Use of Cupressus lusitanica for Afforestation in a Mediterranean Climate: Biomass Production and Wood Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Biomass Quantification
2.3. Physical Properties
2.4. Anatomical Properties
2.5. Chemical Properties—Extractives Content
2.6. Mechanical Properties
3. Results
3.1. Evaluation of the Productive Capacity
3.2. Biomass Production
3.3. Characterization of the Wood Quality
3.3.1. Anatomical Properties
3.3.2. Physical Properties
3.3.3. Chemical Properties-Extractives Content
3.3.4. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Tree Number | DBH (cm) | D Base (cm) | Height (m) |
---|---|---|---|
9 | 5.5 | 8.3 | 4.6 |
4 | 8.9 | 14.0 | 5.7 |
19 | 8.3 | 13.3 | 4.5 |
14 | 6.7 | 10.0 | 5.6 |
6 | 10.3 | 18.1 | 5.7 |
22 | 13.7 | 17.7 | 6.5 |
25 | 11.3 | 16.6 | 5.5 |
78 | 5.1 | 9.1 | 3.9 |
100 | 8.9 | 14.2 | 5.2 |
89 | 8.5 | 13.3 | 5.2 |
97 | 11.4 | 15.4 | 7.0 |
94 | 11.0 | 15.8 | 6.6 |
91 | 14.0 | 20.3 | 7.4 |
92 | 16.3 | 22.9 | 7.4 |
55 | 10.7 | 14.4 | 6.4 |
74 | 10.9 | 18.1 | 6.1 |
64 | 11.2 | 15.8 | 5.8 |
75 | 9.6 | 14.0 | 4.2 |
57 | 13.0 | 16.9 | 6.5 |
62 | 14.5 | 16.6 | 6.9 |
68 | 14.9 | 20.3 | 7.1 |
60 | 17.6 | 24.4 | 8.7 |
70 | 17.3 | 22.0 | 7.5 |
44 | 19.1 | 28.0 | 6.9 |
Average | 11.6 | 16.6 | 6.1 |
Stand. Dev. | 3.8 | 4.7 | 1.2 |
References
- Chiti, T.; Rey, A.; Abildtrup, J.; Böttcher, H.; Diaci, J.; Frings, O.; Lehtonen, A.; Schindlbacher, A.; Zavala, M.A. Carbon Farming in the European Forestry Sector; From Science to Policy; European Forest Institute: Joensuu, Finland, 2024. [Google Scholar]
- Zhang, S.; Belien, E.; Ren, H.; Rossi, S.; Huang, J. Wood Anatomy of Boreal Species in a Warming World: A Review. iForest-Biogeosciences For. 2020, 13, 130–138. [Google Scholar] [CrossRef]
- Bannister, O. Cupressus Lusitanica as a Potential Timber Tree for New Zealand. N. Z. J. For. 1960, 8, 203–217. [Google Scholar]
- Cornelius, J.; Apedaile, L.; Mesén, F. Provenance and family variation in height and diameter growth of Cupressus lusitanica Mill. at 28 months in Costa Rica. Silvae Genet. 1996, 45, 82–85. [Google Scholar]
- Farjon, A. Cupressus Lusitanica. Curtis's Bot. Mag. 2013, 30, 166–176. [Google Scholar] [CrossRef]
- Miller, J.; Knowles, F. The Cypresses, Cupressus spp., Chamaecyparis spp. In Introduced Forest Trees in New Zealand: Recognition, Role, and Seed Source, 3rd ed.; FRI Bulletin no. 124; New Zealand Forest Research Institute: Rotorua, New Zealand, 1996; p. 33. [Google Scholar]
- Cros, E.; Ducrev, M.; Barthelemy, D.; Pichot, C.; Gianinni, R.; Raddi, R.; Roques, A.; Sales Luis, J.; Thibaut, B. Cypress—A Practical Handbook; Studio Leonardo: Florence, Italy, 1999. [Google Scholar]
- Watt, M.S.; Palmer, D.J.; Dungey, H.; Kimberley, M.O. Predicting the Spatial Distribution of Cupressus Lusitanica Productivity in New Zealand. For. Ecol. Manag. 2009, 258, 217–223. [Google Scholar] [CrossRef]
- Dyson, W.; Raunio, A. Revised Heritability Estimates for Cupressus Lusitanica in East Africa. Silvae Genet. 1977, 26, 193–196. [Google Scholar]
- Teshome, T.; Petty, J.A. Site Index Equation for Cupressus Lusitanica Stands in Munessa Forest, Ethiopia. For. Ecol. Manag. 2000, 126, 339–347. [Google Scholar] [CrossRef]
- Hay, A.; Nicholas, I.; Shelbourne, C. Plantation Forestry Species: Alternatives to Radiata Pine. In NZIF Forestry Handbook; Colley, M., Ed.; New Zealand Institute of Forestry: Wellington, New Zealand, 2005; pp. 83–86. [Google Scholar]
- Pereira, J.C.D.; Higa, R.C.V. Propriedades da Madeira de Cupressus lusitanica Mill; Embrapa Florestas: Colombo, Brazil, 2003; p. 5. [Google Scholar]
- Watt, M.S.; Kimberley, M.O.; Steer, B.S.C.; Holdaway, A. Spatial Comparisons of Productivity and Carbon Sequestration for Cupressus Lusitanica and Macrocarpa within New Zealand. For. Ecol. Manag. 2023, 536, 120829. [Google Scholar] [CrossRef]
- Peláez-Silva, J.A.; León-Peláez, J.D.; Lema-Tapias, A. Conifer Tree Plantations for Land Rehabilitation: An Ecological-functional Evaluation. Restor. Ecol. 2019, 27, 607–615. [Google Scholar] [CrossRef]
- Olmos, C.F. Hydraulic Conductivity under Forests One Key for Water Wanagement. J. Eng. Res. 2022, 2, 2–16. [Google Scholar] [CrossRef]
- González-Cásares, M.; Pompa-García, M.; Venegas-González, A.; Domínguez-Calleros, P.; Hernández-Díaz, J.; Carrillo-Parra, A.; González-Tagle, M. Hydroclimatic Variations Reveal Differences in Carbon Capture in Two Sympatric Conifers in Northern Mexico. PeerJ 2019, 7, e7085. [Google Scholar] [CrossRef]
- Watt, M.S.; Clinton, P.W.; Coker, G.; Davis, M.R.; Simcock, R.; Parfitt, R.L.; Dando, J. Modelling the Influence of Environment and Stand Characteristics on Basic Density and Modulus of Elasticity for Young Pinus Radiata and Cupressus Lusitanica. For. Ecol. Manag. 2008, 255, 1023–1033. [Google Scholar] [CrossRef]
- Tesfaye, M.A.; Gardi, O.; Anbessa, T.B.; Blaser, J. Aboveground Biomass, Growth and Yield for Some Selected Introduced Tree Species, Namely Cupressus Lusitanica, Eucalyptus Saligna, and Pinus Patula in Central Highlands of Ethiopia. J. Ecol. Environ. 2020, 44, 3. [Google Scholar] [CrossRef]
- Elzaki, O.T.; Khider, T.O. Physical and Mechanical Properties of Cupressus Lusitanica as a Potential Timber Tree for Sudan. J. For. Prod. Ind. 2013, 2, 43–46. [Google Scholar]
- Kothiyal, V.; Negi, A.; Rao, R.V.; Gogate, M.G.; Dakshindas, S.K. Wood Quality of Eighteen Year Old Cupressus Lusitanica from Maharashtra. Wood Sci. Technol. 1998, 32, 119–127. [Google Scholar] [CrossRef]
- Zobel, B.J.; Sprague, J.R. Juvenile Wood in Forest Trees; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-72128-1. [Google Scholar]
- Moore, J.R.; Cown, D.J. Corewood (Juvenile Wood) and Its Impact on Wood Utilisation. Curr. For. Rep. 2017, 3, 107–118. [Google Scholar] [CrossRef]
- Zobel, B.J.; Van Buijtenen, J.P. Wood Variation; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 978-3-642-74071-8. [Google Scholar]
- Size- and Age-Related Changes in Tree Structure and Function; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Tree Physiology; Springer: Dordrecht, The Netherlands, 2011; Volume 4, ISBN 978-94-007-1241-6. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Pedro, L.G.; Barroso, J.G.; Trindade, H.; Sanches, J.; Oliveira, C.; Correia, M. Pinus pinaster Aiton e Pinus pinea L. Agrotec 2014, 12, 23–27. [Google Scholar]
- Instituto Português do Mar e da Atmosfera—Séries Longas; IPMA: Lisbon, Portugal. 2025. Available online: www.ipma.pt (accessed on 18 August 2025).
- Dood, R. Fiber Length Measurement Systems: A Review and Modification of an Existing Method. Wood Fiber Sci. 1986, 2, 276–287. [Google Scholar]
- Gaspar, M.J.; Louzada, J.L.; Aguiar, A.; Almeida, M.H. Genetic Correlations between Wood Quality Traits of Pinus Pinaster Ait. Ann. For. Sci. 2008, 65, 703. [Google Scholar] [CrossRef]
- Gaspar, M.J.; Alves, A.; Louzada, J.L.; Morais, J.; Santos, A.; Fernandes, C.; Almeida, M.H.; Rodrigues, J.C. Genetic Variation of Chemical and Mechanical Traits of Maritime Pine (Pinus Pinaster Aiton). Correlations with Wood Density Components. Ann. For. Sci. 2011, 68, 255–265. [Google Scholar] [CrossRef]
- Nunes, L.; Gower, S.; Monteiro, M.; Lopes, D.; Rego, F. Growth Dynamics and Productivity of Pure and Mixed Castanea sativa Mill. and Pseudotsuga menziesii (Mirb.) Franco Plantations in Northern Portugal. iFor.-Biogeosci. For. 2014, 7, 92–102. [Google Scholar] [CrossRef]
- Enes, T.; Lousada, J.; Aranha, J.; Cerveira, A.; Alegria, C.; Fonseca, T. Size–Density Trajectory in Regenerated Maritime Pine Stands after Fire. Forests 2019, 10, 1057. [Google Scholar] [CrossRef]
- Carvalho, A. Madeiras Portuguesas: Estrutura Anatómica, Propriedades, Utilizações; Instituto Florestal; Direção Gera das Florestas: Algés, Portugal, 1997; Volume II. [Google Scholar]
- Modes, K.S.; Cozer, V.; Dobner Júnior, M.; Vivian, M.A. Propriedades físico-mecânicas de painéis compensados com a madeira de Cupressus lusitanica Mill. Ciênc. Florest. 2023, 33, e74002. [Google Scholar] [CrossRef]
- Asaye, Z.; Zewdie, S. Fine Root Dynamics and Soil Carbon Accretion under Thinned and Un-Thinned Cupressus Lusitanica Stands in, Southern Ethiopia. Plant Soil. 2013, 366, 261–271. [Google Scholar] [CrossRef]
- Chinchilla, O.; Chaves, E.; Mora, F. Comparación de crecimientos bajo diferentes intensidades de manejo en plantaciones de ciprés (Cupressus lusitanica miller) en dos sitios de Costa Rica. Rev. Baracoa Cuba. 2011, 30, 19. [Google Scholar]
- Topanotti, L.R.; Vaz, D.R.; Dobner, M., Jr.; Nicoletti, M.F. Dendrometric Characterization of Cupressus lusitanica Mill. Planted under Pinus taeda L. Shelter in Southern Brazil. CERNE 2021, 27, e-102709. [Google Scholar] [CrossRef]
- Kassie, Y.A.; Teshome, Y.M. Carbon Storage Variation of Plantation Forest and Their Management Practices in Amhara, Ethiopia. Austral Ecol. 2025, 50, e70019. [Google Scholar] [CrossRef]
- Dobner, M., Jr. Growth and Yield of Even-Aged Cupressus Lusitanica Plantations in Southern Brazil. FLORESTA 2021, 51, 980. [Google Scholar] [CrossRef]
- Fonseca González, W.; Rojas Vargas, M.; Villalobos Chacón, R.; Alice Guier, F. Estimación de Biomasa y Carbono En Árboles de Cupressus Lusitanica Mill. En Costa Rica. Rev. Cienc. Ambient. 2023, 57, 1–17. [Google Scholar] [CrossRef]
- Cerveira Louzada, J.L.P. Variaçao nas Componentes da Densidade na Madeira de “Pinus Pinaster” Ait; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 1990; ISBN 978-972-669-088-7. [Google Scholar]
- Fonseca, F.; Lousada, J. Variation in Pinus pinaster Ait Wood. The Length and Transverse Dimensions of the Fibers. The Density Growth and Physico-Mechanical Wood Quality; Technical and Scientific Series; UTAD: Vila Real, Portugal, 2000; Volume 35, p. 242. [Google Scholar]
- Knapic, S.; Louzada, J.L.; Pereira, H. Variation in Wood Density Components within and between Quercus Faginea Trees. Can. J. For. Res. 2011, 41, 1212–1219. [Google Scholar] [CrossRef]
- Sousa, V.; Louzada, J.; Pereira, H. Earlywood Vessel Features in Quercus Faginea: Relationship between Ring Width and Wood Density at Two Sites in Portugal. iFor.-Biogeosci. For. 2015, 8, 866–873. [Google Scholar] [CrossRef]
- Campelo, F.; Nabais, C.; Freitas, H.; Gutiérrez, E. Climatic Significance of Tree-Ring Width and Intra-Annual Density Fluctuations in Pinus Pinea from a Dry Mediterranean Area in Portugal. Ann. For. Sci. 2007, 64, 229–238. [Google Scholar] [CrossRef]
- Mazza, G.; Manetti, M.C. Growth Rate and Climate Responses of Pinus Pinea L. in Italian Coastal Stands over the Last Century. Clim. Change 2013, 121, 713–725. [Google Scholar] [CrossRef]
- Mazza, G.; Cutini, A.; Manetti, M.C. Site-Specific Growth Responses to Climate Drivers of Pinus Pinea L. Tree Rings in Italian Coastal Stands. Ann. For. Sci. 2014, 71, 927–936. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Shen, L.; Wu, Z.; Li, H.; Hu, M.; Liu, Q.; Chen, C.; Hu, X.; Zhong, Y. Evaluation of Wood Anatomical Properties from 18 Tree Species in the Subtropical Region of China. Forests 2023, 14, 2344. [Google Scholar] [CrossRef]
- Vivian, M.A.; Corrêa, R.; Modes, K.S.; Caetano, A.P.; Pedrazzi, C.; Dobner, M., Jr. Caracterização Tecnológica da Madeira de Cupressus Lusitânica Visando a Produção de Polpa Celulósica. Pesqui. Florest. Bras. 2020, 40, 1–9. [Google Scholar] [CrossRef]
- Faedo De Almeida, C.C.; D’Angelo Rios, P.; Bayestorff Da Cunha, A.; Melo Ampessan, C.G.; Spanhol, A. Applicability Evaluation of Cupressus Lusitanica for Pulp Production. Maderas Cienc. Tecnol. 2016, 18, 651–662. [Google Scholar] [CrossRef]
- Louzada, J. Nfluência do Crescimento em Diâmetro (DAP) e da Qualidade do Local na Variaçäo da Densidade em Pseudotsuga Menziesii Mirb; University of Trás-os-Montes and Alto Douro: Vila Real, Portugal, 1991; ISBN 978-972-669-085-6. [Google Scholar]
- Foelkel, C.; Zvinakevicius, C. Coníferas Exóticas Aptas para Produção de Celulose Kraft—Cupressus lusitanica. O Pap. 1981, 2, 57–62. Available online: www.celso-foelkel.com.br/artigos/1981_Cupressus_lusitanica.pdf (accessed on 2 August 2025).
- Palmer, E.R.; Gibbs, J.A.; Ganguli, S.; Dutta, A.P. Pulping Characteristics of Cupressus Lusitanica and Podocarpus Milanjanus Grown in the Sudan; Tropical Development and Research Institute, Overseas Development Administration: London, UK, 1986; ISBN 978-0-85954-210-4. [Google Scholar]
- Eklund, L.; Säll, H.; Linder, S. Enhanced Growth and Ethylene Increases Spiral Grain Formation in Picea Abies and Abies Balsamea Trees. Trees 2003, 17, 81–86. [Google Scholar] [CrossRef]
- Okino, E.Y.A.; Santana, M.A.E.; Alves, M.V.D.S.; Melo, J.E.D.; Coradin, V.T.R.; Souza, M.R.D.; Teixeira, D.E.; Souza, M.E.D. Technological Characterization of Cupressus spp. Wood. Floresta Ambiente 2010, 17, 1–11. [Google Scholar] [CrossRef]
- Shukla, N.; Sangal, S. Preliminary Studies on Strength Properties of Some Exotic Timbers. Indian. For. 1986, 112, 459–465. [Google Scholar]
- Bendtsen, B. Properties of Wood from Improved and Intensively Managed Trees. For. Prod. J. 1978, 28, 61–72. [Google Scholar]
- Tsumēs, G.T. Science and Technology of Wood: Structure, Properties, Utilization; Van Nostrand Reinhold: New York, NY, USA, 1991; ISBN 978-0-442-23985-5. [Google Scholar]
- Mohareb, A.; Sirmah, P.; Desharnais, L.; Dumarçay, S.; Pétrissans, M.; Gérardin, P. Effect of Extractives on Conferred and Natural Durability of Cupressus Lusitanica Heartwood. Ann. For. Sci. 2010, 67, 504. [Google Scholar] [CrossRef]
- Chokouadeu Youmssi, D.V.; Modtegue Bampel, Y.D.; Njankouo, J.M.; Saha Tchinda, J.-B.; Ndikontar, M.K. Chemical Composition of Some Plantation Wood Species (Eucalyptus Saligna, Cupressus Lusitanica and Eucalyptus Paniculata) and Assessment of Compatibility with Plaster. J. Indian. Acad. Wood Sci. 2017, 14, 146–153. [Google Scholar] [CrossRef]
- Santos, A.J.A.; Anjos, O.; Morais, M.C.; Diogo, G.; Simões, R.; Pereira, H. Characterization of Cypress Wood for Kraft Pulp Production. BioResources 2014, 9, 4764–4774. [Google Scholar] [CrossRef]
- Feldman, D. Wood—Chemistry, Ultrastructure, Reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 Pp. Price: 245 DM. J. Polym. Sci. Polym. Lett. Ed. 1985, 23, 601–602. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; De Jesus, A.M.P.; Lima, A.M.; Lousada, J.L.C. Study of Strengthening Solutions for Glued-Laminated Wood Beams of Maritime Pine Wood. Constr. Build. Mater. 2009, 23, 2738–2745. [Google Scholar] [CrossRef]
- Louzada, J.; Fagundo, M.; Azevedo, J.; Moutinho, C.; Jesus, A.; Aranha, J. Caracterização Da Madeira de Pseudotsuga (Pseudotsuga Menziesii); Congresso da Macronésia: Ilhas Canárias, Spain, 2006. [Google Scholar]
- Gonçalves, C.J.C. Caracterização da Madeira de Cryptomeria Japonica d. Don Produzida nos Açores; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2013. [Google Scholar]
- Beall, F.C. Overview of the Use of Ultrasonic Technologies in Research on Wood Properties. Wood Sci. Technol. 2002, 36, 197–212. [Google Scholar] [CrossRef]
- Fujimoto, T.; Kurata, Y.; Matsumoto, K.; Tsuchikawa, S. Application of near Infrared Spectroscopy for Estimating Wood Mechanical Properties of Small Clear and Full Length Lumber Specimens. J. Infrared Spectrosc. 2008, 16, 529–537. [Google Scholar] [CrossRef]
- Green, D.W.; Winandy, J.E.; Kretschmann, D.E. Mechanical Properties of Wood. In Wood Handbook: Wood as an Engineering Material; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; Volume 1, p. 463. [Google Scholar]
- Dinwoodie, J.M. Timber; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-1-135-80810-5. [Google Scholar]
- Lundstrom, T.; Heiz, U.; Stoffel, M.; Stockli, V. Fresh-Wood Bending: Linking the Mechanical and Growth Properties of a Norway Spruce Stem. Tree Physiol. 2007, 27, 1229–1241. [Google Scholar] [CrossRef]
- Low, C.B.; Mckenzie, H.M.; Shelbourne, C.J.A.; Gea, L.D. Sawn Timber and Wood Properties of 21-Year-Old Cupressus Lusitanica, c. Macrocarpa, and Chamaecyparis Nootkatensis × C. Macrocarpa Hybrids. Part 1: Sawn Timber Performance. N. Z. J. For. Sci. 2025, 35, 91–113. [Google Scholar]
- González, R.D.C.; Jerkovic, M. Oligonychus ununguis (Acari: Tetranychidae): Cypress (Cupressus lusitanica MILL.) Pest in Tierras Altas, Panamá. Rev. Investig. Agropecuárias 2022, 4, 21–30. [Google Scholar]
- Demeke, A.D. Status of Cypress Aphid on Cupressus Lusitanica and Juniperus Procera in Protected and Cultivated Forests of South Wollo, Ethiopia. J. For. Res. 2020, 31, 333–337. [Google Scholar] [CrossRef]
- Ismael, A.; Klápště, J.; Stovold, G.T.; Fleet, K.; Dungey, H. Genetic Variation for Economically Important Traits in Cupressus Lusitanica in New Zealand. Front. Plant Sci. 2021, 12, 651729. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.C.F.D.; Brand, M.A.; Balduino, A.L.J.; Cunha, A.B.D. Qualidade energética da madeira e de briquetes produzidos a partir de Cupressus lusitanica Mill. Sci. For. 2015, 43, 1003–1011. [Google Scholar] [CrossRef]
- Dungey, H.S.; Russell, J.H.; Costa E Silva, J.; Low, C.B.; Miller, M.A.; Fleet, K.R.; Stovold, G.T. The Effectiveness of Cloning for the Genetic Improvement of Mexican White Cypress Cupressus lusitanica (Mill.). Tree Genet. Genomes 2013, 9, 443–453. [Google Scholar] [CrossRef]
DBH Class (cm) | Frequency (%) |
---|---|
[3.0–6.0[ | 6 |
[6.0–9.0[ | 17 |
[9.0–12.0[ | 29 |
[12.0–15.0[ | 25 |
[15.0–18.0[ | 15 |
[18.0–21.0[ | 7 |
[>21.0[ | 1 |
Total | 100 |
DBH Class (cm) | DBH (cm) | D Base (cm) | Height (m) |
---|---|---|---|
[3.0–6.0[ | 5.30 | 8.70 | 4.25 |
[6.0–9.0[ | 8.26 | 12.96 | 5.24 |
[9.0–12.0[ | 10.80 | 16.03 | 5.91 |
[12.0–15.0[ | 14.02 | 18.36 | 6.88 |
[15.0–18.0[ | 17.07 | 23.10 | 7.87 |
[18.0–21.0[ | 19.1 | 28.00 | 6.90 |
[>21.0[ | 21.30 | 28.20 | 7.30 |
DBH Class (cm) | Components | Average Weight (kg) | Weight Distribution (%) |
---|---|---|---|
[3.0–6.0[ | Logs | 4.05 | 49.9 |
Branches | 0.86 | 10.6 | |
Small branches | 0.28 | 3.4 | |
Needles | 2.63 | 32.5 | |
Fruits | 0.29 | 3.6 | |
Total | 8.11 | 100.0 | |
[6.0–9.0[ | Logs | 9.68 | 37.8 |
Branches | 4.88 | 19.1 | |
Small branches | 1.11 | 4.4 | |
Needles | 8.46 | 33.0 | |
Fruits | 1.47 | 5.7 | |
Total | 25.61 | 100.0 | |
[9.0–12.0[ | Logs | 15.11 | 42.8 |
Branches | 6.82 | 19.3 | |
Small branches | 1.85 | 5.2 | |
Needles | 9.71 | 27.5 | |
Fruits | 1.86 | 5.3 | |
Total | 35.34 | 100.0 | |
[12.0–15.0[ | Logs | 26.15 | 43.2 |
Branches | 12.66 | 20.9 | |
Small branches | 2.96 | 4.9 | |
Needles | 15.28 | 25.3 | |
Fruits | 3.44 | 5.7 | |
Total | 60.49 | 100.0 | |
[15.0–18.0[ | Logs | 34.40 | 39.4 |
Branches | 25.39 | 29.1 | |
Small branches | 4.68 | 5.4 | |
Needles | 21.84 | 25.0 | |
Fruits | 1.06 | 1.2 | |
Total | 87.37 | 100.0 | |
[18.0–21.0[ | Logs | 34.48 | 39.9 |
Branches | 27.00 | 31.2 | |
Small branches | 5.46 | 6.3 | |
Needles | 17.84 | 20.6 | |
Fruits | 1.67 | 1.9 | |
Total | 86.44 | 100.0 |
Components | Average Weight (kg) | Weight Distribution (%) |
---|---|---|
Logs | 20.73 | 41.3 |
Branches | 11.99 | 23.9 |
Small branches | 2.62 | 5.2 |
Needles | 12.93 | 25.7 |
Fruits | 1.96 | 3.9 |
Total | 50.23 | 100.0 |
Cupressus lusitanica | Pseudot. menziesii 1 | Pinus pinaster 2 | ||
---|---|---|---|---|
Region | Northeast (Portugal) | Northeast (Portugal) | Tâmega (Portugal) | |
Latitude | 41°23′ N | 41°24′ N | 41°20′ to 41°47′ N | |
Longitude | 7°20’ W | 7°06′ W | 7°38′ to 8°02′ W | |
Altitude | (m) | 400 | 710 | 350 to 900 |
Aver. Ann. Precip. | (mm) | 500 to 800 | 690 | >1200 |
Aver. Ann. Temp. | (°C) | 13 to 15 | 12,5 | 10 to 16 |
Stand age | 14 | 15 | 16 | |
Nº trees/ha | 1600 | 1250 | 1650 | |
Dbh | ||||
Average | (cm) | 11.6 | 11.0 | 9.0 |
Aver. domin. tree | (cm) | - | - | 15.8 |
Height | ||||
Average | (m) | 6.1 | 6.0 | - |
Aver. domin. tree | (m) | - | - | 9.5 |
Weight | (% component) | 20.7 (41%) | 29.6 (82%) | 11.0 (67%) |
Logs | (kg) | 12.0 (24%) | 3.4 (9%) | - |
Branches | (kg) | 2.6 (5%) | 0.1 (0%) | - |
Small branches | (kg) | 12.9 (26%) | 2.8 (8%) | - |
Needles/leaves | (kg) | 2.0 (4%) | - | - |
Fruits | (kg) | 29.5 (59%) | 6.3 (18%) | 5.3 (33%) |
Crown | (kg) | 50.2 | 35.9 | 16.3 |
Total biomass | (kg) | 20.7 (41%) | 29.6 (82%) | 11.0 (67%) |
Properties | Average | CV * (%) | |
---|---|---|---|
Anatomical | |||
Ring width | (mm) | 5.9 | 31.3 |
Tracheids length | (mm) | 1.6 | 9.9 |
Grain orientation | (°) | 3.0 | 61.0 |
Physical | |||
Anhydrous density | (kg/m3) | 457 | 8.3 |
Basic density | (kg/m3) | 404 | 9.7 |
12% density | (kg/m3) | 488 | 9.2 |
Total Shrinkage Tang. | (%) | 6.6 | 30.2 |
″ ″ Radial | (%) | 5.1 | 26.7 |
″ ″ Axial | (%) | 1.4 | 42.9 |
″ ″ Volumetric | (%) | 13.1 | 25.7 |
Coef. Shrinkage Tang. | (%) | 0.23 | 20.4 |
″ ″ Radial | (%) | 0.15 | 29.5 |
″ ″ Axial | (%) | 0.04 | 109.9 |
″ ″ Volumetric | (%) | 0.43 | 27.6 |
Coef. Air Stability Tang. | (%) | 0.05 | 0.8 |
″ ″ ″ Radial | (%) | 0.03 | 0.5 |
Drying Differential Tang. | (%) | 4.19 | 1.8 |
″ ″ Radial | (%) | 2.99 | 1.7 |
Fiber Saturat. Point Tang. | (%) | 29.8 | 31.0 |
″ ″ ″ Radial | (%) | 39.5 | 46.1 |
″ ″ ″ Axial | (%) | 61.1 | 67.4 |
″ ″ ″ Volum. | (%) | 32.6 | 32.6 |
Chemical | |||
Extractives content: | |||
Dichloromethane | (%) | 0.4 | 57.0 |
Ethanol | (%) | 3.6 | 20.8 |
Water | (%) | 1.1 | 43.1 |
Total | (%) | 5.1 | 24.6 |
Mechanical | |||
Lower Logs | |||
MOE | (MPa) | 3617.1 | 23.2 |
MOR | (MPa) | 68.9 | 17.2 |
Ultimate Load | (N) | 1156.2 | 17.0 |
Deflection | (mm) | 5.1 | 31.5 |
Upper Logs | |||
MOE | (MPa) | 3592.5 | 20.7 |
MOR | (MPa) | 57.7 | 32.1 |
Ultimate Load | (N) | 956.5 | 32.1 |
Deflection | (mm) | 5.2 | 54.9 |
Knots Lower Logs | |||
Number | 28.8 | 24.1 | |
Dimension | (cm) | 2.8 | 19.9 |
Knots Upper Logs | |||
Number | 19.5 | 47.1 | |
Dimension | (cm) | 1.9 | 33.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lousada, J.; Sandim, A.; Silva, M.E. Use of Cupressus lusitanica for Afforestation in a Mediterranean Climate: Biomass Production and Wood Quality. Forests 2025, 16, 1420. https://doi.org/10.3390/f16091420
Lousada J, Sandim A, Silva ME. Use of Cupressus lusitanica for Afforestation in a Mediterranean Climate: Biomass Production and Wood Quality. Forests. 2025; 16(9):1420. https://doi.org/10.3390/f16091420
Chicago/Turabian StyleLousada, José, André Sandim, and Maria Emília Silva. 2025. "Use of Cupressus lusitanica for Afforestation in a Mediterranean Climate: Biomass Production and Wood Quality" Forests 16, no. 9: 1420. https://doi.org/10.3390/f16091420
APA StyleLousada, J., Sandim, A., & Silva, M. E. (2025). Use of Cupressus lusitanica for Afforestation in a Mediterranean Climate: Biomass Production and Wood Quality. Forests, 16(9), 1420. https://doi.org/10.3390/f16091420