar] [CrossRef]
- Forrester, D.I.; Medhurst, J.L.; Wood, M.; Beadle, C.L.; Valencia, J.C. Growth and Physiological Responses to Silviculture for Producing Solid-Wood Products from Eucalyptus Plantations: An Australian Perspective. For. Ecol. Manag. 2010, 259, 1819–1835. [Google Scholar] [CrossRef]
- Gaylord, M.L.; Kolb, T.E.; Pockman, W.T.; Plaut, J.A.; Yepez, E.A.; Macalady, A.K.; Pangle, R.E.; Mcdowell, N.G. Drought Predisposes Piñon-Juniper Woodlands to Insect Attacks and Mortality. New Phytol. 2013, 198, 567–578. [Google Scholar] [CrossRef]
- Kolb, T.; Keefover-Ring, K.; Burr, S.J.; Hofstetter, R.; Gaylord, M.; Raffa, K.F. Drought-Mediated Changes in Tree Physiological Processes Weaken Tree Defenses to Bark Beetle Attack. J. Chem. Ecol. 2019, 45, 888–900. [Google Scholar] [CrossRef]
- Rissanen, K.; Hölttä, T.; Bäck, J.; Rigling, A.; Wermelinger, B.; Gessler, A. Drought Effects on Carbon Allocation to Resin Defences and on Resin Dynamics in Old-Grown Scots Pine. Environ. Exp. Bot. 2021, 185, 104410. [Google Scholar] [CrossRef]
- Forrester, D.I.; Collopy, J.J.; Beadle, C.L.; Baker, T.G. Effect of Thinning, Pruning and Nitrogen Fertiliser Application on Light Interception and Light-Use Efficiency in a Young Eucalyptus Nitens Plantation. For. Ecol. Manag. 2013, 288, 21–30. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Z.; Fan, H.; Liu, Y. Genetic Variation and Correlation among Resin Yield, Growth, and Morphologic Traits of Pinus massoniana. Silvae Genet. 2013, 62, 38–44. [Google Scholar] [CrossRef]
- Hevia, A.; Álvarez-González, J.G.; Majada, J. Comparison of Pruning Effects on Tree Growth, Productivity and Dominance of Two Major Timber Conifer Species. For. Ecol. Manag. 2016, 374, 82–92. [Google Scholar] [CrossRef]
- Erkan, N.; Uzun, E.; Aydin, A.C.; Bas, M.N. Effect of Pruning on Diameter Growth in Pinus Brutia Ten. Plantations in Turkey. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2016, 37, 365–373. [Google Scholar]
- Missanjo, E.; Kamanga-Thole, G. Effect of First Thinning and Pruning on the Individual Growth of Pinus Patula Tree Species. J. Res. 2015, 26, 827–831. [Google Scholar] [CrossRef]
- Zhao, X.; Mang, S.; Quan, W.; Ding, G. Growth Response of Trees with Different Growth Statuses to Pruning on a Pinus massoniana Lamb. Plantation. Forests 2023, 14, 668. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Sánchez-González, M.; Álvarez-González, J.G.; Hevia, A.; Majada, J.P.; Cañellas, I.; Gea-Izquierdo, G. Response to the Interaction of Thinning and Pruning of Pine Species in Mediterranean Mountains. Eur. J. For. Res. 2014, 133, 833–843. [Google Scholar] [CrossRef]
- Clifton, N.C. Resin Pockets in Canterbury Radiata Pine. New Zealand J. For. 1969, 14, 38–49. [Google Scholar]
- Cown, D.J.; Donaldson, L.A.; Downes, G.M. A Review of Resin Features in Radiata Pine. New Zealand J. For. Sci. 2011, 41, 41–60. [Google Scholar]
- DeRose, R.J.; Bekker, M.F.; Long, J.N. Traumatic Resin Ducts as Indicators of Bark Beetle Outbreaks. Can. J. For. Res. 2017, 47, 1168–1174. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of Prescribed Fires on Soil Properties: A Review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar] [CrossRef]
- Australasian Fire and Emergency Service Authorities Council Simple Prescribed Burns. PUAFIR413 Develop Simple Prescribed Burn Plans. PUAFIR412 Conduct Simple Prescribed Burns. Learn. Resource. East. Melb. 2016. Available online: https://training.gov.au/TrainingComponentFiles/PUA12/PUAFIR413_R1.pdf (accessed on 1 September 2025).
- Williams, R.J.; Hallgren, S.W.; Wilson, G.W.T. Frequency of Prescribed Burning in an Upland Oak Forest Determines Soil and Litter Properties and Alters the Soil Microbial Community. For. Ecol. Manag. 2012, 265, 241–247. [Google Scholar] [CrossRef]
- Sharpe, M.; Hwang, H.; Schroeder, D.; Ryu, S.R.; Lieffers, V.J. Prescribed Fire as a Tool to Regenerate Live and Dead Serotinous Jack Pine (Pinus banksiana) Stands. Int. J. Wildland Fire 2017, 26, 478–484. [Google Scholar] [CrossRef]
- Retana, J.; Arnan, X.; Arianoutsou, M.; Barbati, A.; Kazanis, D.; Rodrigo, A. Post-Fire Management of Non-Serotinous Pine Forests; Springer: Dordrecht, The Netherlands, 2012; pp. 151–170. [Google Scholar]
- San Emeterio, L.; Múgica, L.; Ugarte, M.D.; Goicoa, T.; Canals, R.M. Sustainability of Traditional Pastoral Fires in Highlands under Global Change: Effects on Soil Function and Nutrient Cycling. Agric. Ecosyst. Environ. 2016, 235, 155–163. [Google Scholar] [CrossRef]
- Bennett, L.T.; Aponte, C.; Baker, T.G.; Tolhurst, K.G. Evaluating Long-Term Effects of Prescribed Fire Regimes on Carbon Stocks in a Temperate Eucalypt Forest. For. Ecol. Manag. 2014, 328, 219–228. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Stanton, A.; Scheller, R.M.; Dilts, T.E.; Weisberg, P.J.; Skinner, C.; Yang, J. Effectiveness of Fuel Treatments for Mitigating Wildfire Risk and Sequestering Forest Carbon: A Case Study in the Lake Tahoe Basin. For. Ecol. Manag. 2014, 323, 114–125. [Google Scholar] [CrossRef]
- Botelho, H.S.; Fernandes, P.M.; Ruas, L.L.S. Modeling Pinus pinaster Trees Damage Induced by Up-Slope Wind-Driven Prescribed Fires in Northern Portugal. In Proceedings of the 13th Conference on Fire and Forest Meteorology, Luso, Portugal, 16–20 November 1998; pp. 473–476. [Google Scholar] [CrossRef]
- Jiménez, E.; Vega, J.A.; Fernández, C. Response of Pinus pinaster Ait. Trees to Controlled Localised Application of Heat to Stem and Crown. Trees Struct. Funct. 2017, 31, 1203–1213. [Google Scholar] [CrossRef]
- Hood, S.; Sala, A.; Heyerdahl, E.K.; Boutin, M.; Raffa, K.F. Low-Severity Fire Increases Tree Defense against Bark Beetle Attacks. Ecology 2015, 96, 1846–1855. [Google Scholar] [CrossRef]
- Prasetya, C.D.; Syaufina, L.; Santosa, G. The Effect of Various Types of Forest Fires on Pine Resin Productivity in Gunung Walat University Forest, Sukabumi, Indonesia. Biodiversitas 2017, 18, 476–482. [Google Scholar] [CrossRef]
- Vazquez-Gonzalez, C.; Zas, R.; Erbilgin, N.; Ferrenberg, S.; Rozas, V.; Sampedro, L. Resin Ducts as Resistance Traits in Conifers: Linking Dendrochronology and Resin-Based Defences. Tree Physiol. 2020, 40, 1313–1326. [Google Scholar] [CrossRef]
- Davis, T.S.; Jarvis, K.; Parise, K.; Hofstetter, R.W. Oleoresin Exudation Quantity Increases and Viscosity Declines Following a Fire Event in a Ponderosa Pine Ecosystem. J. Ariz.-Nev. Acad. Sci. 2011, 43, 6–11. [Google Scholar] [CrossRef]
- Rodríguez-García, A.; Madrigal, J.; González-Sancho, D.; Gil, L.; Guijarro, M.; Hernando, C. Can Prescribed Burning Improve Resin Yield in a Tapped Pinus pinaster Stand? Ind. Crops Prod. 2018, 124, 91–98. [Google Scholar] [CrossRef]
- Perrakis, D.D.B.; Agee, J.K.; Eglitis, A. Effects of Prescribed Burning on Mortality and Resin Defenses in Old Growth Ponderosa Pine (Crater Lake, Oregon): Four Years of Post-Fire Monitoring. Nat. Areas J. 2011, 31, 14–25. [Google Scholar] [CrossRef]
- Madrigal, J.; Carrillo-García, C.; Rodríguez-García, A.; González-Sancho, D.; Guijarro, M.; Espinosa, J.; Hernando, C.; García-Feced, C. Prescribed Underburning before Resin Tapping Does Not Affect Resin Yield in Pinus pinaster Ait. Stands. For. Syst. 2025, 34, 20952. [Google Scholar] [CrossRef]
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |
---|---|---|---|---|---|
Age (years) | 16 | 16 | 16 | 16 | 16 |
Number of thinnings | 0 | 1 | 2 | 3 | 4 |
1° Thinning (years) | - | 16 | 16 | 16 | 16 |
2° Thinning (years) | - | - | 31 | 26 | 24 |
3° Thinning (years) | - | - | - | 36 | 32 |
4° Thinning (years) | - | - | - | - | 40 |
Characteristics | Area 1 | Area 2 | ||||
---|---|---|---|---|---|---|
Scenario A | Scenario B | Scenario A | Scenario B | Scenario C | Scenario D | |
Brush clearing (year) | 4–5 | 4–5 | 4 | 4 | 4 | 4 |
Thinning (year) | 10 | 10 | 4 | 4 | 4 | 4 |
trees/hectare | 800 | 800 | 1180 | 1180 | 1180 | 1180 |
Management | Untapped | tapped | Untapped | tapped | tapped | tapped |
Resin yield (kg/tree) | - | 3.0 | - | 3.0 | 2.5 | 2.0 |
Age (Years) | Operation | Initial Density (Trees/ha) | Target Density (Trees/ha) |
---|---|---|---|
0–15 | Thinning + pruning | variable (>1000) | < 800 |
15–25 | Thinning + pruning | < 800 | 450–500 |
25–35 | Low thinning | 450–500 | 150–200 |
60–70 | Regeneration cut | 150–200 | 70–100 |
70–90 | Regeneration cut | 70–100 | 20–50 |
90–100 | Final harvest | 20–50 | 1–3 |
Operation | Site Index 20 | Site Index 14 | ||||
---|---|---|---|---|---|---|
Age (Years) | Density (Trees/ha) | Production | Age (Years) | Density (Trees/ha) | Production | |
First thinning | 15 | 350 | 32 m3/ha | 20 | 350 | 30 m3/ha |
Resin tapping before second thinning | 22–25 | 350 | 2433 kg/ha | 27–30 | 350 | 2268 kg/ha |
Second thinning | 25 | 350 | 166 m3/ha | 30 | 350 | 121 m3/ha |
Resin tapping before final harvest | 37–40 | 400 | 4971 kg/ha | 42–45 | 400 | 4578 kg/ha |
Final harvest | 40 | 400 | 534 m3 /ha | 45 | 400 | 345 m3 /ha |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, D.; Sandim, A.; Louzada, J.L.; Silva, M.E. Resin Production in Pinus: A Review of the Relevant Influencing Factors and Silvicultural Practices. Forests 2025, 16, 1470. https://doi.org/10.3390/f16091470
Lopes D, Sandim A, Louzada JL, Silva ME. Resin Production in Pinus: A Review of the Relevant Influencing Factors and Silvicultural Practices. Forests. 2025; 16(9):1470. https://doi.org/10.3390/f16091470
Chicago/Turabian StyleLopes, Dalila, André Sandim, José Luís Louzada, and Maria Emília Silva. 2025. "Resin Production in Pinus: A Review of the Relevant Influencing Factors and Silvicultural Practices" Forests 16, no. 9: 1470. https://doi.org/10.3390/f16091470
APA StyleLopes, D., Sandim, A., Louzada, J. L., & Silva, M. E. (2025). Resin Production in Pinus: A Review of the Relevant Influencing Factors and Silvicultural Practices. Forests, 16(9), 1470. https://doi.org/10.3390/f16091470