Genetic Diversity and Risk of Non-Adaptedness in Natural North Moroccan and Planted South Spanish Atlas Cedar †
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and ddRAD-seq
2.3. Genetic Structure of Populations
2.4. Selection Signatures
2.5. Association Studies
2.6. Risk of Non-Adaptedness
3. Results
3.1. Stand Structure
3.2. Genetic Structure of Populations
3.3. Selection Signatures
3.4. Association Studies (GEA and GPA)
3.5. Risk of Non-Adaptedness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sgrò, C.M.; Lowe, A.J.; Hoffmann, A.A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 2011, 4, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Hampe, A.; Petit, R.J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 2005, 8, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Hampe, A.; Jump, A.S. Climate Relicts: Past, Present, Future. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 313–333. [Google Scholar] [CrossRef]
- Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean basin. J. Biogeogr. 2009, 36, 1333–1345. [Google Scholar] [CrossRef]
- Benabid, A. Biogéographie phytosociologie et phytodynamique des cédraies de l’Atlas Cedrus atlantica (Manetti). Le cèdre de l’Atlas. Actes du séminaire international sur le cèdre de l’Atlas. Annal. Rech. For. Maroc. 1994, 27, 62–76. [Google Scholar]
- Camarero, J.J.; Sánchez-Salguero, R.; Sangüesa-Barreda, G.; Lechuga, V.; Viñegla, B.; Seco, J.I.; Taïqui, L.; Carreira, J.A.; Linares, J.C. Drought, axe and goats. More variable and synchronized growth forecasts worsening dieback in Moroccan Atlas cedar forests. Sci. Total Environ. 2021, 765, 142752. [Google Scholar] [CrossRef]
- Bobo-Pinilla, J.; Nieto Lugilde, D.; Terrab, A.; Balao, F.; Peñas, J. Spatially explicit assessment of genetic variation to inform conservation effort for an endangered Mediterranean conifer, Cedrus atlantica. Ecol. Evol. 2022, 12, e9613. [Google Scholar] [CrossRef]
- Cheddadi, R.; Taberlet, P.; Boyer, F.; Coissac, E.; Rhoujjati, A.; Urbach, D.; Remy, C.; Khater, C.; Antry, S.; Aoujdad, J.; et al. Priority conservation areas for Cedrus atlantica in the Atlas Mountains, Morocco. Conserv. Sci. Prac. 2022, 4, 12680. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Sarmoum, M.; Gazol, A.; Abdoun, F.; Camarero, J.J. The decline of Algerian Cedrus atlantica forests is driven by a climate shift towards drier conditions. Dendrochronologia 2019, 55, 60–70. [Google Scholar] [CrossRef]
- Sarmoum, M.; Camarero, J.J.; Abdoun, F. Aridification increases growth resistance of Atlas cedar forests in NW Algeria. For. Ecol. Manag. 2024, 556, 121730. [Google Scholar] [CrossRef]
- Esper, J.; Frank, D.; Büntgen, U.; Verstege, A.; Luterbacher, J.; Xoplaki, E. Long-term drought severity variations in Morocco. Geophys. Res. Lett. 2007, 34, L17702. [Google Scholar] [CrossRef]
- Touchan, R.; Anchukaitis, K.J.; Meko, D.M.; Sabir, M.; Attalah, S.; Aloui, A. Spatiotemporal drought variability in northwestern Africa over the last nine centuries. Clim. Dyn. 2011, 37, 237–252. [Google Scholar] [CrossRef]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Change 2016, 137, 245–260. [Google Scholar] [CrossRef]
- Cheddadi, R.; Henrot, A.J.; François, L.; Boyer, F.; Bush, M.; Carré, M.; Coissac, E.; De Oliveira, P.E.; Ficetola, F.; Hambuckers, A.; et al. Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front. Ecol. Evol. 2017, 5, 114. [Google Scholar] [CrossRef]
- Twardek, W.M.; Taylor, J.J.; Rytwinski, T.; Aitken, S.N.; MacDonald, A.L.; Van Bogaert, R.; Cooke, S.J. The application of assisted migration as a climate change adaptation tactic: An evidence map and synthesis. Biol. Conserv. 2023, 280, 109932. [Google Scholar] [CrossRef]
- McLachlan, J.S.; Hellmann, J.J.; Schwartz, M.W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 2007, 21, 297–302. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ciceu, A.; Ballian, D.; Garzón, M.B.; Bolte, A.; Bozic, G.; Buchacher, R.; Čepl, J.; Cremer, E.; Ducousso, A.; et al. Assisted tree migration can preserve the European forest carbon sink under climate change. Nat. Clim. Chang. 2024, 14, 845–852. [Google Scholar] [CrossRef]
- Szamosvári, E.; Chakraborty, D.; Schüler, S.; van Loo, M. Assisted Migration as a Climate Change Adaptation Strategy. In Ecological Connectivity of Forest Ecosystems; Lapin, K., Oettel, J., Braun, M., Konrad, H., Eds.; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Messinger, J.; Güney, A.; Zimmermann, R.; Ganser, B.; Bachmann, M.; Remmele, S.; Aas, G. Cedrus libani: A promising tree species for Central European forestry facing climate change? Eur. J. For. Res. 2015, 134, 1005–1017. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gazol, A.; Colangelo, M.; Linares, J.C.; Navarro-Cerrillo, R.M.; Rubio-Cuadrado, Á.; Silla, F.; Dumas, P.-J.; Courbet, F. Shifting Precipitation Patterns Drive Growth Variability and Drought Resilience of European Atlas Cedar Plantations. Forests 2021, 12, 1751. [Google Scholar] [CrossRef]
- Renau-Morata, B.; Nebauer, S.G.; Sales, E.; Allainguillaume, J.; Caligari, P.; Segura, J. Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA1. Am. J. Bot. 2005, 92, 87–884. [Google Scholar] [CrossRef] [PubMed]
- Dagher-Kharrat, M.B.; Mariette, S.; Lefèvre, F.; Fady, B.; March, G.G.-D.; Plomion, C.; Savouré, A. Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genet. Genomes 2007, 3, 275–285. [Google Scholar] [CrossRef]
- Fady, B.; Lefèvre, F.; Reynaud, M.; Vendramin, G.G.; Dagher-Kharrat, M.B.; Anzidei, M.; Pastorelli, R.; Savouré, A.; Bariteau, M. Gene flow among different taxonomic units: Evidence from nuclear and cytoplasmic markers in Cedrus plantation forests. Theor. Appl. Genet. 2003, 107, 1132–1138. [Google Scholar] [CrossRef]
- Terrab, A.; Paun, O.; Talavera, S.; Tremetsberger, K.; Arista, M.; Stuessy, T.F. Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. Am. J. Bot. 2006, 93, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.-J.; Aouad, M.; Roig, A.; Bile, A.; Dagher-Kharrat, M.B.; Klein, E.K.; Fady, B.; Lefèvre, F. Characterizing the genetic diversity of Atlas cedar and phylogeny of Mediterranean Cedrus species with a new multiplex of 16 SSR markers. Tree Genet. Genomes 2019, 15, 60. [Google Scholar] [CrossRef]
- Šeho, M.; Fussi, B.; Kavaliauskas, D. Cedrus atlantica—Possible alternative tree species under changing climate conditions in Central Europe. SilvaWorld 2025, 4, 23–35. [Google Scholar] [CrossRef]
- Neale, D.B.; Wheeler, N.C. (Eds.) The Conifers: Genomes, Variation and Evolution; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-46806-8. [Google Scholar] [CrossRef]
- Gagalova, K.K.; Warren, R.L.; Coombe, L.; Wong, J.; Ming Nip, K.; Saint Yuen, M.M.; Whitehill, J.G.A.; Celedon, J.M.; Ritland, C.; Taylor, G.A.; et al. Spruce giga-genomes: Structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. Plant J. 2022, 111, 1469–1485. [Google Scholar] [CrossRef]
- Méndez-Cea, B. Estudio Genómico del Potencial Adaptativo Frente al Cambio Climático en Coníferas Sensibles a la Sequía. Ph.D. Thesis, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain, 2023. Available online: https://docta.ucm.es/entities/publication/f5dc82b4-22ce-49a5-99e1-bc799b97df1e (accessed on 1 September 2025).
- Cobo-Simón, I.; Gómez-Garrido, J.; Esteve-Codina, A.; Dabad, M.; Alioto, T.; Maloof, J.N.; Méndez-Cea, B.; Seco, J.I.; Linares, J.C.; Gallego, F.J. De novo transcriptome sequencing and gene co-expression reveal a genomic basis for drought sensitivity and evidence of a rapid local adaptation on Atlas cedar (Cedrus atlantica). Front. Plant Sci. 2023, 14, 1116863. [Google Scholar] [CrossRef]
- Scotti, I.; Lalagüe, H.; Oddou-Muratorio, S.; Scotti-Saintagne, C.; Ruiz Daniels, R.; Grivet, D.; Lefevre, F.; Cubry, P.; Fady, B.; González-Martínez, S.C.; et al. Common microgeographical selection patterns revealed in four European conifers. Mol. Ecol. 2023, 32, 393–411. [Google Scholar] [CrossRef]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef]
- Ulaszewski, B.; Meger, J.; Burczyk, J. Comparative Analysis of SNP Discovery and Genotyping in Fagus sylvatica L. and Quercus robur L. Using RADseq, GBS, and ddRAD Methods. Forests 2021, 12, 222. [Google Scholar] [CrossRef]
- O’Leary, S.J.; Puritz, J.B.; Willis, S.C.; Hollenbeck, C.M.; Portnoy, D.S. These aren’t the loci you’re looking for: Principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 2018, 27, 3193–3206. [Google Scholar] [CrossRef] [PubMed]
- Linares, J.C.; Taïqui, L.; Camarero, J.J. Increasing Drought Sensitivity and Decline of Atlas Cedar (Cedrus atlantica) in the Moroccan Middle Atlas Forests. Forests 2011, 2, 777–796. [Google Scholar] [CrossRef]
- Xiao, S.; Li, S.; Wang, X.; Chen, L.; Su, T. Cedrus distribution change: Past, present, and future. Ecol. Indica. 2022, 142, 109159. [Google Scholar] [CrossRef]
- Laala, A.; Adimi, A. Modeling the potential distribution and shift of an Algerian endangered endemic species (Cedrus atlantica) under climate change scenarios: Implications for conservation. J. Nat. Conserv. 2024, 82, 126744. [Google Scholar] [CrossRef]
- Thomas, P. Cedrus atlantica. The IUCN Red List of Threatened Species 2013: e.T42303A2970716. 2013. Available online: https://www.iucnredlist.org/species/42303/2970716 (accessed on 29 April 2025).
- Caudullo, G. Chorological Data for the Main European Woody Species; Dataset; Mendeley Data: London, UK, 2024. [Google Scholar] [CrossRef]
- Linares, J.C.; Taïqui, L.; Sangüesa-Barreda, G.; Seco, J.I.; Camarero, J.J. Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia 2013, 31, 88–96. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed]
- Doublet, M.; Degalez, F.; Lagarrigue, S.; Lagoutte, L.; Gueret, E.; Allais, S.; Lecerf, F. Variant calling and genotyping accuracy of ddRAD-seq: Comparison with 20X WGS in layers. PLoS ONE 2024, 19, e0298565. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 11 March 2025).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Eaton, D.A.R.; Overcast, I. Ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020, 36, 2592–2594. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 1 September 2025).
- Wickham, H. ggplot2: Elegant graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org/ (accessed on 1 September 2025).
- Raj, A.; Stephens, M.; Pritchard, J.K. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 2014, 197, 573–589. [Google Scholar] [CrossRef]
- Behr, A.A.; Liu, K.Z.; Liu-Fang, G.; Nakka, P.; Ramachandran, S. Pong: Fast analysis and visualization of latent clusters in population genetic data. Bioinformatics 2016, 32, 2817–2823. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef]
- Rousset, F. Inbreeding and relatedness coefficients: What do they measure? Heredity 2002, 88, 371–380. [Google Scholar] [CrossRef]
- Meirmans, P.G. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 2020, 20, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T. adegenet: An R package for the multivariate analysis of genetic markers. Bioinformatics 2004, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T.; Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef]
- Foll, M.; Gaggiotti, O.E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A bayesian perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Gish, W.; States, D.J. Identification of protein coding regions by database similarity search. Nat. Genet. 1993, 3, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2022. Available online: http://qgis.osgeo.org/ (accessed on 1 September 2025).
- Frichot, E.; Francois, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4, 250–255. [Google Scholar] [CrossRef]
- Endelman, J.B.; Jannink, J.L. Shrinkage estimation of the realized relationship matrix. G3 Genes Genomes Genet. 2012, 2, 1405–1413. [Google Scholar] [CrossRef]
- Rellstab, C.; Zoller, S.; Walthert, L.; Lesur, I.; Pluess, A.R.; Graf, R.; Bodénès, C.; Sperisen, C.; Kremer, A.; Gugerli, F. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 2016, 25, 5907–5924. [Google Scholar] [CrossRef]
- Pina-Martins, F.; Baptista, J.; Pappas, G., Jr.; Paulo, O.S. New insights into adaptation and population structure of cork oak using genotyping by sequencing. Glob. Change Biol. 2019, 5, 337–350. [Google Scholar] [CrossRef]
- Jump, A.S.; Hunt, J.M.; Martinez-Izquierdo, J.A.; Peñuelas, J. Natural selection and climate change: Temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol. Ecol. 2006, 15, 3469–3480. [Google Scholar] [CrossRef]
- Jump, A.S.; Ruiz-Benito, P.; Greenwood, S.; Allen, C.D.; Kitzberger, T.; Fensham, R.; Martínez-Vilalta, J.; Lloret, F. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 2017, 23, 3742–3757. [Google Scholar] [CrossRef]
- Méndez-Cea, B.; García-García, I.; Linares, J.C.; Gallego, F.J. Warming appears as the main risk of non-adaptedness for western Mediterranean relict fir forests under expected climate change scenarios. Front. Plant Sci. 2023, 14, 1155441. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Cea, B.; García-García, I.; Sánchez-Salguero, R.; Lechuga, V.; Gallego, F.J.; Linares, J.C. Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana. Plants 2023, 12, 873. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by- sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Mitchell, S.E.; Elshire, R.J.; Buckler, E.S.; El-Kassaby, Y.A. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet. Genomes 2013, 9, 1537–1544. [Google Scholar] [CrossRef]
- Cobo-Simón, I.; Méndez-Cea, B.; Jump, A.S.; Seco, J.; Gallego, F.J.; Linares, J.C. Understanding genetic diversity of relict forests. Linking long-term isolation legacies and current habitat fragmentation in Abies pinsapo Boiss. For. Ecol. Manag. 2020, 461, 117947. [Google Scholar] [CrossRef]
- Willi, Y.; Van Buskirk, J.; Hoffmann, A.A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 433–458. [Google Scholar] [CrossRef]
- Cheddadi, R.; Fady, B.; François, L.; Hajar, L.; Suc, J.P.; Huang, K.; Demarteau, M.; Vendramin, G.G.; Ortu, E. Putative glacial refugia of Cedrus atlantica deduced from quaternary pollen records and modern genetic diversity. J. Biogeogr. 2009, 6, 1361–1371. [Google Scholar] [CrossRef]
- Dauphin, B.; Rellstab, D.; Schmid, M.; Zoller, S.; Karger, D.N.; Brodbeck, S.; Guillaume, F.; Gugerli, F. Genomic vulnerability to rapid climate warming in a tree species with a long generation time. Glob. Change Biol. 2021, 27, 1181–1195. [Google Scholar] [CrossRef] [PubMed]
- Taoufik, A.; Atmane, R.; Abdenbi, Z.E.A. Explaining the Atlas Cedar (Cedrus atlantica M.) dieback by studying Water relations of young plants subject to an edaphic drought. E3S Web Conf. 2021, 234, 00100. [Google Scholar] [CrossRef]
- Bouahmed, A.; Vessella, F.; Schirone, B.; Krouchi, F.; Derridj, A. Modeling Cedrus atlantica potential distribution in North Africa across time: New putative glacial refugia and future range shifts under climate change. Reg. Environ. Chang. 2019, 19, 1667–1682. [Google Scholar] [CrossRef]
- Arar, A.; Nouidjem, Y.; Bounar, R.; Tabet, S.; Kouba, Y. Modeling of the current and future potential distribution of Atlas cedar (Cedrus atlantica) forests revealed shifts in the latitudinal, longitudinal and altitudinal range towards more humid conditions. Ecol. Quest. 2020, 31, 49–62. [Google Scholar] [CrossRef]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Ruane, A.C.; Vautard, R.; Arnell, N.; Coppola, E.; Cruz, F.A.; Dessai, S.; Islam, A.S.; Rahimi, M.; Carrascal, D.R.; et al. 2021: Climate Change Information for Regional Impact and for Risk Assessment. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 1767–1926. [Google Scholar] [CrossRef]
- Trisos, C.H.; Adelekan, I.O.; Totin, E.; Ayanlade, A.; Efitre, J.; Gemeda, A.; Kalaba, K.; Lennard, C.; Masao, C.; Mgaya, Y.; et al. 2022: Africa. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 1285–1455. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- Marris, E. Forestry: Planting the forest of the future. Nature 2009, 459, 906–908. [Google Scholar] [CrossRef] [PubMed]
- El Abidine, A.Z. Forest decline in Morocco: Causes and control strategy. Sci. Chang. Plan./Sécher. 2003, 14, 209. [Google Scholar]
- Terrab, A.; Hampe, A.; Lepais, O.; Talavera, S.; Vela, E.; Stuessy, T.F. Phylogeography of north African Atlas cedar (Cedrus atlantica, Pinaceae): Combined molecular and fossil data reveal a complex quaternary history. Am. J. Bot. 2008, 95, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ciais, P.; Frappart, F.; Li, X.; Brandt, M.; Fensholt, R.; Fan, L.; Saatchi, S.; Besnard, S.; Deng, Z.; et al. Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nat. Geosci. 2023, 16, 886–892. [Google Scholar] [CrossRef]
HA | MA | RF | YU | FI | DO | |
---|---|---|---|---|---|---|
HA | — | 0.034 | 0.069 | 0.218 | 0.015 | 0.207 |
MA | 0.001 | — | 0.054 | 0.204 | 0.024 | 0.193 |
RF | 0.001 | 0.001 | — | 0.173 | 0.064 | 0.163 |
YU | 0.001 | 0.001 | 0.000 | — | 0.215 | 0.003 |
FI | 0.001 | 0.001 | 0.000 | 0.001 | — | 0.202 |
DO | 0.001 | 0.001 | 0.000 | 0.171 | 0.001 | — |
Population | Na | Neff | Ho | He | GIS | PPL |
---|---|---|---|---|---|---|
HA | 1.978 ± 0.001 | 1.825 ± 0.005 | 0.264 ± 0.001 | 0.401 ± 0.002 | 0.069 *** | 97.761% |
MA | 1.987 ± 0.001 | 1.843 ± 0.005 | 0.268 ± 0.001 | 0.411 ± 0.002 | 0.071 *** | 98.685% |
RF | 1.911 ± 0.003 | 1.779 ± 0.005 | 0.246 ± 0.001 | 0.376 ± 0.002 | 0.091 *** | 91.051% |
YU | 1.851 ± 0.003 | 1.713 ± 0.005 | 0.234 ± 0.002 | 0.352 ± 0.002 | 0.086 *** | 85.062% |
FI | 1.720 ± 0.004 | 1.668 ± 0.005 | 0.198 ± 0.002 | 0.316 ± 0.002 | 0.143 *** | 72.041% |
DO | 1.784 ± 0.003 | 1.398 ± 0.004 | 0.237 ± 0.002 | 0.333 ± 0.002 | 0.099 *** | 78.417% |
Variable | Code | No. of Associations |
---|---|---|
BIO1 | Annual mean temperature | 3 |
BIO2 | Mean diurnal range | 3 |
BIO3 | Isothermality | 10 |
BIO4 | Temperature seasonality | 3 |
BIO5 | Max. temperature of the warmest month | 8 |
BIO6 | Min. temperature of the coldest month | 3 |
BIO7 | Temperature annual range | 2 |
BIO8 | Mean temperature of the wettest quarter | 8 |
BIO11 | Mean temperature of the coldest quarter | 2 |
BIO12 | Annual precipitation | 5 |
BIO13 | Precipitation of the wettest month | 4 |
BIO14 | Precipitation of the driest month | 4 |
BIO15 | Precipitation seasonality | 4 |
BIO16 | Precipitation of the wettest quarter | 4 |
BIO17 | Precipitation of the driest quarter | 8 |
BIO18 | Precipitation of the warmest quarter | 8 |
BIO19 | Precipitation of the coldest quarter | 4 |
Variable | Code | No. of Associations |
---|---|---|
BIO1 | Annual mean temperature | 119 |
BIO2 | Mean diurnal range | 57 |
BIO3 | Isothermality | 0 |
BIO4 | Temperature seasonality | 56 |
BIO5 | Max. temperature of the warmest month | 0 |
BIO6 | Min. temperature of the coldest month | 236 |
BIO7 | Temperature annual range | 26 |
BIO8 | Mean temperature of the wettest quarter | 248 |
BIO9 | Mean temperature of the driest quarter | 3 |
BIO10 | Mean temperature of the warmest quarter | 3 |
BIO11 | Mean temperature of the coldest quarter | 249 |
BIO12 | Annual precipitation | 0 |
BIO13 | Precipitation of the wettest month | 11 |
BIO14 | Precipitation of the driest month | 129 |
BIO15 | Precipitation seasonality | 34 |
BIO16 | Precipitation of the wettest quarter | 12 |
BIO17 | Precipitation of the driest quarter | 235 |
BIO18 | Precipitation of the warmest quarter | 259 |
BIO19 | Precipitation of the coldest quarter | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Cea, B.; García-García, I.; Manso-Martínez, D.; Linares, J.C.; Gallego, F.J.; Horreo, J.L. Genetic Diversity and Risk of Non-Adaptedness in Natural North Moroccan and Planted South Spanish Atlas Cedar. Forests 2025, 16, 1434. https://doi.org/10.3390/f16091434
Méndez-Cea B, García-García I, Manso-Martínez D, Linares JC, Gallego FJ, Horreo JL. Genetic Diversity and Risk of Non-Adaptedness in Natural North Moroccan and Planted South Spanish Atlas Cedar. Forests. 2025; 16(9):1434. https://doi.org/10.3390/f16091434
Chicago/Turabian StyleMéndez-Cea, Belén, Isabel García-García, David Manso-Martínez, Juan Carlos Linares, Francisco Javier Gallego, and Jose Luis Horreo. 2025. "Genetic Diversity and Risk of Non-Adaptedness in Natural North Moroccan and Planted South Spanish Atlas Cedar" Forests 16, no. 9: 1434. https://doi.org/10.3390/f16091434
APA StyleMéndez-Cea, B., García-García, I., Manso-Martínez, D., Linares, J. C., Gallego, F. J., & Horreo, J. L. (2025). Genetic Diversity and Risk of Non-Adaptedness in Natural North Moroccan and Planted South Spanish Atlas Cedar. Forests, 16(9), 1434. https://doi.org/10.3390/f16091434