Community Structure and Maintenance Mechanisms of Ectomycorrhizal Fungi of Four Coniferous Species in Eastern Inner Mongolia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Collection
2.2. Soil Properties Analysis
2.3. DNA Extraction, PCR, and MiSeq Sequencing
2.4. Bioinformatic Analysis
2.5. Statistical Analysis
3. Results
3.1. Fungal Database Summary
3.2. Diversity of EM Fungi in Four Coniferous Species
3.3. Ecological Process Analysis of EM Fungi in Four Conifer Species
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EM | Ectomycorrhiae |
OTUs | operational taxonomic units |
NCM | Neutral Community Model |
β-NTI | β-Nearest Taxon Index |
MAT | mean annual temperatures |
MAP | mean annual precipitation |
CTAB | cetyltrimethylammonium bromide |
PCR | polymerase chain reaction |
NCBI | National Center for Biotechnology Information |
BLAST | basic local alignment search tool |
PCoA | Principal Coordinate Analysis |
NMDS | Non-Metric Multi-Dimensional Scaling |
PERMANOVA | Permutational Multivariate Analysis of Variance |
βMNTD | β-Mean Nearest Taxon Distance |
MNTD | Mean Nearest Taxon Distance |
BTI | Beta Taxonomic Index |
References
- Anderson, I.C.; Cairney, J.W.G. Ectomycorrhizal fungi: Exploring the mycelial frontier. FEMS Microbiol. Rev. 2007, 31, 388–406. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.N.; Zhang, T.Z.; Zhou, Y.B.; Zou, X.M.; Yin, Y.; Li, H.; Liu, L.Y.; Zhang, S.C. Ectomycorrhizal symbioses increase soil calcium availability and water use efficiency of Quercus acutissima seedlings under drought Stress. Eur. J. For. Res. 2021, 140, 1039–1048. [Google Scholar] [CrossRef]
- Nurrahma, A.H.I.; Harsonowati, W.; Putri, H.H.; Iqbal, R. Current Research Trends in Endophytic Fungi Modulating Plant Adaptation to Climate Change-associated Soil Salinity Stress. J. Soil Sci. Plant Nutr. 2024, 24, 6446–6466. [Google Scholar] [CrossRef]
- Gul, H.; Ali, R.; Rauf, M.; Hamayun, M.; Arif, M.; Khan, S.A.; Parveen, Z.; Alrefaei, A.F.; Lee, I.J. Aspergillus welwitschiae BK Isolate Ameliorates the Physicochemical Characteristics and Mineral Profile of Maize under Salt Stress. Plants 2023, 12, 1703. [Google Scholar] [CrossRef]
- Chai, L.; Huang, M.; Cao, X.; Liu, M.J.; Huang, Y. Potential metal-binding ability of proteins in the extracellular slime of Laccaria bicolor exposed to excessive Cu and Cd. Environ. Sci. Pollut. Res. 2019, 26, 20418–20427. [Google Scholar] [CrossRef]
- Tonelli, M.L.; Figueredo, M.S.; Rodríguez, J.; Fabra, A.; Ibañez, F. Induced systemic resistance -like responses elicited by rhizobia. Plant Soil 2020, 448, 1–14. [Google Scholar] [CrossRef]
- Nasehi, A.; Esfahani, M.N.; Esfahani, A.N.; Mohammadbagheri, L.; Yazdi, M.J.; Mohammadi, M. Endophytic fungi as potential inhibitory agents of downy mildews: A review and future prospects. Ecol. Genet. Genom. 2023, 29, 100211. [Google Scholar] [CrossRef]
- Liu, R.; Tang, M.; Chen, Y. Recent advances in the study of mycorrhizal fungi and stress resistance of Plants. J. Fungal Res. 2017, 15, 70–87. [Google Scholar] [CrossRef]
- Liu, N.N.; Hu, H.F.; Ma, W.H.; Deng, Y.; Wang, Q.G.; Luo, A.; Meng, J.H.; Feng, X.J.; Wang, Z.H. Relative importance of deterministic and stochastic processes on soil microbial community assembly in temperate grasslands. Microorganisms 2021, 9, 1929. [Google Scholar] [CrossRef]
- Van Nuland, M.E.; Qin, C.; Pellitier, P.T.; Zhu, K.; Peay, K.G. Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range Shifts. Proc. Natl. Acad. Sci. USA 2024, 121, e2308811121. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, Y.; Matsuoka, S.; Ishizuka, W.; Sugai, T. Reduction of the α and β diversity of ectomycorrhizal fungal community under snowmelt: Highlights from a common garden trial using Abies sachalinensis with differing host origins and light Condition. Mycorrhiza 2025, 35, 27. [Google Scholar] [CrossRef]
- Yuan, Y.X.; Li, X.Y.; Liu, F.Q.; Tian, X.Y.; Shao, Y.Z.; Yuan, Z.L.; Chen, Y. Differences in Soil Microbial Communities across Soil Types in China’s Temperate Forests. Forests 2024, 15, 1110. [Google Scholar] [CrossRef]
- Gao, C. Community and Diversity Maintenance Mechanisms of Ectomycorrhizal Fungi and Soil Fungi in a Subtropical Forest. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2013. [Google Scholar]
- Xie, L.L.; Palmroth, S.; Yin, C.; Oren, R. Extramatrical mycelial biomass is mediated by fine root mass and ectomycorrhizal fungal community composition across tree Species. Sci. Total Environ. 2024, 950, 175175. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Toju, H. Mycorrhizal and endophytic fungi structure forest Below-ground symbiosis through contrasting but interdependent assembly Processes. Environ. Microbiome 2024, 19, 84. [Google Scholar] [CrossRef]
- Ibáñez, I.; McPherson, M.R.; Upchurch, R.A.; Zak, D.R. Mycorrhizal fungi influence on mature tree growth: Stronger in high-nitrogen soils for an EMF-associated tree and in low-nitrogen soils for two AMF-associated trees. Plant-Environ. Interact. 2025, 6, e70055. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.S.; Guo, M.S.; Gao, G.L.; Ding, G.D.; Zhang, Y.; Ren, Y. Temporal and spatial variations in root-associated fungi associated with Pinus sylvestris var. mongolica in the Semi-arid and Dry sub-humid desertified regions of northern China. Environ. Sci. 2023, 44, 502–511. [Google Scholar] [CrossRef]
- Bao, Q.L.; Zhang, X.; Liu, Y.G.; Wei, J. High-throughput sequencing analysis of community structure of ectomycorrhizal fungi in the rhizosphere of Picea mongolica in different ages. Mol. Plant Breed. 2021, 19, 4987–4993. [Google Scholar] [CrossRef]
- Zhao, M.; Hao, L.F.; Zhang, M.; Teng, H.; Yan, H.X.; Bai, S.L. Community structure characteristics of ectomycorrhizal fungi in different ages of natural Pinus sylvestris var. mongolica in Honghuaerji. Mycosystema 2019, 38, 1420–1429. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, W.; Wei, J. The community of ectomycorrhizal fungi in the soil of the root zone of Larix principis-rupprechtii in Heili River and Helan Mountain Nature Reserve. Mycosystema 2019, 38, 48–63. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhao, Y.L.; Xu, Y.; Ma, J.J.; Balalola, B.J.; Fan, Y.J. Ectomycorrhizal fungal communities associated with Larix gemelinii Rupr. in the Great Khingan Mountains, China. PeerJ 2021, 9, e11230. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, Y.; Shi, N.N.; Zheng, Y.; Chen, L.; Wubet, T.; Bruelheide, H.; Both, S.; Buscot, F.; Ding, Q.; et al. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytol. 2015, 205, 771–785. [Google Scholar] [CrossRef]
- Jing, C.Q.; Wang, L.; Wang, T.Y.; Zhang, J.H.; Dong, W.H.; Zhang, X.H. Amplification of deoxyribonucleic acid (DNA) fragment using two-step polymerase chain reaction (PCR). Afr. J. Biotechnol. 2011, 10, 2838–2843. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Ryberg, M.; Hartmann, M.; Branco, S.; Wang, Z.; Godhe, A.; Wit, P.D.; Sánchez-García, M.; Ebersberger, I.; Sousa, F.D.; et al. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013, 4, 914–919. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Polme, S.; Koljalg, U.; Yorou, N.S.; Wijesundera, R.; Villarreal Ruiz, L.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef]
- Core, R.T. R: A Language and Environment for Statistical Computing [J/OL]. 2019. Available online: http://www.Rproject.org (accessed on 29 January 2024).
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.0-7. 2013. Available online: http://CRAN.R-project.org/package=vegan (accessed on 12 February 2024).
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Wang, L.X.; Han, M.Z.; Li, X.; Yu, B.B.; Wang, H.; Ginawi, A.; Ning, K.; Yan, Y.J. Mechanisms of niche-neutrality balancing can drive the assembling of microbial community. Mol. Ecol. 2021, 30, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.N.; Han, S.J.; Wang, C.G.; Li, M.H. Long-term nitrogen-addition-induced shifts in the ectomycorrhizal fungal community are associated with changes in fine root traits and soil properties in a mixed Pinus koraiensis Forest. Eur. J. Soil Biol. 2022, 112, 103431. [Google Scholar] [CrossRef]
- Tudzynski, B. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 2014, 5, 656. [Google Scholar] [CrossRef]
- Hasselquist, N.J.; Metcalfe, D.B.; Inselsbacher, E.; Stangl, Z.; Oren, R.; Näsholm, T.; Högberg, P. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal Forest. Ecology 2016, 97, 1012–1022. [Google Scholar] [CrossRef]
- Dong, P.; Ren, Y.; Gao, G.L.; Ding, G.D.; Zhang, Y. Stoichiometry of carbon, nitrogen, and phosphorus in the litter and soil of Pinus sylvestris var. mongolica in the Hulunbuir Sandy Land. Arid Zone Res. 2024, 41, 1354–1363. [Google Scholar] [CrossRef]
- Montesinos-Navarro, A.; Valiente-Banuet, A.; Verdú, M. Plant facilitation through mycorrhizal symbiosis is stronger between distantly related plant species. New Phytol. 2019, 224, 928–935. [Google Scholar] [CrossRef]
- Morgado, L.N.; Semenova, T.A.; Welker, J.M.; Walker, M.D.; Smets, E.; Geml, J. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. Glob. Change Biol. 2015, 21, 959–972. [Google Scholar] [CrossRef]
- Orth, R.; Seneviratne, S.I. Analysis of soil moisture memory from observations in Europe. J. Geophys. Res. Atmos. 2012, 117, D15115. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhang, X.; Xu, Y.; Babalola, B.J.; Xiang, S.M.; Zhao, Y.L.; Fan, Y.J. Fungal diversity and community assembly of ectomycorrhizal fungi associated with five pine species in Inner Mongolia, China. Front. Microbiol. 2021, 12, 646821. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Sakai, A.; Hattori, M.; Nara, K. Strong effect of climate on ectomycorrhizal fungal composition: Evidence from range overlap between two mountains. ISME J. 2015, 9, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Murata, M.; Koizumi, T.; Janowski, D.; Helbert; Nara, K. Climate conditions are primary predictors of the regional-scale spatial diversity patterns of ectomycorrhizal fungi. J. Biogeogr. 2023, 51, 1–13. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Sato, S.; Takizawa, M.; Narimatsu, M. Identification of upregulated genes in tricholoma matsutake mycorrhiza. FEMS Microbiol. Lett. 2022, 369, fnac085. [Google Scholar] [CrossRef]
- Wei, Z.N.; Liu, L.; Lei, Y.D.; Xie, S.S.; Ma, J.M.; Tan, Y.B.; Tang, N.W.; Yang, Z.Q.; Ai, C.B. Establishment of Pinus massoniana–Lactarius hatsudake Symbiosis. Forests 2024, 15, 578. [Google Scholar] [CrossRef]
- Li, F.Q.; Zi, H.Y.; Sonne, C.; Li, X.G. Microbiome sustains forest ecosystem functions across hierarchical scales. Eco Environ. Health 2023, 2, 24–31. [Google Scholar] [CrossRef]
- Zhang, T.Z.; Meng, F.J.; Yin, D.C. Promotion of biomass, photosynthesis, and root growth of seedling biomass, photosynthesis, and root growth of Populus davidiana × P. bolleana by two species of ectomycorrhizal fungi. J. For. Res. 2024, 35, 101. [Google Scholar] [CrossRef]
- Markewitz, D.; Devine, S.; Davidson, E.A.; Brando, P.; Nepstad, D.C. Soil moisture depletion under simulated drought in the Amazon: Impacts on deep root uptake. New Phytol. 2010, 187, 592–607. [Google Scholar] [CrossRef]
- Zhang, X.J.; Shi, F.L.; Zhang, S.C.; Hosen, M.; Zhao, C.L. The diversity and taxonomy of thelephoraceae (Basidiomycota) with descriptions of four species from southwestern China. J. Fungi 2024, 10, 775. [Google Scholar] [CrossRef]
- Brzostek, E.R.; Dragoni, D.; Brown, Z.A.; Phillips, R.P. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol. 2015, 206, 1274–1282. [Google Scholar] [CrossRef]
- Buée, M.; Reich, M.; Murat, C.; Morin, E.; Nilsson, R.H.; Uroz, S.; Martin, F. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 2009, 184, 449–456. [Google Scholar] [CrossRef]
- Lang, C.; Seven, J.; Polle, A. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European Forest. Mycorrhiza 2010, 21, 297–308. [Google Scholar] [CrossRef]
- Simard, S.W.; Perry, D.A.; Jones, M.D.; Myrold, D.D. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 1997, 388, 579–582. [Google Scholar] [CrossRef]
- Agerer, R. Exploration types of ectomycorrhizae: A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 2001, 11, 107–114. [Google Scholar] [CrossRef]
- Losos, J.B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 2008, 11, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L. Research on the Fungal Community of Ectomycorrhizae in the Roots of Common Betulaceae Plants in Chinese Forests. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Fan, Y.J.; Yan, W.; Zhao, Y.L. Diversity and community constitution of EM fungi in forest communities of Picea crassifolia in Helan Mountains. J. Northeast For. Univ. 2019, 47, 89–93. [Google Scholar] [CrossRef]
- Luo, Z.H.; Wu, C.L.; Wang, Y.L.; Li, C.L.; Wan, L.; Ding, Q. Effects of host identity and leaf traits on foliar endophytic fungal communities in Lauraceae and Fagaceae plants of tropical montane rainforest of Hainan Island. J. Trop. Ecol. 2024, 15, 52–59. [Google Scholar] [CrossRef]
- Yang, J.; Cha, Y.; Oh, S.Y. Habitat prevails over host sex in influencing mycobiome structure of terrestrial isopod, Armadillidium vulgare. Microbiol. Spectr. 2025, 13, e02172-24. [Google Scholar] [CrossRef]
- Birch, J.D.; Lutz, J.A.; Karst, J. Dancing with Douglas-fir: Determinism dominates fungal community assembly Processes. J. Ecol. 2022, 110, 1857–1870. [Google Scholar] [CrossRef]
- Li, M.; Meng, Z.Y.; Li, J.Y.; Zhang, X.; Wang, Y.L.; Li, X.Y.; Yang, Y.Z.; Li, Y.; Yang, X.J.; Chen, X.L.; et al. Stochastic processes dominate the community assembly of ectomycorrhizal fungi associated with Betula platyphylla in Inner Mongolia, China. PeerJ 2025, 13, e19364. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.L.; Xu, Y.; Babalola, B.J.; Xiang, S.M.; Ma, J.M.; Su, Y.; Fan, Y.J. Stochastic processes dominate community assembly of ectomycorrhizal fungi associated with Picea crassifolia in the Helan Mountains, China. Front. Microbiol. 2023, 13, 1061819. [Google Scholar] [CrossRef] [PubMed]
- Buscardo, E.; Geml, J.; Nagy, L. Seasonal dependence of deterministic versus stochastic processes influencing soil fungal community composition in a lowland Amazonian rain Forest. Commun. Earth Environ. 2024, 5, 334. [Google Scholar] [CrossRef]
- Lin, C.P.; Lin, Y.F.; Liu, Y.C.; Lu, M.Y.J.; Ke, H.M.; Tsai, I.J. Spatiotemporal dynamics reveal high turnover and contrasting assembly processes in fungal communities across contiguous habitats of tropical Forests. Environ. Microbiome 2025, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Montoya, L.; Xu, L.; Madera, M.; Hollingsworth, J.; Purdom, E.; Singan, V.; Vogel, J.; Hutmacher, R.B.; Dahlberg, J.A.; et al. Fungal community assembly in Drought-stressed sorghum shows stochasticity, selection, and universal ecological Dynamics. Nat. Commun. 2020, 11, 34. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Kastman, E.K.; Guasto, J.S.; Wolfe, B.E. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind Microbiomes. Nat. Commun. 2018, 9, 336. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yu, Z.; Li, X.; Wang, L.; Lu, J.; Li, F.; Fan, Y. Community Structure and Maintenance Mechanisms of Ectomycorrhizal Fungi of Four Coniferous Species in Eastern Inner Mongolia. Forests 2025, 16, 1459. https://doi.org/10.3390/f16091459
Li J, Yu Z, Li X, Wang L, Lu J, Li F, Fan Y. Community Structure and Maintenance Mechanisms of Ectomycorrhizal Fungi of Four Coniferous Species in Eastern Inner Mongolia. Forests. 2025; 16(9):1459. https://doi.org/10.3390/f16091459
Chicago/Turabian StyleLi, Jinyan, Zhimin Yu, Xinyu Li, Lu Wang, Jiani Lu, Fahu Li, and Yongjun Fan. 2025. "Community Structure and Maintenance Mechanisms of Ectomycorrhizal Fungi of Four Coniferous Species in Eastern Inner Mongolia" Forests 16, no. 9: 1459. https://doi.org/10.3390/f16091459
APA StyleLi, J., Yu, Z., Li, X., Wang, L., Lu, J., Li, F., & Fan, Y. (2025). Community Structure and Maintenance Mechanisms of Ectomycorrhizal Fungi of Four Coniferous Species in Eastern Inner Mongolia. Forests, 16(9), 1459. https://doi.org/10.3390/f16091459