Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of Phytophysiognomies
2.3. Inventory Procedures
2.4. Data Analysis
3. Results
3.1. Successional Forest
3.2. Transitional Forest
3.3. Open Ombrophilous Forest
3.4. Comparative Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barlow, J.; Berenguer, E.; Carmenta, R.; França, F. Clarifying Amazonia’s Burning Crisis. Glob. Change Biol. 2020, 26, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Libonati, R.; DaCamara, C.C.; Peres, L.F.; Sander De Carvalho, L.A.; Garcia, L.C. Rescue Brazil’s Burning Pantanal Wetlands. Nature 2020, 588, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Alencar, A.A.; Brando, P.M.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 2015, 25, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Lewis, S.L.; Affum-Baffoe, K.; Castilho, C.; Costa, F.; Sanchez, A.C.; Ewango, C.E.N.; Hubau, W.; Marimon, B.; Monteagudo-Mendoza, A.; et al. Long-Term Thermal Sensitivity of Earth’s Tropical Forests. Science 2020, 368, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Jimenez, J.C.; Espinoza, J.-C.; Cunha, A.P.; Aragão, L.E.O. Increased Climate Pressure on the Agricultural Frontier in the Eastern Amazonia–Cerrado Transition Zone. Sci. Rep. 2022, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Silvério, D.; Silva, S.; Alencar, A.; Moutinho, P. Amazônia em Chamas; Nota Técnica no. 12/Instituto de Pesquisa Ambiental da Amazônia–IPAM. IPAM Amaz. 2019. Available online: https://ipam.org.br/wp-content/uploads/2024/06/Amazonia-em-Chamas-12_v01.pdf (accessed on 18 September 2024).
- Burton, C.; Rifai, S.; Malhi, Y. Intercomparison and Evaluation of Gridded Climate Products over Tropical Forests during the 2015/2016 El Niño. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170406. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, E.; Lennox, G.D.; Ferreira, J.; Malhi, Y.; Aragão, L.E.O.C.; Barreto, J.R.; Del Bon Espírito-Santo, F.; Figueiredo, A.E.S.; França, F.; Gardner, T.A.; et al. Tracking the Impacts of El Niño Drought and Fire in Human-Modified Amazonian Forests. Proc. Natl. Acad. Sci. USA 2021, 118, e2019377118. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Muelbert, A.; Phillips, O.L.; Brienen, R.J.W.; Fauset, S.; Sullivan, M.J.P.; Baker, T.R.; Chao, K.-J.; Feldpausch, T.R.; Gloor, E.; Higuchi, N.; et al. Tree Mode of Death and Mortality Risk Factors across Amazon Forests. Nat. Commun. 2020, 11, 5515. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.M.; Marimon, B.S.; Esquivel-Muelbert, A.; Marimon, B.H., Jr.; Morandi, P.S.; Elias, F.; Phillips, O.L. Climate and Crown Damage Drive Tree Mortality in Southern Amazonian Edge Forests. J. Ecol. 2022, 110, 876–888. [Google Scholar] [CrossRef]
- Brasil. Projeto RADAMBRASIL: Folha SC. 20 Purus; Geologia, Geomorfologia, Pedologia, Vegetação e Uso Potencial da Terra; Ministério das Minas e Energia, Departamento Nacional de Produção Mineral: Rio de Janeiro, Brazil, 1978.
- Marques, E.Q.; Marimon-Junior, B.H.; Marimon, B.S.; Matricardi, E.A.T.; Mews, H.A.; Colli, G.R. Redefining the Cerrado–Amazonia Transition: Implications for Conservation. Biodivers Conserv. 2020, 29, 1501–1517. [Google Scholar] [CrossRef]
- Marimon-Junior, B.H.; Haridasan, M. Comparação da Vegetação Arbórea e Características Edáficas de um Cerradão e um Cerrado sensu stricto em Áreas Adjacentes sobre Solo Distrófico no Leste de Mato Grosso, Brasil. Acta Bot. Bras. 2005, 19, 913–926. [Google Scholar] [CrossRef]
- Silveira, M.V.F.; Petri, C.A.; Broggio, I.S.; Chagas, G.O.; Macul, M.S.; Leite, C.C.S.S.; Ferrari, E.M.M.; Amim, C.G.V.; Freitas, A.L.R.; Motta, A.Z.V.; et al. Drivers of Fire Anomalies in the Brazilian Amazon: Lessons Learned from the 2019 Fire Crisis. Land 2020, 9, 516. [Google Scholar] [CrossRef]
- Ferreira Barbosa, M.L.; Delgado, R.C.; Forsad de Andrade, C.; Teodoro, P.E.; Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Recent Trends in the Fire Dynamics in Brazilian Legal Amazon: Interaction between the ENSO Phenomenon, Climate and Land Use. Environ. Dev. 2021, 39, 100648. [Google Scholar] [CrossRef]
- Deutsch, S.; Fletcher, R. The ‘Bolsonaro Bridge’: Violence, Visibility, and the 2019 Amazon Fires. Environ. Sci. Policy 2022, 132, 60–68. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Mataveli, G.; Conceição, K.V.; Adami, M.; Petrone, F.G.; Sanches, I.D. AMACRO: The Newer Amazonia Deforestation Hotspot and a Potential Setback for Brazilian Agriculture. Perspect. Ecol. Conserv. 2024, 22, 93–100. [Google Scholar] [CrossRef]
- Ribeiro, A.F.S.; Santos, L.; Randerson, J.T.; Uribe, M.R.; Alencar, A.A.C.; Macedo, M.N.; Morton, D.C.; Zscheischler, J.; Silvestrini, R.A.; Rattis, L.; et al. The Time since Land-Use Transition Drives Changes in Fire Activity in the Amazon-Cerrado Region. Commun. Earth Environ. 2024, 5, 96. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Soares-Filho, B.S.; Oliveira, U.; Van der Hoff, R.; Carvalho-Ribeiro, S.M.; Oliveira, A.R.; Scheepers, L.C.; Vargas, B.A.; Rajão, R.G. Costs and effectiveness of public and private fire management programs in the Brazilian Amazon and Cerrado. Forest Policy Econ. 2021, 127, e102447. [Google Scholar] [CrossRef]
- Feldpausch, T.R.; Carvalho, L.; Macario, K.D.; Ascough, P.L.; Flores, C.F.; Coronado, E.N.H.; Kalamandeen, M.; Phillips, O.L.; Staff, R.A. Forest Fire History in Amazonia Inferred from Intensive Soil Charcoal Sampling and Radiocarbon Dating. Front. For. Glob. Change 2022, 5, e815438. [Google Scholar] [CrossRef]
- Silva Arruda, V.L.; Alencar, A.A.C.; Carvalho Júnior, O.A.; de Figueiredo Ribeiro, F.; de Arruda, F.V.; Conciani, D.E.; da Silva, W.V. Assessing four decades of fire behavior dynamics in the Cerrado biome (1985 to 2022). Fire Ecol. 2024, 20, e64. [Google Scholar] [CrossRef]
- França, H.; Neto, M.B.R.; Setzer, A.W. O Fogo no Parque Nacional das Emas; Ministério do Meio Ambiente: Brasília, Brazil, 2007.
- França, H. Metodologia de Identificação e Quantificação de Áreas Queimadas no Cerrado com Imagens AVHRR/NOAA. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 1999; p. 133. [Google Scholar]
- Ramos-Neto, M.B.; Pivello, V.R. Lightning Fires in a Brazilian Savanna National Park: Rethinking Management Strategies. Environ. Manage. 2000, 26, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.P.; Francelino, M.R.; Daher, M.; Leles, P.S.D.S.; de Andrade, F.C. Comparação de Modelos Estatísticos para Estimativa da Biomassa de Árvores, e Estimativa do Estoque de Carbono acima do Solo em Cerrado. Ciênc. Florest. 2019, 29, 255–269. [Google Scholar] [CrossRef]
- Boulton, C.A.; Lenton, T.M.; Boers, N. Pronounced Loss of Amazon Rainforest Resilience since the Early 2000s. Nat. Clim. Change 2022, 12, 271–278. [Google Scholar] [CrossRef]
- Barlow, J.; Haugaasen, T.; Peres, C.A. Effects of Ground Fires on Understorey Bird Assemblages in Amazonian Forests. Biol. Conserv. 2002, 105, 157–169. [Google Scholar] [CrossRef]
- Pereira, M.B.; Elias, F.; Teixeira, N.D.A.; Feldpausch, T.; Marimon-Junior, B.H.; Marimon, B.S. Post-Fire Changes in Tree Diversity, Composition and Carbon in Seasonal Forests in the Southern Amazonia. For. Ecol. Manag. 2025, 578, e122447. [Google Scholar] [CrossRef]
- Barlow, J.; Peres, C.A. Effects of Single and Recurrent Wildfires on Fruit Production and Large Vertebrate Abundance in a Central Amazonian Forest. Biodivers. Conserv. 2006, 15, 985–1012. [Google Scholar] [CrossRef]
- Barlow, J.; Peres, C.A. Fire-Mediated Dieback and Compositional Cascade in an Amazonian Forest. Phil. Trans. R. Soc. B 2008, 363, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- Góes-Neto, A.; Saliba, A.; Lopes, D. Coleção Desafios Globais, 1st ed.; UFMG: Belo Horizonte, MG, Brazil, 2021; Volume 2, p. 37. [Google Scholar]
- Vedovato, L.B.; Aragão, L.E.O.C.; Almeida, D.R.A.; Bartholomew, D.C.; Assis, M.; Dalagnol, R.; Gorgens, E.B.; Silva-Junior, C.H.L.; Ometto, J.P.; Pontes-Lopes, A.; et al. Impacts of Fire on Canopy Structure and Its Resilience Depend on Successional Stage in Amazonian Secondary Forests. Remote Sens. Ecol. Conserv. 2025, 363, 1787–1794. [Google Scholar] [CrossRef]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragão, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The Drivers and Impacts of Amazon Forest Degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.; Lefebvre, P.; Silva, U.L.; Tomasella, J.; Schlesinger, P.; Solórzano, L.; Moutinho, P.; Ray, D.; Benito, J.G. Amazon Drought and Its Implications for Forest Flammability and Tree Growth: A Basin-Wide Analysis. Glob. Change Biol. 2004, 10, 704–717. [Google Scholar] [CrossRef]
- Prestes, N.C.C.D.S.; Massi, K.G.; Silva, E.A.; Nogueira, D.S.; de Oliveira, E.A.; Freitag, R.; Marimon, B.S.; Marimon-Junior, B.H.; Keller, M.; Feldpausch, T.R. Fire Effects on Understory Forest Regeneration in Southern Amazonia. Front. For. Glob. Change 2020, 3, e10. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Laurance, W.F. Fire as a Large-Scale Edge Effect in Amazonian Forests. J. Trop. Ecol. 2002, 18, 311–325. [Google Scholar] [CrossRef]
- Marimon, B.S.; Lima, E.S.; Duarte, T.G.; Chieregatto, L.C.; Ratter, J.A. Observations on the Vegetation of Northeastern Mato Grosso, Brazil. IV. An Analysis of the Cerrado-Amazonian Forest Ecotone. Edinb. J. Bot. 2006, 63, 323–341. [Google Scholar] [CrossRef]
- Morandi, P.S.; Marimon-Junior, B.H.; Oliveira, E.A.; Reis, S.M.; Xavier Valadão, M.B.; Forsthofer, M.; Passos, F.B.; Marimon, B.S. Vegetation Succession in the Cerrado–Amazonian Forest Transition Zone of Mato Grosso State, Brazil. Edinb. J. Bot. 2016, 73, 83–93. [Google Scholar] [CrossRef]
- Passos, F.B.; Marimon, B.S.; Phillips, O.L.; Morandi, P.S.; das Neves, E.C.; Elias, F.; Marimon Junior, B.H. Savanna Turning into Forest: Concerted Vegetation Change at the Ecotone between the Amazon and “Cerrado” Biomes. Braz. J. Bot. 2018, 41, 611–619. [Google Scholar] [CrossRef]
- Elias, F.; Marimon Junior, B.H.; de Oliveira, F.J.M.; de Oliveira, J.C.A.; Marimon, B.S. Soil and Topographic Variation as a Key Factor Driving the Distribution of Tree Flora in the Amazonia/Cerrado Transition. Acta Oecologica 2019, 100, 103467. [Google Scholar] [CrossRef]
- Nogueira, D.S.; Marimon, B.S.; Marimon-Junior, B.H.; de Oliveira, E.A.; Morandi, P.; Reis, S.M.; Elias, F.; Neves, E.C.; Feldpausch, T.R.; Lloyd, J.; et al. Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge. Environ. Conserv. 2019, 46, 285–292. [Google Scholar] [CrossRef]
- Guedes, D.M. Resistência das Árvores do Cerrado ao Fogo: Papel da Casca como Isolante Térmico. Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 1993; p. 113. [Google Scholar]
- Coutinho, L.M. Fire in the Ecology of the Brazilian Cerrado. In Fire in the Tropical Biota; Goldammer, J.G., Ed.; Springer: Berlin, Germany, 1990; pp. 82–105. [Google Scholar]
- Caioni, C.; Caioni, S.; Silva, A.C.; Parente, T.; Araújo. Analysis of Rainfall Distribution and the Occurrence of the El Niño Phenomenon in the Municipality of Alta Floresta-MT. Enciclop. Biosf. 2014, 10, e2655. [Google Scholar]
- Zortea, M. Determinantes Ambientais de Vegetação Savânica e Florestal em Enclaves de Cerrado na Amazônia Mato-Grossense. 2018. Available online: https://portal.unemat.br/media/files/MARCELO%20ZORTEA.pdf (accessed on 16 January 2022).
- Ab’Sáber, A.N. Os Domínios de Natureza no Brasil: Potencialidades Paisagísticas, 3rd ed.; Ateliê Editorial: São Paulo, Brazil, 2003; p. 159. [Google Scholar]
- Miranda, I.S.; Almeida, S.S.; Dantas, P.J. Florística e Estrutura de Comunidades Arbóreas em Cerrados de Rondônia, Brasil. Acta Amaz. 2006, 36, 419–430. [Google Scholar] [CrossRef]
- Barradas, A.C. Ciclagem de Nutrientes e Estoque de Carbono em Floresta Ombrófila na Amazônia Meridional. Master’s Thesis, Universidade do Estado de Mato Grosso, Alta Floresta, MT, Brazil, 2020. [Google Scholar]
- Ratter, J.A.; Bridgewater, S.; Ribeiro, J.F. Analysis of the Floristic Composition of the Brazilian Cerrado Vegetation III: Comparison of the Woody Vegetation of 376 Areas. Edinb. J. Bot. 2003, 60, 57–109. [Google Scholar] [CrossRef]
- Ribeiro, J.F.; Walter, B.M.T. As Principais Fitofisionomias do Bioma Cerrado. In Cerrado: Ecologia e Flora; Sano, S.M., Almeida, S.P., Ribeiro, J.F., Eds.; Embrapa: Brasília, Brazil, 2008; Volume 1, pp. 152–212. [Google Scholar]
- Ratter, J.A. Some Notes on Two Types of Cerradão Occurring in Northeastern Mato Grosso. In III Simpósio Sobre o Cerrado; Ferri, M.G., Ed.; EDUSP/Edgard Blücher: São Paulo, Brazil, 1971; pp. 110–112. [Google Scholar]
- Ratter, J.A.; Richards, P.W.; Argent, G.; Gifford, D.R. Observations on the Vegetation of the Northeastern Mato Grosso I. The Woody Vegetation Types of the Xavantina-Cachimbo Expedition Area. Philos. Trans. R. Soc. B 1973, 266, 449–492. [Google Scholar]
- Ratter, J.A.; Askew, G.P.; Montgomery, R.F.; Gifford, D.R. Observações Adicionais sobre o Cerradão de Solos Mesotróficos no Brasil Central. In IV Simpósio Sobre o Cerrado: Bases para a Utilização Agropecuária; Ferri, M.G., Ed.; EDUSP: São Paulo, Brazil, 1977; pp. 303–316. [Google Scholar]
- Haridasan, M.; de Araújo, G.M. Aluminium-Accumulating Species in Two Forest Communities in the Cerrado Region of Central Brazil. For. Ecol. Manag. 1988, 24, 15–26. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Manual Técnico da Vegetação Brasileira, 2nd ed.; IBGE: Rio de Janeiro, Brazil, 2005. Available online: https://biblioteca.ibge.gov.br (accessed on 24 July 2022).
- Acre. Governo do Estado do Acre. Programa Estadual de Zoneamento Ecológico Econômico do Estado do Acre, Fase II.; Escala 1:250,000; SEMA: Rio Branco, Brazil, 2006; p. 356. [Google Scholar]
- Ribeiro, R.J.; Higuchi, N.; Santos, J.D.; de Azevedo, C.P. Estudo Fitossociológico nas Regiões de Carajás e Marabá-Pará, Brasil. Acta Amaz. 1999, 29, 207–222. [Google Scholar] [CrossRef]
- Phillips, O.; Baker, T.; Feldpausch, T.; Brienen, R. Field Manual for Plot Establishment and Remeasurement. Available online: https://forestplots.net/upload/manualsenglish/rainfor_field_manual_en.pdf (accessed on 12 June 2020).
- Müller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; J. Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Kitajima, K.; Poorter, L. Functional basis for resource niche partitioning by tropical trees. In Tropical Forest Community Ecology; Carson, W.P., Schnitzer, S.A., Eds.; Blackwell: Hoboken, NJ, USA, 2008; pp. 160–181. [Google Scholar]
- Lugo, A.E.; Scatena, F.N. Background and Catastrophic Tree Mortality in Tropical Moist, Wet, and Rain Forests. Biotropica 1996, 28, 585–599. [Google Scholar] [CrossRef]
- Barlow, J.; Peres, C.A.; Logan, B.O.; Haugaasen, T. Large Tree Mortality and the Decline of Forest Biomass Following Amazonian Wildfires. Ecol. Lett. 2003, 6, 6–8. [Google Scholar] [CrossRef]
- Gomes, L.; Miranda, H.S.; Bustamante, M.M.C. How Can We Advance the Knowledge on the Behavior and Effects of Fire in the Cerrado Biome? For. Ecol. Manage. 2018, 417, 281–290. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Adasme, R.; Haridasan, M.; Carvalho, M.T.; Geiger, E.L.; Pereira, M.A.B.; Gotsch, S.G.; Franco, A.C. Tree Topkill, Not Mortality, Governs the Dynamics of Savanna-Forest Boundaries under Frequent Fire in Central Brazil. Ecology 2009, 90, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.F.; Tng, D.Y.P.; Garcia, P.O.; Santos, R.; Morel, J.D.; Benicio, M.H.; Apgaua, D.M.G. Temporal Changes in Tree Community Structure and Richness in a Seasonally Dry Tropical Forest in Minas Gerais, Southeastern Brazil. Bosque 2017, 38, 537–545. [Google Scholar] [CrossRef]
- Liesenfeld, M.V.A. Revealing the Impact of Understory Fires on Stem Survival in Palms (Arecaceae): An Experimental Approach Using Predictive Models. Fire 2025, 8, 2. [Google Scholar] [CrossRef]
- Whitmore, T.C. Canopy Gaps and Two Major Groups of Forest Trees. Ecology 1989, 70, 536–538. [Google Scholar] [CrossRef]
- Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/ (accessed on 24 January 2024).
- da Silva Rios, M.N.; Souza-Silva, J.C.; Meirelles, M.L. Dinâmica Pós-Fogo da Vegetação Arbóreo-Arbustiva em Cerrado sensu stricto no Distrito Federal. Biodiversidade 2019, 18, 2–17. [Google Scholar]
- White, P.S. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 1979, 45, 229–299. [Google Scholar] [CrossRef]
- Moreira, A.G. Effects of Fire Protection on Savanna Structure in Central Brazil. J. Biogeogr. 2000, 27, 1021–1029. [Google Scholar] [CrossRef]
- Líbano, A.M.; Felfili, J.M. Temporal Changes in the Floristic Composition and Diversity of a Cerrado sensu stricto in Central Brazil over an 18-Year Period (1985–2003). Acta Bot. Bras. 2006, 20, 927–936. [Google Scholar] [CrossRef]
- Sato, M.N.; Miranda, H.S. Mortalidade de Plantas Lenhosas do Cerrado sensu stricto Submetidas a Diferentes Regimes de Queima. In Impactos de Queimadas em Áreas de Cerrado e Restinga; Miranda, H.S., Saito, C.H., Dias, B.F.S., Eds.; ECL/UnB: Brasília, Brazil, 1996; pp. 102–111. [Google Scholar]
- Abreu, L.d.O.; Ribeiro, J.P. Impactos das Queimadas na Fauna Brasileira. Available online: https://doity.com.br/anais/conexaounifametro2020/trabalho/169064> (accessed on 10 March 2023).
- Vieira, I.C.G.; Toledo, P.M.; Silva, J.M.C.; Higuchi, H. Deforestation and threats to the biodiversity of Amazonia. Braz. J. Biol. 2008, 68, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Kinsman, S. Regeneration by Fragmentation in Tropical Montane Forest Shrubs. Am. J. Bot. 1990, 77, 1626–1633. [Google Scholar] [CrossRef]
- Mesquita, A.G.G. Impactos das Queimadas sobre o Ambiente e a Biodiversidade Acreana. Rev. Ramal Ideias 2008, 1, 2008–2009. [Google Scholar]
- Pittermann, J. The Evolution of Water Transport in Plants: An Integrated Approach. Geobiology 2010, 8, 112–139. [Google Scholar] [CrossRef] [PubMed]
- Jingmin, L.; Chong, L.; Zheng, X.; Kaiping, Z.; Xue, K.; Liding, W. A Microfluidic Pump/Valve Inspired by Xylem Embolism and Transpiration in Plants. PLoS ONE 2012, 7, e50320. [Google Scholar] [CrossRef] [PubMed]
- Bonini, I. Transição Amazônia-Cerrado: Desmatamento e Colapso do Ciclo Hidrológico. Ph.D. Thesis, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil, 2019. [Google Scholar]
- Leite-Filho, A.T.; Soares-Filho, B.S.; Davis, J.L.; Abrahão, G.M.; Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Comm. 2021, 12, e2591. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Merow, C.; Liu, Z.; Park, D.S.; Roehrdanz, P.R.; Maitner, B.; Newman, E.A.; Boyle, B.L.; Lien, A.; Burger, J.R.; et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 2021, 597, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.O.; Marchezini, V.; Morello, T.F.; Cunningham, T.A. Conceptual Model of a Risk Alert and Disaster Management System Associated with Forest Fires and Challenges for Public Policies in Brazil. Territorium 2019, 26, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Xu, X.; Wu, F.; Tan, L. Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery. Forests 2022, 13, 883. [Google Scholar] [CrossRef]
- Uhl, C.; Kauffman, J.B.; Silva, E.D. Os Caminhos do Fogo na Amazônia. Ciênc. Hoje 1990, 11, 25–32. [Google Scholar]
- Cochrane, M.A. Fire Science for Rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.F.; Oliveira Filho, A.T.; Venturin, N.; Carvalho, W.A.C.; Gomes, J.B.V. Impacto do Fogo no Componente Arbóreo de uma Floresta Estacional Semidecídua no Município de Ibituruna, MG, Brasil. Acta Bot. Bras. 2005, 19, 701–716. [Google Scholar] [CrossRef]
- Fearnside, P.M. Deforestation in the Brazilian Amazon: History, Rates, and Consequences. Megadiversidade 2005, 1, 113–123. [Google Scholar]
- Lamont, B.B.; Witkowski, E.T.F.; Enright, N.J. Post-Fire Litter Microsites: Safe for Seeds, Unsafe for Seedlings. Ecology 1993, 74, 501–512. [Google Scholar] [CrossRef]
- Rosot, N.C.; Dlugosz, F.L.; Rosot, M.A.D.; Kurasz, G.; de Oliveira, Y.M.M. Ações de Recuperação em Área Degradada por Fogo em Floresta Ombrófila Mista: Resultados Parciais. Pesq. Flor. Bras. 2007, 55, 23–30. [Google Scholar]
- Celestino, C. 2021-Dados do Inpe Apontam Redução de 90,8% nos Focos de Calor no Pantanal entre 2020 e 2021. Available online: http://www.mt.gov.br/-/17799841-dados-do-inpe-apontam-reducao-de-90-8-nos-focos-de-calor-no-pantanal-entre-2020-e-2021 (accessed on 19 February 2022).
- Silgueiro, V.; Valdiones, A.P.; Bernasconi, P. Balanço dos Incêndios em Mato Grosso em 2020; Instituto Centro Vida–ICV: Mato Grosso, Brazil, 2020; Available online: https://www.icv.org.br/publicacao/balanco-dos-incendios-em-mato-grosso-em-2020/ (accessed on 26 August 2022).
- Hooper, E.R.; Legendre, P.; Condit, R. Factors Affecting Community Composition of Forest Regeneration in Deforested, Abandoned Land in Panama. Ecology 2004, 85, 3313–3326. [Google Scholar] [CrossRef]
- Nepstad, D.; Carvalho, G.; Barros, A.C.; Alencar, A.; Capobianco, J.P.; Bishop, J.; Moutinho, P.; Lefebvre, P.; Silva, U.L.; Prins, E. Road paving, fire regime feedbacks, and the future of Amazon forests. For. Ecol. Man. 2001, 154, 395–407. [Google Scholar] [CrossRef]
- Staal, A.F.; Flores, B.M.; Aguiar, A.P.D.; Bosmans, J.H.C.; Fetzer, I.; Tuinenburg, O.A. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [Google Scholar] [CrossRef]
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Parisien, M.; Moritz, M.A. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol. Monogr. 2009, 79, 127–154. [Google Scholar] [CrossRef]
- Lovejoy, T.; Nobre, C.N. Amazon tipping point: Last chance for action. Sci. Adv. 2019, 5, eaba2949. [Google Scholar] [CrossRef] [PubMed]
Site | Sampling | 2017 | 2021 | Losses (%) |
---|---|---|---|---|
SF | Families | 36 | 36 | 0 |
Genus | 66 | 64 | 3.0 | |
Species | 95 | 83 | 12.6 | |
Recruits | NA | 107 | NA | |
Dead Trees | NA | 140 | NA | |
Individuals | 1534 | 1501 | 2.1 | |
Shannon Index (H’) | 3.24 | 3.09 | 4.6 | |
Pielou Equability (J’) | 0.71 | 0.7 | 1 | |
Basal area (m2 ha−1) | 12.15 | 11.9 | 1.9 | |
TF | Families | 31 | 30 | 3.2 |
Genus | 48 | 45 | 6.2 | |
Species | 63 | 59 | 6.3 | |
Recruits | NA | 81 | NA | |
Dead Trees | NA | 468 | NA | |
Individuals | 1672 | 1285 | 23.1 | |
Shannon Index (H’) | 3.2 | 2.96 | 7.5 | |
Pielou equability (J’) | 0.78 | 0.73 | 6.4 | |
Basal area (m2 ha−1) | 14.5 | 12.2 | 15 | |
OF | Families | 38 | 32 | 15.8 |
Genus | 80 | 69 | 13.7 | |
Species | 97 | 83 | 14.4 | |
Recruits | 0 | 24 | NA | |
Dead Trees | 0 | 128 | NA | |
Individuals | 430 | 326 | 24.2 | |
Shannon Index (H’) | 3.85 | 3.62 | 6 | |
Pielou equability (J’) | 0.84 | 0.82 | 2.4 | |
Basal area (m2 ha−1) | 28.9 | 23.5 | 18.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, L.G.d.; Marimon Junior, B.H.; Barradas, A.d.C.; Carvalho, M.A.C.d.; Soares, C.R.A.; Marimon, B.S.; Ribeiro, G.H.P.d.M.; Oliveira, E.A.d.; Elias, F.; Emidio Júnior, C.; et al. Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon. Forests 2025, 16, 1218. https://doi.org/10.3390/f16081218
Rocha LGd, Marimon Junior BH, Barradas AdC, Carvalho MACd, Soares CRA, Marimon BS, Ribeiro GHPdM, Oliveira EAd, Elias F, Emidio Júnior C, et al. Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon. Forests. 2025; 16(8):1218. https://doi.org/10.3390/f16081218
Chicago/Turabian StyleRocha, Loriene Gomes da, Ben Hur Marimon Junior, Amauri de Castro Barradas, Marco Antônio Camillo de Carvalho, Célia Regina Araújo Soares, Beatriz Schwantes Marimon, Gabriel H. P. de Mello Ribeiro, Edmar A. de Oliveira, Fernando Elias, Carmino Emidio Júnior, and et al. 2025. "Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon" Forests 16, no. 8: 1218. https://doi.org/10.3390/f16081218
APA StyleRocha, L. G. d., Marimon Junior, B. H., Barradas, A. d. C., Carvalho, M. A. C. d., Soares, C. R. A., Marimon, B. S., Ribeiro, G. H. P. d. M., Oliveira, E. A. d., Elias, F., Emidio Júnior, C., da Silva, D. R., Garcia, M. L., Rocha Filho, J. A. d., Zortea, M., Moreira, E. S., Domingues, S. C. d. O., Matricardi, E. A. T., Galbraith, D., Feldpausch, T. R., ... Phillips, O. L. (2025). Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon. Forests, 16(8), 1218. https://doi.org/10.3390/f16081218