Forest Logging Residue Valorization into Valuable Products According to Circular Bioeconomy
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Collection and Preparation
2.2. Biomass Extraction
2.3. Determination of PACs Content in Extract
2.4. PACs Isolation
2.5. Fungicidal Activity Determination
2.6. Biomass Residue Modification
2.7. Raw Materials, Fertilizer, and Soil Characterization
2.7.1. Wet Chemistry Analysis
2.7.2. FTIR Analysis
2.7.3. Elemental Analysis
2.7.4. ICP-MS Analysis
2.7.5. Determination of Humic Substances in the Fertilizer
2.7.6. Evaluation of the Porous Structure of Fertilizer
2.8. Field Experiments
2.8.1. Wheat Cultivation and Characterization
2.8.2. Radish Cultivation and Characterization
2.8.3. Dill Cultivation, Characterization, and Extraction
2.8.4. Potato Cultivation and Characterization
2.9. Field Experiments with Pine Seedlings
2.10. Statistical Analyses
3. Results and Discussion
3.1. Assessment of Biomass as a Potential Source for PAC-Rich Extract Isolation
3.2. Fungicidal Activity of the Extracts
3.3. Raw Material and Fertilizer Composition Characteristics
3.4. Field Experiments with Raddish, Dill and Potato
3.4.1. Impact of Fertilizer on Radish Growth
3.4.2. Impact of Fertilizer on Dill Growth
3.4.3. Impact of Fertilizer on Potato Growth
3.5. Impact of Fertilizer on Wheat Growth
3.6. Impact of Fertilizer on Pine Seedling Growth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Staněk, L.; Zvěřina, L.; Ulrich, R.; Pavlíková, E.A. A Unique Grubbing Head Prototype for Environmentally Friendly and Sustainable Stump Removal. Forests 2022, 13, 1515. [Google Scholar] [CrossRef]
- Nosek, R.; Holubcik, M.; Jandacka, J. The Impact of Bark Content of Wood Biomass on Biofuel Properties. Bio. Resour. 2015, 11, 44–53. [Google Scholar] [CrossRef]
- Sette, C.R., Jr.; De Moraes, M.D.A.; Coneglian, A.; Ribeiro, R.M.; Hansted, A.L.S.; Yamaji, F.M. Forest Harvest Byproducts: Use of Waste as Energy. Waste Manag. 2020, 114, 196–201. [Google Scholar] [CrossRef]
- Eurostat for Forests, Forestry and Logging. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging (accessed on 1 June 2025).
- Francezon, N.; Stevanovic, T. Integrated Process for the Production of Natural Extracts from Black Spruce Bark. Ind. Crops Prod. 2017, 108, 348–354. [Google Scholar] [CrossRef]
- Santos, M.B.; Sillero, L.; Gatto, D.A.; Labidi, J. Bioactive Molecules in Wood Extractives: Methods of Extraction and Separation, a Review. Ind. Crops Prod. 2022, 186, 115231. [Google Scholar] [CrossRef]
- Noreljaleel, A.E.M.; Wilhelm, A.; Bonnet, S.L. Analysis of Commercial Proanthocyanidins. Part 6: Sulfitation of Flavan-3-Ols Catechin and Epicatechin, and Procyanidin B-3. Molecules 2020, 25, 4980. [Google Scholar] [CrossRef]
- Davidova, S.; Galabov, A.S.; Satchanska, G. Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols. Microorganisms 2024, 12, 2502. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [PubMed]
- Janceva, S.; Andersone, A.; Lauberte, L.; Zaharova, N.; Nikolajeva, V. Fruit Shrubs’ Twigs as a Source of Valuable Oligomeric Polyphenolic Compounds with Antibacterial and Antifungal Potential. ETR 2024, 1, 173–176. [Google Scholar] [CrossRef]
- Greger, M.; Landberg, T.; Vaculík, M. Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. Plants 2018, 7, 41. [Google Scholar] [CrossRef]
- Andersone, A.; Janceva, S.; Zaharova, N.; Svarta, A.; Telysheva, G. Lignin and Lignocellulose-Based Organomineral Complex for Organic Agriculture. In Proceedings of the 23rd International Multidisciplinary Scientific GeoConference SGEM 2023, Albena, Bulgaria, 3–9 July 2023; pp. 247–256. [Google Scholar] [CrossRef]
- Plant Nutrients in Soil. Available online: https://www.dpi.nsw.gov.au/agriculture/soils/soil-testing-and-analysis/plant-nutrients (accessed on 18 August 2025).
- Vasileios, F.; Ioannis, P.; Nikolaos, S.; Ioannis, E.; Kostas, T. Analysis of Logging Forest Residues as an Energy Source. J. Agric. Inform. 2018, 9, 14–25. [Google Scholar] [CrossRef]
- Stulpinaite, U.; Tilvikiene, V.; Zvicevicius, E. Co-Pelletization of Hemp Residues and Agricultural Biomass: Effect on Pellet Quality and Stability. Energies 2023, 16, 5900. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Bai, J. Content, Modes of Occurrence, and Significance of Phosphorous in Biomass and Biomass Ash. J. Energy Inst. 2023, 108, 101205. [Google Scholar] [CrossRef]
- Mühlenberg, J.; Pollex, A.; Zeng, T. Development of a Simple and Rapid Test Method for Potassium (RAPPOD) to Ensure Fuel Quality of Woody Biomass Fuels. Biomass Bioenergy 2021, 152, 106172. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Zając, G.; Hawrot-Paw, M.; Koniuszy, A. Evaluation of the Quality of Wood Pellets Available on the Market. E3S Web Conf. 2020, 171, 01015. [Google Scholar] [CrossRef]
- Mason, P.E.; Darvell, L.I.; Jones, J.M.; Williams, A. Release of Gas Phase Potassium during Combustion of Biomass—Experimental and Modelling Observations. VGB Power Tech. J. 2017, 1, 74–77. [Google Scholar]
- Cao, W.; Li, J.; Lin, L.; Zhang, X. Release of Potassium in Association with Structural Evolution during Biomass Combustion. Fuel 2021, 287, 119524. [Google Scholar] [CrossRef]
- Trace Elements in Biochemistry. CABI Digital Library. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19670702103 (accessed on 18 August 2025).
- Chen, A.; Feng, X.; Dorjsuren, B.; Chimedtseren, C.; Damda, T.-A.; Zhang, C. Traditional Food, Modern Food and Nutritional Value of Sea Buckthorn (Hippophae rhamnoides L.): A Review. J. Future Foods 2023, 3, 191–205. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, A.; Kaur, H.; Singh, K.; Guha, S.; Choudhary, D.R.; Sonkar, A.; Mehta, S.; Husen, A. Exploring the Role of Silicon in Enhancing Sustainable Plant Growth, Defense System, Environmental Stress Mitigation and Management. Discov. Appl. Sci. 2025, 7, 406. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of Silicon on Heavy Metal Uptake at the Soil-Plant Interphase: A Review. Ecotoxicol. Environ. Saf. 2021, 222, 112510. [Google Scholar] [CrossRef] [PubMed]
- Thakral, V.; Raturi, G.; Sudhakaran, S.; Mandlik, R.; Sharma, Y.; Shivaraj, S.M.; Tripathi, D.K.; Sonah, H.; Deshmukh, R. Silicon, a Quasi-Essential Element: Availability in Soil, Fertilizer Regime, Optimum Dosage, and Uptake in Plants. Plant Physiol. Biochem. 2024, 208, 108459. [Google Scholar] [CrossRef] [PubMed]
- Janceva, S.; Lauberte, L.; Arshanitsa, A.; Akishin, J.; Dizhbite, T.; Telysheva, G. Optimization of Proanthocyanidins Extraction from Bark of Local Hardwood. Key Eng. Mater. 2018, 762, 163–168. [Google Scholar] [CrossRef]
- Andersone, A.; Janceva, S.; Lauberte, L.; Skadins, I.; Nikolajeva, V.; Logviss, K.; Zaharova, N.; Rieksts, G.; Telysheva, G. A Comparative Analysis of the Proanthocyanidins from Fruit and Non-Fruit Trees and Shrubs of Northern Europe: Chemical Characteristics and Biological Activity. Sustain. Chem. Pharm. 2023, 36, 101266. [Google Scholar] [CrossRef]
- Jung, J.Y.; Ha, S.Y.; Yang, J.-K. Response Surface Optimization of Phenolic Compounds Extraction from Steam Exploded Oak Wood (Quercus mongolica). J. Korean Wood Sci. Technol. 2017, 45, 809–827. [Google Scholar] [CrossRef]
- Arunachalam, K.; Sasidharan, S.P. Experiments of Antifungal Activities. In Bioassays in Experimental and Preclinical Pharmacology; Springer Protocols Handbooks; Springer: New York, NY, USA, 2021; pp. 91–103. [Google Scholar] [CrossRef]
- Moure Abelenda, A.; Semple, K.T.; Lag-Brotons, A.J.; Herbert, B.M.J.; Aggidis, G.; Aiouache, F. Effects of Wood Ash-Based Alkaline Treatment on Nitrogen, Carbon, and Phosphorus Availability in Food Waste and Agro-Industrial Waste Digestates. Waste Biomass Valor. 2021, 12, 3355–3370. [Google Scholar] [CrossRef]
- LVS EN 13040:2008; Soil Improvers and Growing Media—Sample Preparation for Chemical and Physical Tests, Determination of Dry Matter Content, Moisture Content and Laboratory Compacted Bulk Density. iTeh, Inc.: Newark, DE, USA, 2008.
- LVS EN 13039:2012; Soil Improvers and Growing Media—Determination of Organic Matter Content and Ash. iTeh, Inc.: Newark, DE, USA, 2012.
- LVS ISO 10390:2006; Soil Quality—Determination of Ph. iTeh, Inc.: Newark, DE, USA, 2006.
- ISO 21436:2020; Requirements for Food Quality Schemes, Procedures for the Implementation, Operation, Monitoring, and Control Thereof. iTeh, Inc.: Newark, DE, USA, 2014. Available online: https://likumi.lv/ta/id/268347-prasibas-partikas-kvalitates-shemam-to-ieviesanas-darbibas-uzraudzibas-un-kontroles-kartiba (accessed on 18 August 2025).
- Sieper, H.P.; Lutz, L.; Haiber, G. 125 Years in Elemental Analysis; Elementar: Langenselbold, Germany, 2023. [Google Scholar]
- Elementar Variomacro Cube (CHNS) Methodology. Available online: https://analytical.unsw.edu.au/sites/default/files/facility_section_related_files/elementar_variomacro_chns_methodology_0.pdf (accessed on 18 August 2025).
- Naccarato, A.; Vommaro, M.L.; Amico, D.; Sprovieri, F.; Pirrone, N.; Tagarelli, A.; Giglio, A. Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species Tenebrio Molitor. Toxics 2023, 11, 499. [Google Scholar] [CrossRef]
- Isolation of IHSS Soil Fulvic and Humic Acids. Natural Organic Matter Research. Available online: https://humic-substances.org/isolation-of-ihss-soil-fulvic-and-humic-acids/ (accessed on 18 August 2025).
- Pires, J.; Fernandes, R.; Pinto, M.; Batista, M. Microporous Volumes from Nitrogen Adsorption at 77 K: When to Use a Different Standard Isotherm? Catalysts 2021, 11, 1544. [Google Scholar] [CrossRef]
- Latvijas Vides, Ģeologijas un Meteroroloģijas Centrs. Available online: https://videscentrs.lvgmc.lv/laika-noverojumi (accessed on 18 August 2025).
- ISO 520:2010; Cereals and Pulses—Determination of the Mass of 1000 Grains. International Organization for Standardization: Geneva, Switzerland, 2010.
- Zhou, W.; Zhou, Q.; Lei, Y.; Wu, P.; Xu, J.; Xu, C. A Rapid Determination of Wheat Flour’s Components Based on near Infrared Spectroscopy and Chemometrics. Vib. Spectrosc. 2023, 130, 103650. [Google Scholar] [CrossRef]
- ISO 3093:2009; Wheat, Rye and Their Flours, Durum Wheat and Durum Wheat Semolina—Determination of the Falling Number According to Hagberg-Perten. International Organization for Standardization: Geneva, Switzerland, 2009.
- Andersone, A.; Janceva, S.; Lauberte, L.; Zaharova, N.; Chervenkov, M.; Jurkjane, V.; Jashina, L.; Rieksts, G.; Telysheva, G. Granulated Animal Feed and Fuel Based on Sea Buckthorn Agro-Waste Biomass for Sustainable Berry Production. Sustainability 2023, 15, 11152. [Google Scholar] [CrossRef]
- Shay, P.-E.; Trofymow, J.A.; Constabel, C.P. An Improved Butanol-HCl Assay for Quantification of Water-Soluble, Acetone:Methanol-Soluble, and Insoluble Proanthocyanidins (Condensed Tannins). Plant Methods 2017, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Huang, T.; Tian, B.; Zhan, J. Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants. Foods 2020, 9, 1774. [Google Scholar] [CrossRef]
- Janceva, S.; Lauberte, L.; Dizhbite, T.; Telysheva, G.; Krasilnikova, J.; Dzenis, M. Proanthocyanidins Rich Extracts from Bark of Deciduous Trees Growing in Latvia as Antioxidant Additive for Lipid Based Systems. In Proceedings of the 14th European Workshop on Lignocellulosics and Pulp, Autrans, France, 28–30 June 2016; pp. 413–416. [Google Scholar]
- Levdanskiy, V.A.; Korol’kova, I.V.; Levdanskiy, A.V.; Kuznetsov, B.N. Isolation and Study of Proanthocyanidins from Bark of Pine Pinus sylvestris L. Russ. J. Bioorg. Chem. 2021, 47, 1445–1450. [Google Scholar] [CrossRef]
- Vivas, N.; Nonier, M.-F.; Pianet, I.; Vivas De Gaulejac, N.; Fouquet, É. Proanthocyanidins from Quercus petraea and Q. robur Heartwood: Quantification and Structures. Comptes Rendus. Chim. 2005, 9, 120–126. [Google Scholar] [CrossRef]
- Liu, J.; Bai, J.; Jiang, G.; Li, X.; Wang, J.; Wu, D.; Owusu, L.; Zhang, E.; Li, W. Anti-Tumor Effect of Pinus massoniana Bark Proanthocyanidins on Ovarian Cancer through Induction of Cell Apoptosis and Inhibition of Cell Migration. PLoS ONE 2015, 10, e0142157. [Google Scholar] [CrossRef]
- Nechita, A.; Filimon, R.V.; Filimon, R.M.; Colibaba, L.-C.; Gherghel, D.; Damian, D.; Pașa, R.; Cotea, V.V. In Vitro Antifungal Activity of a New Bioproduct Obtained from Grape Seed Proanthocyanidins on Botrytis cinerea Mycelium and Spores. Not. Bot. Horti Agrobot. 2018, 47, 418–425. [Google Scholar] [CrossRef]
- Conifer Root and Butt Rot (Heterobasidion annosum). Available online: https://www.forestresearch.gov.uk/tools-and-resources/fthr/pest-and-disease-resources/conifer-root-and-butt-rot-heterobasidion-annosum/ (accessed on 5 May 2025).
- Piri, T.; Vainio, E.J. Significance of Heterobasidion Species among Wood Decay Fungi in Northern Peatland Forests. For. Ecol. Manag. 2024, 568, 122148. [Google Scholar] [CrossRef]
- Alksne, L.; Nikolajeva, V.; Petriņa, Z.; Eze, D.; Gaitnieks, T. Influence of Trichoderma isolates and Phlebiopsis gigantea on the growth of Heterobasidion parviporum and wood decay of Norway spruce in controlled conditions. Environ. Exp. Biol. 2015, 13, 159–168. [Google Scholar]
- Available online: https://www.crop.bayer.com.au/products/fungicides/teldor-500-sc-fungicide (accessed on 12 July 2025).
- Available online: https://www.syngenta.lv/product/crop-protection/fungicids/amistar-250-sc (accessed on 14 July 2025).
- Available online: https://crop-solutions.basf.com.au/products/opus-125 (accessed on 12 July 2025).
- Available online: https://www.syngenta.lv/product/crop-protection/fungicids/switch-625-wg (accessed on 15 July 2025).
- Available online: https://www.scandagra.lv/produkts/amistar-250-sc/ (accessed on 15 July 2025).
- Chang, X.; Pei, Z.; Wang, X.; Wang, H.; Mu, J.; Ma, Y.; Zhang, M.; Zhang, K.; Du, L. Divergent Responses of Plant Lignin and Microbial Necromass to the Contribution of Soil Organic Carbon under Organic and Chemical Fertilization. Front. Microbiol. 2025, 16, 1586791. [Google Scholar] [CrossRef] [PubMed]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Sikora, L.J.; Filgueira, R.R.; Fournier, L.L.; Rawls, W.J.; Pachepsky, Y.A. Soil Surface Properties Affected by Organic By-Products. Int. Agrophys. 2002, 16, 289–295. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 15th ed.; Pearson: Columbus, OH, USA, 2016. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Rostaei, M.; Fallah s Lorigooini, Z.; Surki, A.A. The effect of organic manure and chemical fertilizer on essential oil, chemical compositions and antioxidant activity of dill (Anethum graveolens) in sole and intercropped with soybean (Glycine max). J. Clean. Prod. 2018, 199, 18–26. [Google Scholar] [CrossRef]
- Golubkina, N.; Moldovan, A.; Fedotov, M.; Kekina, H.; Kharchenko, V.; Folmanis, G.; Alpatov, A.; Caruso, G. Iodine and Selenium Biofortification of Chervil Plants Treated with Silicon Nanoparticles. Plants 2021, 10, 2528. [Google Scholar] [CrossRef]
- Hou, J.; Xing, C.; Zhang, J.; Wang, Z.; Liu, M.; Duan, Y.; Zhao, H. Increase in Potato Yield by the Combined Application of Biochar and Organic Fertilizer: Key Role of Rhizosphere Microbial Diversity. Front. Plant Sci. 2024, 15, 1389864. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhao, Y.; Zhang, W.; Sui, Y.; Jin, D.; Xin, W.; Yi, J.; He, D. Biochar Prepared at Different Pyrolysis Temperatures Affects Urea-Nitrogen Immobilization and N2 O Emissions in Paddy Fields. PeerJ 2019, 7, e7027. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, S.; Liu, H.; Li, J.; Zaman, Q.U.; Sultan, K.; Rehman, M.; Jeridi, M.; Siddiqui, S.; Fahad, S.; et al. Maize Straw Biochar Can Alleviate Heavy Metals Stress in Potato by Improving Soil Health. S. Afr. J. Bot. 2023, 162, 391–401. [Google Scholar] [CrossRef]
- Lebedeva, G.; Solodovnik, V.; Telysheva, G.; Vigovskis, J.; Švarta, A. Use of Lignosilicon to Improve the Harvest and Quality Parameters of Potato. ETR 2015, 2, 282–286. [Google Scholar] [CrossRef]
- Schaller, J.; Macagga, R.; Kaczorek, D.; Augustin, J.; Barkusky, D.; Sommer, M.; Hoffmann, M. Increased Wheat Yield and Soil C Stocks after Silica Fertilization at the Field Scale. Sci. Total Environ. 2023, 887, 163986. [Google Scholar] [CrossRef]
Sample Abbreviation | Material Type | Dominant Species | Trees or Branches Diameters, cm | Collection Year, Month Period |
---|---|---|---|---|
S1 | Understory trees | Grey alder, aspen | Up to 10 | 2023, July–September |
S2 | Branches Pruned from mature trees | Grey alder, black alder | Up to 5 | 2023, October–December |
S3 | Understory trees | Birch, grey alder | Up to 8 | 2024, January–March |
S4 | Understory trees | Grey alder, black alder | Up to 10 | 2024, April–June |
S5 | Understory trees | Baltic pine, Norway spruce | Up to 5 | 2024, July–September |
S6 | Pine bark | Baltic pine | - | 2024, October–December |
S7 | Understory trees | Aspen and grey alder | Up to 10 | 2025, January–March |
Characteristics | Standard |
---|---|
Humidity, % | LVS EN 13040:2008 [31] |
Dry matter (DM), % | LVS EN 13040:2008 [31] |
Organic matter content, % | LVS EN 13039:2012 [32] |
pH | LVS ISO 10390:2006 [33] |
Lignin content in sample, %/DM (Klason method) * | ISO 21436:2020 [34] |
Culture and Species | Variety | Vegetation Period | Remarks * | Experimental Field (Coordinates) | Plot Size |
---|---|---|---|---|---|
Winter wheat (Triticum aestivum L.) | Edvins | 27 September 2024–15 March 2025 | A | 56°69.275′ Z, E 25°14.173′ | 0.9 m2; 2 × 0.45 m (3 rows) |
Spring wheat (Triticum aestivum L.) | Robijs | 2 May 2025–25 July 2025 | B | 56°69.275′ Z, E 25°14.173′ | 13.5 m2; 1.5 m × 9 m (3 rows) |
Potatoes (Solanum tuberosum L.) | Monta | 20 May 2024–27 August 2024 | C | 56°69.275′ Z, E 25°14.173′ | 12.6 m2 (1.4 m × 9 m) |
Dill (Anethum graveolens L.) | Thalia | 7 September 2023–3 October 2023 | D | 56°69.275′ Z, E 25°14.173′ | 0.9 m2 (2.0 m × 0.45 m) |
Radish (Raphanus sativus L.) | Rosso Tondo | 2 August 2023–7 September 2023 | E | 56°69.275′ Z, E 25°14.173′ | 0.9 m2 (2.0 m × 0.45 m) |
Pine (Pinus Sylvestris) | - | 1 September 2023– | - | 56°44′27.4″ N, 23°45′01.7″ E | 0.5 ha |
Sample | Botrytis cinerea | Mycosphaerella sp. | Heterobasidion annosum | Heterobasidion parviporum |
---|---|---|---|---|
MIC/MFC, mg/mL | ||||
PACs | 25/50 | 25/50 | 12.5/12.5 | 12.5/12.5 |
Extract containing 36% PACs | 12.5/25 | 25/50 | 6.25/12.5 | 6.25/12.5 |
PACs-free fraction | 12.5/25 | 25/50 | 25/50 | 25/50 |
Active Compound | Commercial Name | Preparation Concentration | Application Dose | Pathogenic Fungi | Preparation Type |
---|---|---|---|---|---|
Fenhexamid | Teldor 500 SC [55] | 500 g L−1 | 0.8–1.5 L ha−1 | Botrytis cinerea; Mycosphaerella sp. | Synthetic fungicidal agent |
Azoxystrobin | Amistar 250 SC [56] | 250 g L−1 | 0.8–1.5 L ha−1 | Botrytis cinerea; Mycosphaerella sp. | Synthetic fungicidal agent |
Epoxiconazole | Opus 125 SC [57] | 125 g L−1 | 0.4–0.8 L ha−1 | Botrytis cinerea; Mycosphaerella sp. | Synthetic fungicidal agent |
Cyprodinil + Fludioxonil | Switch 62.5 WD [58] | 375 g kg−1 + 250 g kg−1 | 0.8–1.0 kg ha−1 | Botrytis cinerea; Mycosphaerella sp. | Synthetic fungicidal agent |
Azoxystrobin | Amistar 250 SC [59] | 250 g L−1 | 0.8–1.5 L ha−1 | Botrytis cinerea; Mycosphaerella sp. | Synthetic fungicidal agent |
PACs | - | 12.5 g L−1 | - | Heterobasidion annosum, H. parviporum | Biological fungicide agent |
PACs | - | 50 g L−1 | - | Botrytis cinerea; Mycosphaerella sp. | Biological fungicide agent |
Extract containing 36% PACs | - | 12.5 g L−1 | - | Heterobasidion annosum, H. parviporum | Biological fungicide agent |
Extract containing 36% PACs | - | 25 g L−1 | - | Botrytis cinerea | Biological fungicide agent |
Extract containing 36% PACs | - | 50 g L−1 | - | Mycosphaerella sp. | Biological fungicide agent |
Plot Variant | Total Yield of Radish, kg m−2 | Standard Yield of Radish, kg m−2 | Standard Yield, % of Total Radish Yield | Average Weight of Radish, g |
---|---|---|---|---|
F0 * | 1.99 a | 1.62 a | 81 a | 10.6 a |
F1 ** | 2.67 b | 2.25 b | 84 b | 13.4 b |
Plot Variant | Total Yield of Dill Green Mass, kg m−2 | The Above-Ground Part of the Dill Green Mass from the Total Mass of the Plant, % |
---|---|---|
F0 * | 0.93 | 86.3 |
F1 ** | 1.32 a | 88.2 |
Plot Variant | Total Yield, t ha−1 | Commercial Production | Fraction Yield, t ha−1 | |||
---|---|---|---|---|---|---|
t ha−1 | % | Tubers, d * < 35 mm | Tubers, d * = 35–55 mm | Tubers, d * > 55 mm | ||
F0 ** | 13.93 b | 11.83 b | 84.9 | 2.10 | 10.24 | 1.59 |
F1 *** | 20.01 a | 17.20 a | 86.0 | 2.81 | 13.60 | 3.60 |
Plot Variant | Yield of Wheat, t ha−1 | Protein Content in Grain, % | Gluten Content, % | Starch Content, % | Zeleny Index, mL | Volume Weight, g L−1 | Falling Number, s |
---|---|---|---|---|---|---|---|
F0 * | 2.82 b | 13.5 | 25.7 | 65.9 | 51.86 | 726.6 | 300 |
F1 ** | 3.43 a | 12.4 | 23.1 | 67.0 | 43.11 | 729.0 | 292 |
Duration of Growth in the Plantation | Length of the AGP * of PS, cm | Root Length, cm | Length of the AGP of PS **, cm | Root Length, cm |
---|---|---|---|---|
Control | Fertilizer 40 kg ha−1 | |||
Parameters of initial PS ** | 12 ± 4 | 15 ± 3 | 12 ± 4 | 15 ± 3 |
3 month | 14 ± 4 | - | 16 ± 5 | - |
6 month | 22 ± 3 | 26 ± 3 | 24 ± 5 | 29 ± 5 |
9 month | 26 ± 3 | 29 ± 6 | 32 ± 3 | 33 ± 4 |
12 month | 32 ± 4 | 36 ± 3 | 39 ± 3 | 52 ± 7 |
15 month | 33 ± 8 | - | 41 ± 3 | - |
18 month | 34 ± 6 | 35 ± 7 | 43 ± 6 | 61 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janceva, S.; Svarta, A.; Nikolajeva, V.; Zaharova, N.; Rieksts, G.; Andersone, A. Forest Logging Residue Valorization into Valuable Products According to Circular Bioeconomy. Forests 2025, 16, 1418. https://doi.org/10.3390/f16091418
Janceva S, Svarta A, Nikolajeva V, Zaharova N, Rieksts G, Andersone A. Forest Logging Residue Valorization into Valuable Products According to Circular Bioeconomy. Forests. 2025; 16(9):1418. https://doi.org/10.3390/f16091418
Chicago/Turabian StyleJanceva, Sarmite, Agrita Svarta, Vizma Nikolajeva, Natalija Zaharova, Gints Rieksts, and Anna Andersone. 2025. "Forest Logging Residue Valorization into Valuable Products According to Circular Bioeconomy" Forests 16, no. 9: 1418. https://doi.org/10.3390/f16091418
APA StyleJanceva, S., Svarta, A., Nikolajeva, V., Zaharova, N., Rieksts, G., & Andersone, A. (2025). Forest Logging Residue Valorization into Valuable Products According to Circular Bioeconomy. Forests, 16(9), 1418. https://doi.org/10.3390/f16091418