Age-Dependent Climate Sensitivity of Korean Pine (Pinus koraiensis) in the Southern Sikhote-Alin Mountains
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Species
2.2. Data Collection and Preparation
- Immature (im)—small saplings not exceeding shrub layer height, focusing on nutrient accumulation and root development.
- Virginile (v)—medium to large saplings entering a phase of rapid height growth (requires improved light conditions in formerly suppressed trees); in Korean pine [29] subdivided into (a) early (v1), (b) middle (v2), and (c) late (v3) virginile phases; trees in the v3 phase reach the lower canopy.
- Young generative (g1)—canopy trees continuing rapid height growth; fruiting begins but is irregular.
- Mature generative (g2)—canopy trees with slowing vertical growth and increasing radial increment; characterized by peak fruiting.
- Old generative (g3)—maximum size attained, partial crown dieback, low and irregular fruiting.
2.3. Development of Tree-Ring Chronologies
2.4. Climate Data
2.5. Climate–Growth Relationships
2.6. Age- and Ontogeny-Dependent Climate Sensitivity
3. Results
3.1. Ontogenetic Stages and Cambial Age of Trees
3.2. Characteristics of Tree-Ring Chronologies
3.3. Climate Response at Different oOntogenetic Stages
3.4. Ontogenetic Change in Climate Response
3.5. Climate Response and Cambial Age
4. Discussion
4.1. Influence of Climatic Parameters on the Growth of Korean Pine
4.2. Changes in Climate Response During the Growth and Development of Trees
4.3. Potential Impact of Climate Change on the Growth of Korean Pine at Different Ontogenetic Stages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSAE | Climate signal age effects |
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Babst, F.; Bouriaud, O.; Poulter, B.; Trouet, V.; Girardin, M.P.; Frank, D.C. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019, 5, eaat4313. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, D.; Lang, X. Future extreme climate changes linked to global warming intensity. Sci. Bull. 2017, 62, 1673–1680. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef]
- Zhu, K.; Woodall, C.W.; Clark, J.S. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Change Biol. 2012, 18, 1042–1052. [Google Scholar] [CrossRef]
- Carrer, M.; Urbinati, C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 2004, 85, 730–740. [Google Scholar] [CrossRef]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; p. 394. [Google Scholar] [CrossRef]
- Szeicz, J.M.; MacDonald, G.M. Age-dependent tree-ring growth responses of subarctic white spruce to climate. Can. J. For. Res. 1994, 24, 120–132. [Google Scholar] [CrossRef]
- Szeicz, J.M.; MacDonald, G.M. Dendroclimatic reconstruction of summer temperatures in northwestern Canada since AD 1638 based on age-dependent modeling. Quat. Res. 1995, 44, 257–266. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Lachenbruch, B.; Dawson, T.E. (Eds.) Size- and Age-Related Changes in Tree Structure and Function; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Ryan, M.G.; Yoder, B.J. Hydraulic limits to tree height and tree growth. BioScience 1997, 47, 235–242. [Google Scholar] [CrossRef]
- Bond, B.J. Age-related changes in photosynthesis of woody plants. Trends Plant Sci. 2000, 5, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Carrer, M. Age-dependent xylogenesis in timberline conifers. New Phytol. 2008, 177, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Konter, O.; Büntgen, U.; Carrer, M.; Timonen, M.; Esper, J. Climate signal age effects in boreal tree-rings: Lessons to be learned for paleoclimatic reconstructions. Quat. Sci. Rev. 2016, 142, 164–172. [Google Scholar] [CrossRef]
- Esper, J.; Niederer, R.; Bebi, P.; Frank, D. Climate signal age effects—Evidence from young and old trees in the Swiss Engadin. For. Ecol. Manag. 2008, 255, 3783–3789. [Google Scholar] [CrossRef]
- Linares, J.C.; Taïqui, L.; Sangüesa-Barreda, G.; Seco, J.I.; Camarero, J.J. Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia 2013, 31, 88–96. [Google Scholar] [CrossRef]
- Yu, G.; Liu, Y.; Wang, X.; Ma, K. Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees 2008, 22, 197–204. [Google Scholar] [CrossRef]
- Dorado Liñán, I.; Gutiérrez, E.; Heinrich, I.; Andreu-Hayles, L.; Muntán, E.; Campelo, F.; Helle, G. Age effects and climate response in trees: A multi-proxy tree-ring test in old-growth life stages. Eur. J. For. Res. 2012, 131, 933–944. [Google Scholar] [CrossRef]
- Rozas, V.; DeSoto, L.; Olano, J.M. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol. 2009, 182, 687–697. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Linderholm, K. Age-dependent climate sensitivity of Pinus sylvestris L. in the central Scandinavian Mountains. Boreal Environ. Res. 2004, 9, 307–317. [Google Scholar]
- Gruza, G.V.; Rankova, E.Y. Nablyudaemye i Ozhidaemye Izmeneniya Klimata Rossiyskoy Federatsii: Temperatura Vozdukha [Observed and Expected Climate Changes in the Russian Federation: Air Temperature]; FGBU VNIIGMI-MCD: Obninsk, Russia, 2012; p. 194. [Google Scholar]
- Natsional’nyy Atlas Rossii. Tom 2: Priroda. Ekologiya; Roskartografiya: Moscow, Russia, 2007; Volume 2, pp. 146–150. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Akentyeva, E.M.; Anisimov, O.A.; Bardin, M.Y.; Zhuravlev, S.A.; Kattsov, V.M.; Kiselev, A.A.; Klyueva, M.V.; Konstantinov, P.I.; Korotkov, V.N.; Kostianoy, A.G.; et al. Third Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation; General summary; Science-Intensive Technologies: St. Petersburg, Russia, 2022; p. 676. (In Russian) [Google Scholar]
- Kolesnikov, B.P. Korean Pine Forests of the Far East; Publishing House of the Academy of Sciences of the USSR: Moscow, Russia; St. Petersburg, Russia, 1956; p. 261. (In Russian) [Google Scholar]
- Komarova, T.A.; Ukhvatkina, O.N.; Trofimova, A.D. Ontomorphogenesis of Korean pine (Pinus koraiensis Sieb. et Zucc.) in the mid-mountain belt of the southern Sikhote-Alin. Bull. Bot. Gard. Inst. Far East Branch Russ. Acad. Sci. 2010, 5, 82–93. (In Russian) [Google Scholar]
- Omelko, A.; Ukhvatkina, O.; Zhmerenetsky, A. Disturbance history and natural regeneration of an old-growth Korean pine–broadleaved forest in the Sikhote-Alin mountain range, Southeastern Russia. For. Ecol. Manag. 2016, 360, 221–234. [Google Scholar] [CrossRef]
- Usenko, N.V. Trees, Shrubs and Lianas of the Russian Far East; Khabarovsk Book Publishing House: Khabarovsk, Russia, 1969; p. 416. (In Russian) [Google Scholar]
- Krestov, P.V.; Omelko, A.M.; Ukhvatkina, O.N.; Nakamura, Y. Temperate summergreen forests of East Asia. Ber. Reinhold-Tüxen-Ges. 2015, 27, 133–134. [Google Scholar]
- Ukhvatkina, O.N.; Omelko, A.M.; Zhmerenetsky, A.A.; Petrenko, T.Y. Autumn–winter minimum temperature changes in the southern Sikhote-Alin mountain range of northeastern Asia since 1529 AD. Clim. Past 2018, 14, 57–71. [Google Scholar] [CrossRef]
- Ukhvatkina, O.; Omelko, A.; Kislov, D.; Zhmerenetsky, A.; Epifanova, T.; Atlman, J. Tree-ring-based spring precipitation reconstruction in the Sikhote-Alin’ Mountain range. Clim. Past 2021, 17, 951–967. [Google Scholar] [CrossRef]
- Wang, X.; Pederson, N.; Chen, Z.; Lawton, K.; Zhu, C.; Han, S. Recent rising temperatures drive younger and southern Korean pine growth decline. Sci. Total Environ. 2019, 649, 1105–1116. [Google Scholar] [CrossRef]
- Kozhevnikova, N.K. Dynamics of weather and climate characteristics and ecological functions of a small forest basin. Sib. Ecol. J. 2009, 5, 695–703. (In Russian) [Google Scholar]
- Omelko, A.; Ukhvatkina, O.; Zhmerenetsky, A.; Sibirina, L.; Petrenko, T.; Bobrovsky, M. From young to adult trees: How spatial patterns of plants with different life strategies change during age development in an old-growth Korean pine–broadleaved forest. For. Ecol. Manag. 2018, 411, 46–66. [Google Scholar] [CrossRef]
- Yakovleva, A.N. Ecological and Phytocenotic Features of the Spatial Distribution of Forest Vegetation in the Southern Sikhote-Alin (on the Example of the Verkhneussuriisky Research Station). Ph.D. Thesis, Institute of Biology and Soil Science, Vladivostok, Russia, 2004. (In Russian). [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968; p. 110. [Google Scholar]
- Evstigneev, O.I.; Korotkov, V.N. Ontogenetic stages of trees: An overview. Russ. J. Ecosyst. Ecol. 2016, 1, 1–31. [Google Scholar] [CrossRef]
- Smirnova, O.V.; Bobrovskii, M.V. Tree ontogeny and its reflection in the structure and dynamics of plant and soil covers. Russ. J. Ecol. 2001, 32, 159–163. [Google Scholar] [CrossRef]
- Čermák, P.; Rybníček, M.; Žid, T.; Steffenrem, A.; Kolář, T. Site- and age-dependent responses of Picea abies growth to climate variability. Eur. J. For. Res. 2019, 138, 445–460. [Google Scholar] [CrossRef]
- Schuster, R.; Oberhuber, W. Age-dependent climate-growth relationships and regeneration of Picea abies in a drought-prone mixed coniferous forest in the Alps. Can. J. For. Res. 2013, 43, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, L.; Ullah, H.; Shi, X.; Hou, J.; Liu, Y.; Liu, Y.; Xue, L.; He, B.; Duan, J. Combined effects of mixing ratios and tree size: How do mixed forests respond to climate and drought events? Front. Plant Sci. 2024, 15, 1477640. [Google Scholar] [CrossRef] [PubMed]
- Rinn, F. TSAP V3.5. Computer Program for Tree-Ring Analysis and Presentation; Frank Rinn Distribution: Heidelberg, Germany, 1996; p. 269. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in the tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–75. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 12 September 2024).
- Cook, E.R. A Time Series Approach to Tree Ring Standardization. Ph.D. Dissertation, The University of Arizona, Tucson, AZ, USA, 1985; p. 183. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Academic Press: New York, NY, USA, 1976; p. 567. [Google Scholar]
- Briffa, K.R.; Jones, P.D. Basic chronology statistics and assessment. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 137–152. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Office of Climatology Research Paper No. 45; U.S. Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. Treeclim: An R package for the numerical calibration of proxy–climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Bonferroni, C.E. Teoria statistica delle classi e calcolo delle probabilità. Pubbl. R Ist. Super. Sci. Econ. Commerc. Firenze 1936, 8, 3–62. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory; Petrov, B.N., Csaki, B.F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 57–61. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Anchukaitis, K.J.; D’Arrigo, R.D.; Andreu-Hayles, L.; Frank, D.; Verstege, A.; Curtis, A.; Buckley, B.M.; Jacoby, G.C.; Cook, E.R. Tree-ring-reconstructed summer temperatures from Northwestern North America during the last nine centuries. J. Clim. 2013, 26, 3001–3012. [Google Scholar] [CrossRef]
- Thapa, U.K.; Shan, S.K.; Gaire, N.P.; Bhuju, D.R. Spring temperatures in the far-western Nepal Himalaya since 1640 reconstructed from Picea smithiana tree-ring widths. Clim. Dyn. 2015, 45, 2069–2081. [Google Scholar] [CrossRef]
- Schwab, N.; Kaczka, R.J.; Janecka, K.; Böhner, J.; Chaudhary, R.P.; Scholten, T.; Schickhoff, U. Climate change-induced shift of tree growth sensitivity at a Central Himalayan treeline ecotone. Forests 2018, 9, 267. [Google Scholar] [CrossRef]
- Wiles, G.C.; Solomina, O.; D’Arrigo, R.; Anchukaitis, K.J.; Gensiarovsky, Y.V.; Wiesenberg, N. Reconstructed summer temperatures over the last 400 years based on larch ring widths: Sakhalin Island, Russian Far East. Clim. Dyn. 2014, 45, 397–405. [Google Scholar] [CrossRef]
- Zhu, H.F.; Fang, X.Q.; Shao, X.M.; Yin, Z.Y. Tree ring-based February–April temperature reconstruction for Changbai Mountain in Northeast China and its implication for East Asian winter monsoon. Clim. Past 2009, 5, 661–666. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhao, X.; Gao, L.; Jiang, Q. Age-dependent growth responses of Pinus koraiensis to climate in Changbai Mountain. Acta Ecol. Sin. 2011, 31, 6378–6387. [Google Scholar]
- Wang, X.; Zhang, M.; Ji, Y.; Li, Z.; Li, M.; Zhang, Y. Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia. Trees 2016, 31, 415–427. [Google Scholar] [CrossRef]
- Yin, H.; Guo, P.; Liu, H.; Huang, L.; Yu, H.; Guo, S.; Wang, F. Reconstruction of the October mean temperature since 1796 at Wuying from tree ring data. Adv. Clim. Change Res. 2009, 5, 18–23. [Google Scholar] [CrossRef]
- Zhuang, L.; Axmacher, J.C.; Sang, W. Different radial growth responses to climate warming by two dominant tree species at their upper altitudinal limit on Changbai Mountain. J. For. Res. 2017, 28, 795–804. [Google Scholar] [CrossRef]
- Liu, M.; Mao, Z.J.; Li, Y.; Sun, T.; Li, X.H.; Huang, W.; Liu, R.P.; Li, Y.H. Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors. Ying Yong Sheng Tai Xue Bao 2016, 27, 1341–1352. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.B.; Yuan, Y.J.; Wei, W.S.; Gou, X.H.; Yu, S.L.; Shang, H.M.; Chen, F.; Zhang, T.W.; Qin, L. Dendroclimatic reconstruction of autumn–winter mean minimum temperature in the eastern Tibetan Plateau since 1600 AD. Dendrochronologia 2015, 33, 1–7. [Google Scholar] [CrossRef]
- Körner, C.; Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Porter, T.J.; Pisaric, M.F.; Kokelj, S.V.; DeMontigny, P. A ring-width-based reconstruction of June–July minimum temperatures since AD 1245 from white spruce stands in the Mackenzie Delta region, northwestern Canada. Quat. Res. 2013, 80, 167–179. [Google Scholar] [CrossRef]
- Wilson, R.J.S.; Luckman, B.H. Tree-ring reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia, Canada. Dendrochronologia 2002, 20, 257–268. [Google Scholar] [CrossRef]
- Yin, H.; Liu, H.; Linderholm, H.W.; Sun, Y. Tree-ring-density-based warm-season temperature reconstruction since AD 1610 in the eastern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 112–120. [Google Scholar] [CrossRef]
- Khutornoy, O.V.; Zhuk, E.A.; Bocharov, A.Y. Radial growth of Eurasian species of five-needle pines in the clone archive in the south of the Tomsk Oblast. J. Sib. Fed. Univ. Biol. 2018, 11, 260–274. [Google Scholar] [CrossRef]
- Copenheaver, C.A.; Crawford, C.J.; Fearer, T.M. Age-specific responses to climate identified in the growth of Quercus alba. Trees 2011, 25, 647–653. [Google Scholar] [CrossRef]
- Dhyani, R.; Joshi, R.; Ranhotra, P.S.; Shekhar, M.; Bhattacharyya, A. Age dependent growth response of Cedrus deodara to climate change in temperate zone of Western Himalaya. Trees For. People 2022, 8, 100225. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V. A global, continental, and regional analysis of changes in extreme precipitation. J. Clim. 2021, 34, 243–258. [Google Scholar] [CrossRef]
- Helama, S.; Mielikäinen, K.; Timonen, M.; Herva, H.; Tuomenvirta, H.; Venäläinen, A. Regional climatic signals in Scots pine growth with insights into snow and soil associations. Dendrobiology 2013, 70, 27–34. [Google Scholar] [CrossRef]
- Vaganov, E.A.; Hughes, M.K.; Shashkin, A.V. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments; Springer: Berlin, Germany, 2006; p. 354. [Google Scholar]
- Chen, Z.; He, X.; Cook, E.R.; He, H.S.; Chen, W.; Sun, Y.; Cui, M. Detecting dryness and wetness signals from tree-rings in Shenyang, Northeast China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 302, 301–310. [Google Scholar] [CrossRef]
- Shi, J.; Liu, Y.; Vaganov, E.A.; Li, J.; Cai, Q. Statistical and process-based modeling analyses of tree growth response to climate in semi-arid area of north central China: A case study of Pinus tabulaeformis. J. Geophys. Res. 2008, 113, G01026. [Google Scholar] [CrossRef]
- Qiao, J.; Sun, Y.; Pan, L.; Luo, M.; Ding, Z.; Sun, Z. Variability in the climate–radial growth correlation of Pinus massoniana of different diameter classes. J. For. Res. 2022, 33, 1781–1792. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Zhang, Y.; Wang, X. A 211-year growing season temperature reconstruction using tree-ring width in Zhangguangcai Mountains, Northeast China: Linkages to the Pacific and Atlantic Oceans. Int. J. Climatol. 2017, 37, 3145–3153. [Google Scholar] [CrossRef]
- Deslauriers, A.; Morin, H.; Bégin, Y. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 2003, 33, 190–200. [Google Scholar] [CrossRef]
- Deslauriers, A.; Rossi, S.; Anfodillo, T.; Saracino, A. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol. 2008, 28, 863–871. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Herrmann, V.; Rollinson, C.R.; Gonzalez, B.; Gonzalez-Akre, E.B.; Pederson, N.; Alexander, M.R.; Allen, C.D.; Alfaro-Sánchez, R.; Awada, T.; et al. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Change Biol. 2022, 28, 245–266. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Zhao, S.; Jiao, L.; Wen, Y. Relationships between tree age and climate sensitivity of radial growth in different drought conditions of Qilian Mountains, Northwestern China. Forests 2018, 9, 135. [Google Scholar] [CrossRef]
- Giardina, F.; Konings, A.G.; Kennedy, D.; Alemohammad, S.H.; Oliveira, R.S.; Uriarte, M.; Gentine, P. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 2018, 11, 405–409. [Google Scholar] [CrossRef]
- Li, T.; Sun, Q.; Zou, H.; Marschner, P. Climate Sensitivity and Drought Legacy of Tree Growth in Plantation Forests in Northeast China Are Species- and Age-Dependent. Remote Sens. 2024, 16, 281. [Google Scholar] [CrossRef]
- Qiu, T.; Aravena, M.; Andrus, R.; Ascoli, D.; Bergeron, Y.; Berretti, R.; Bogdziewicz, M.; Boivin, T.; Bonal, R.; Caignard, T.; et al. Is there tree senescence? The fecundity evidence. Proc. Natl. Acad. Sci. USA 2021, 118, e2106130118. [Google Scholar] [CrossRef]
- Kramer, P.J.; Kozlowski, T.T. Physiology of Woody Plants; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Cruz, R.V.; Harasawa, H.; Lal, M.; Wu, S.; Anokhin, Y.; Punsalmaa, B.; Honda, Y.; Jafari, M.; Li, C.; Huu Ninh, N. Asia. Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the IPCC; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 469–506. [Google Scholar]
- Grigorieva, E.A.; Revich, B.A. Health risks to the Russian population from temperature extremes at the beginning of the XXI century. Atmosphere 2021, 12, 1331. [Google Scholar] [CrossRef]
- Altman, J.; Ukhvatkina, O.N.; Omelko, A.M.; Macek, M.; Plener, T.; Pejcha, V.; Černý, T.; Petřík, P.; Šrůtek, M.; Song, J.-S.; et al. Poleward migration of the destructive effects of tropical cyclones during the 20th century. Proc. Natl. Acad. Sci. USA 2018, 115, 11543–11548. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Khon, V.C.; Timazhev, A.V.; Chernokulsky, A.V.; Semenov, V.A. Hydrological anomalies and trends in the Amur River Basin due to climate changes. In Extreme Floods in the Amur River Basin: Causes, Forecasts, and Recommendations; Roshydromet, Earth Climate Theory Studies: Moscow, Russia, 2014; pp. 81–121. [Google Scholar]
- Van, P.S.; Sharaya, L.S. Altitude trends in the distribution of atmospheric precipitation in the Lower Amur region. In Proceedings of the Scientific and Practical Conference “Biodiversity, State and Dynamics of Natural and Anthropogenic Ecosystems in Russia”, Komsomolsk-on-Amur, Russia, 9 December 2021. [Google Scholar]
- Ukhvatkina, O.; Omelko, A.; Zhmerenetsky, A. Local Topography Has Significant Impact on Dendroclimatic Response of Picea jezoensis and Determines Variation of Factors Limiting Its Radial Growth in the Southern Sikhote-Alin. Forests 2023, 14, 2050. [Google Scholar] [CrossRef]
- Tarankov, V.I. Macroclimate of the Forests of Southern Primorye; Nauka: Novosibirsk, Russia, 1974; p. 224. (In Russian) [Google Scholar]
Stage | Raw Series | Detrended Series | |||||||
---|---|---|---|---|---|---|---|---|---|
Nt/c | Time Span | N. Years | RW | Corr. | MS | EPS | SNR | RBAReff | |
v1 | 28/28 | 1914–2015 | 102 | 0.587 | 0.53 | 0.43 | 0.92 | 11.8 | 0.298 |
v2 | 32/32 | 1846–2015 | 170 | 0.889 | 0.52 | 0.35 | 0.92 | 11.9 | 0.307 |
v3 | 26/32 | 1845–2015 | 171 | 1.308 | 0.50 | 0.32 | 0.92 | 11.9 | 0.314 |
g1 | 24/32 | 1740–2014 | 275 | 1.119 | 0.48 | 0.30 | 0.91 | 9.7 | 0.298 |
g2 | 41/41 | 1709–2014 | 306 | 1.277 | 0.52 | 0.28 | 0.95 | 20.4 | 0.332 |
g3 | 26/38 | 1451–2014 | 564 | 1.086 | 0.52 | 0.24 | 0.93 | 12.9 | 0.341 |
Stage | MS | Mean | SD | Skew | Kurtosis | AR1 |
---|---|---|---|---|---|---|
v1 | 0.26 | 1.008 | 0.31 | 0.49 | 0.19 | 0.445 |
v2 | 0.20 | 0.998 | 0.23 | 0.06 | 0.34 | 0.367 |
v3 | 0.16 | 1.001 | 0.19 | 0.10 | −0.04 | 0.315 |
g1 | 0.17 | 1.003 | 0.18 | 0.34 | 0.59 | 0.229 |
g2 | 0.17 | 1.003 | 0.18 | 0.13 | 0.24 | 0.256 |
g3 | 0.16 | 1.000 | 0.17 | 0.24 | 0.07 | 0.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omelko, A.M.; Ukhvatkina, O.N.; Zhmerenetsky, A.A. Age-Dependent Climate Sensitivity of Korean Pine (Pinus koraiensis) in the Southern Sikhote-Alin Mountains. Forests 2025, 16, 1458. https://doi.org/10.3390/f16091458
Omelko AM, Ukhvatkina ON, Zhmerenetsky AA. Age-Dependent Climate Sensitivity of Korean Pine (Pinus koraiensis) in the Southern Sikhote-Alin Mountains. Forests. 2025; 16(9):1458. https://doi.org/10.3390/f16091458
Chicago/Turabian StyleOmelko, Alexander Mikhailowich, Olga Nikolaevna Ukhvatkina, and Alexander Alexandrowich Zhmerenetsky. 2025. "Age-Dependent Climate Sensitivity of Korean Pine (Pinus koraiensis) in the Southern Sikhote-Alin Mountains" Forests 16, no. 9: 1458. https://doi.org/10.3390/f16091458
APA StyleOmelko, A. M., Ukhvatkina, O. N., & Zhmerenetsky, A. A. (2025). Age-Dependent Climate Sensitivity of Korean Pine (Pinus koraiensis) in the Southern Sikhote-Alin Mountains. Forests, 16(9), 1458. https://doi.org/10.3390/f16091458