The Impact of Compound Drought and Heatwave Events on the Gross Primary Productivity of Rubber Plantations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. The Rubber Plantations Distribution Data
2.2.2. The Environmental Data
2.2.3. The GPP Data
2.3. Methods
2.3.1. Heatwave and Drought Indices
2.3.2. Standardized Anomaly of GPP
2.3.3. CDHI
2.3.4. Bayes–Copula Conditional Probability Model
2.3.5. Correlation Analysis
3. Results
3.1. Selection of the Optimal Standardized Drought Index
3.2. Copula-Based Joint Distribution Optimization
3.3. The Application of the CDHI in Rubber Plantations on Hainan Island
3.4. The Impact of CDHEs on GPP in Rubber Plantations
3.5. The Probability of GPP Loss Under Different Scenarios of Drought, Heatwave, and Compound Drought and Heatwave
4. Discussion
4.1. The Applicability of the CDHI
4.2. Comparison of the Probability of GPP Loss Under Different Scenarios
4.3. The Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDHEs | Compound Drought and Heatwave Events |
CDHI | Compound Drought and Heatwave Index |
GPP | Gross Primary Productivity |
SAGPP | Standardized Anomaly of GPP |
STI | Standardized Temperature Index |
SPEI | Standardized Precipitation Evapotranspiration Index |
SPI | Standardized Precipitation Index |
SRHI | Standardized Relative Humidity Index |
SSMI | Standardized Soil Moisture Index |
Tmax | Maximum Temperature |
Pre | Precipitation |
PET | Potential Evapotranspiration |
RH | Relative Humidity |
SM | Soil Moisture |
MH | Mild Heatwave |
ModH | Moderate Heatwave |
SH | Severe Heatwave |
MD | Mild Drought |
ModD | Moderate Drought |
SD | Severe Drought |
MCDH | Mild Compound Drought and Heatwave |
ModCDH | Moderate Compound Drought and Heatwave |
SCDH | Severe Compound Drought and Heatwave |
ECDH | Extreme Compound Drought and Heatwave |
References
- Hao, Z.; Hao, F.; Xia, Y.; Feng, S.; Sun, C.; Zhang, X.; Fu, Y.; Hao, Y.; Zhang, Y.; Meng, Y. Compound droughts and hot extremes: Characteristics, drivers, changes, and impacts. Earth-Sci. Rev. 2022, 235, 104241. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Increase in compound drought and heatwaves in a warming world. Geophys. Res. Lett. 2021, 48, e2020GL090617. [Google Scholar] [CrossRef]
- Yin, J.; Slater, L. Understanding heatwave-drought compound hazards and impacts on socio-ecosystems. Innov. Geosci. 2023, 1, 100042. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef]
- Callahan, C.W.; Mankin, J.S. Globally unequal effect of extreme heat on economic growth. Sci. Adv. 2022, 8, eadd3726. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Adamowski, J.; Nikoo, M.R.; AghaKouchak, A.; Dennison, P.; Sadegh, M. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Sci. Adv. 2020, 6, eaaz4571. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V.; Kumar, R.; Rakovec, O. On the curious case of the recent decade, mid-spring precipitation deficit in central Europe. Npj Clim. Atmos. Sci. 2020, 3, 49. [Google Scholar] [CrossRef]
- Jimenez, J.C.; Barichivich, J.; Mattar, C.; Takahashi, K.; Santamaría-Artigas, A.; Sobrino, J.A.; Malhi, Y. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170300. [Google Scholar] [CrossRef]
- Toomey, M.; Roberts, D.A.; Still, C.; Goulden, M.L.; McFadden, J.P. Remotely sensed heat anomalies linked with Amazonian forest biomass declines. Geophys. Res. Lett. 2011, 38, L19704. [Google Scholar] [CrossRef]
- Gatti, L.V.; Gloor, M.; Miller, J.B.; Doughty, C.E.; Malhi, Y.; Domingues, L.G.; Basso, L.S.; Martinewski, A.; Correia, C.S.C.; Borges, V.F.; et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 2014, 506, 76–80. [Google Scholar] [CrossRef]
- Field, C.B. (Ed.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Tripathy, K.P.; Mukherjee, S.; Mishra, A.K.; Mann, M.E.; Williams, A.P. Climate change will accelerate the high-end risk of compound drought and heatwave events. Proc. Natl. Acad. Sci. USA 2023, 120, e2219825120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, X.; Zhang, Z.; Yuan, M.; Sun, S.; Qu, S.; Hou, M.; Lu, D.; Zhou, Y.; Lin, A. Developing a novel framework to re-examine half a century of compound drought and heatwave events in mainland China. Sci. Total Environ. 2023, 874, 162366. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Chen, Y.; Ouyang, L.; Li, Y.; Sun, F.; Liu, Y.; Zhu, J. Drought-heatwave compound events are stronger in drylands. Weather Clim. Extrem. 2023, 42, 100632. [Google Scholar] [CrossRef]
- Bevacqua, E.; Zappa, G.; Lehner, F.; Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change 2022, 12, 350–355. [Google Scholar] [CrossRef]
- Chiang, F.; Greve, P.; Mazdiyasni, O.; Wada, Y.; AghaKouchak, A. Intensified likelihood of concurrent warm and dry months attributed to anthropogenic climate change. Water Resour. Res. 2022, 58, e2021WR030411. [Google Scholar] [CrossRef]
- Ghanbari, M.; Arabi, M.; Georgescu, M.; Broadbent, A.M. The role of climate change and urban development on compound dry-hot extremes across US cities. Nat. Commun. 2023, 14, 3509. [Google Scholar] [CrossRef]
- De Luca, P.; Donat, M.G. Projected changes in hot, dry, and compound hot-dry extremes over global land regions. Geophys. Res. Lett. 2023, 50, e2022GL102493. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, X.; Qiu, R.; Liu, Z.; Yang, Z. Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model. Agric. Water Manag. 2022, 273, 107918. [Google Scholar] [CrossRef]
- Kang, Y.; Guo, E.; Wang, Y.; Bao, Y.; Bao, Y.; Mandula, N.; Runa, A.; Gu, X.; Jin, L. Characterisation of compound dry and hot events in Inner Mongolia and their relationship with large-scale circulation patterns. J. Hydrol. 2022, 612, 128296. [Google Scholar] [CrossRef]
- Wang, A.; Tao, H.; Ding, G.; Zhang, B.; Huang, J.; Wu, Q. Global cropland exposure to extreme compound drought heatwave events under future climate change. Weather Clim. Extrem. 2023, 40, 100559. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, Z.; Fu, Y.; Feng, S.; Zhang, X.; Wu, X.; Hao, F. Probabilistic assessments of the impacts of compound dry and hot events on global vegetation during growing seasons. Environ. Res. Lett. 2021, 16, 074055. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, S.; Wang, H.; Gan, T.Y.; Fang, H.; Su, X.; Song, S.; Feng, K.; Jiang, T.; Huang, J.; et al. Biodiversity and wetting of climate alleviate vegetation vulnerability under compound drought-hot extremes. Geophys. Res. Lett. 2024, 51, e2024GL108396. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, Y.; Ma, N.; Zhang, X.; Tian, J.; Xu, Z.; Liu, C. Drought-induced ecosystem resistance and recovery observed at 118 flux tower stations across the globe. Agric. For. Meteorol. 2024, 356, 110170. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, J.; Zhang, Z. Heatwave effects on gross primary production of northern mid-latitude ecosystems. Environ. Res. Lett. 2020, 15, 074027. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef]
- Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-copula constructions of multiple dependence. Insur. Math. Econ. 2009, 44, 182–198. [Google Scholar] [CrossRef]
- Haff, I.H.; Aas, K.; Frigessi, A. On the simplified pair-copula construction—Simply useful or too simplistic? J. Multivar. Anal. 2010, 101, 1296–1310. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, S.; Liu, T.; Liu, Y. Impacts of heat and drought on gross primary productivity in China. Remote Sens. 2021, 13, 378. [Google Scholar] [CrossRef]
- Tootoonchi, F.; Sadegh, M.; Haerter, J.O.; Räty, O.; Grabs, T.; Teutschbein, C. Copulas for hydroclimatic analysis: A practice-oriented overview. WIREs Water 2022, 9, e1579. [Google Scholar] [CrossRef]
- Kang, J.; Yu, M.; Xia, Y.; Sun, S.; Zhou, B. Impacts of compound hot–dry events on vegetation productivity over northern East Asia. Forests 2024, 15, 549. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Z.; Zhang, Y. Soil moisture dominates the forest productivity decline during the 2022 China compound drought-heatwave event. Geophys. Res. Lett. 2023, 50, e2023GL104539. [Google Scholar] [CrossRef]
- Li, J.; Bevacqua, E.; Chen, C.; Wang, Z.; Chen, X.; Myneni, R.B.; Wu, X.; Xu, C.-Y.; Zhang, Z.; Zscheischler, J. Regional asymmetry in the response of global vegetation growth to springtime compound climate events. Commun. Earth Environ. 2022, 3, 123. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, Y.; Song, Q.; Liu, W.; Deng, X.; Tang, J.; Liang, N. Rubber plantations act as water pumps in tropical China. Geophys. Res. Lett. 2011, 38, L24406. [Google Scholar] [CrossRef]
- Huang, K.; Wu, J.; Fu, Z.; Du, J. Comparative analysis of drought indices in the tropical zones of China. Sci. Total Environ. 2024, 947, 174530. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Zhang, T.; Shalamzari, M.J.; Arshad, A.; Liu, T.; Wang, T. Identification and analysis of heatwave events considering temporal continuity and spatial dynamics. Remote Sens. 2023, 15, 1369. [Google Scholar] [CrossRef]
- An, Y.; Wu, Z.; Wang, Y.; Zhang, R.; Wu, L.; Liu, W.; Sun, Z. Spatiotemporal dynamics and underlying mechanisms of ecosystem respiration in rubber plantations: A case study in Hainan Island. J. Rubber Res. 2024, 27, 283–298. [Google Scholar] [CrossRef]
- Cui, W.; Xiong, Q.; Zheng, Y.; Zhao, J.; Nie, T.; Wu, L.; Sun, Z. A study on the vulnerability of the gross primary production of rubber plantations to regional short-term flash drought over Hainan Island. Forests 2022, 13, 893. [Google Scholar] [CrossRef]
- Kong, J.; An, Y.; Shi, X.; Sun, Z.; Wu, L.; Cui, W. Meteorological-data-driven rubber tree powdery mildew model and its application on spatiotemporal patterns: A case study of Hainan Island. Sustainability 2023, 15, 12119. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, R.; Wang, Y.; Cui, W.; Zhao, J.; Wu, L.; Sun, Z. A dataset of distribution changes of natural rubber plantations in Hainan Island from 2000 to 2020. China Sci. Data 2023, 8, 364–375. (In Chinese) [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Liu, K.; Li, K.; Jiang, Z. GPRChinaTemp1km: A high-resolution monthly air temperature data set for China (1951–2020) based on machine learning. Earth Syst. Sci. Data 2022, 14, 3273–3292. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Jing, W.L.; Feng, M.; Yang, Y.P. A statistical downscaling approach of NCEP/NCAR reanalysis temperature data. J. Geo-Inf. Sci. 2013, 15, 819–828. (In Chinese) [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A spatial downscaling algorithm for satellite-based precipitation over the Tibetan Plateau based on NDVI, DEM, and land surface temperature. Remote Sens. 2016, 8, 655. [Google Scholar] [CrossRef]
- Li, Q.; Shi, G.; Shangguan, W.; Nourani, V.; Li, J.; Li, L.; Dai, Y. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Syst. Sci. Data 2022, 14, 5267–5286. [Google Scholar] [CrossRef]
- Running, S.W.; Zhao, M. Daily GPP and annual NPP (MOD17A2/A3) products NASA Earth Observing System MODIS land algorithm. MOD17 User’s Guide 2015, 2015, 1–28. [Google Scholar]
- Li, Y.; Zhang, Y.; Lv, J. Interannual variations in GPP in forest ecosystems in Southwest China and regional differences in the climatic contributions. Ecol. Inform. 2022, 69, 101591. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chen, Y.; Su, Z.; Li, B.; Guo, H.; De Maeyer, P. Monitoring and predicting drought based on multiple indicators in an arid area, China. Remote Sens. 2020, 12, 2298. [Google Scholar] [CrossRef]
- Gringorten, I.I. A Plotting Rule for Extreme Probability Paper. J. Geophys. Res. 1963, 68, 813–814. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized soil moisture index for drought monitoring based on soil moisture active passive observations and 36 years of North American land data assimilation system data: A case study in the southeast United States. Remote Sens. 2018, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Farahmand, A.; AghaKouchak, A.; Teixeira, J. A vantage from space can detect earlier drought onset: An approach using relative humidity. Sci. Rep. 2015, 5, 8553. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, S.; Fang, W.; Hou, B.; Leng, G.; Huang, Q.; Zhao, J.; Han, Z. Multivariable flood risk and its dynamics considering project reasonable service life in a changing environment. J. Hydrol. 2020, 590, 125524. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Copulas and Their Applications in Water Resources Engineering; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Cheng, Y.; Zhang, K. Compound Dry–Hot Events on Qinghai–Tibet Plateau and Their Effects on Vegetation. Water Resour. Prot. 2023, 39, 52–58. (In Chinese) [Google Scholar]
- Guo, Y.; Huang, S.; Huang, Q.; Wang, H.; Wang, L.; Fang, W. Copulas-based bivariate socioeconomic drought dynamic risk assessment in a changing environment. J. Hydrol. 2019, 575, 1052–1064. [Google Scholar] [CrossRef]
- Pearson, K. Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity and Panmixia. Philos. Trans. R. Soc. Lond. A 1896, 187, 253–318. [Google Scholar]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1961, 15, 72–101. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future Climate Risk from Compound Events. Nat. Clim. Change 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Wu, Y.; Mishra, V.; Chai, Y. Comparative assessment of dry-and humid-heat extremes in a warming climate: Frequency, intensity, and seasonal timing. Weather Clim. Extrem. 2024, 45, 100698. [Google Scholar] [CrossRef]
- Deng, Z.; Zhang, Q.; Xu, J. Comparative studies on the harm characteristic of hot-dry wind and high temperature heat waves. Adv. Earth Sci. 2009, 24, 865. (In Chinese) [Google Scholar]
- Li, W.; Hou, M.; Chen, H.; Chen, X. Study on drought trend in South China based on standardized precipitation evapotranspiration index. J. Nat. Disasters 2012, 21, 84–90. (In Chinese) [Google Scholar]
- Li, W.; Zhang, J.; Liu, S.; Che, X.; Chen, X.; Zou, H. Meteorological characteristics and monitoring index of drought in Hainan Island. J. Trop. Biol. 2022, 13, 324–330. (In Chinese) [Google Scholar]
- Wu, M.; Manzoni, S.; Vico, G.; Bastos, A.; de Vries, F.T.; Messori, G. Drought legacy in sub-seasonal vegetation state and sensitivity to climate over the Northern Hemisphere. Geophys. Res. Lett. 2022, 49, e2022GL098700. [Google Scholar] [CrossRef]
- Mavromatis, T. Use of Drought Indices in Climate Change Impact Assessment Studies: An Application to Greece. Int. J. Climatol. 2010, 30, 1336–1348. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Zhang, X.; Li, C.; Hao, F. Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach. J. Hydrol. 2020, 583, 124580. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.; Green, J.K.; Stoy, P.C.; Yang, H.; et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef]
- Li, Y.; Shao, X.; Wu, Z.; Sun, Z.; Li, M.; Jiang, L.; Wang, P. Response of land surface temperature to heatwave-induced bio-geophysical changes in tropical forests on Hainan Island from 2010 to 2022. Water 2024, 16, 752. [Google Scholar] [CrossRef]
- Walther, S.; Duveiller, G.; Jung, M.; Guanter, L.; Cescatti, A.; Camps-Valls, G. Satellite observations of the contrasting response of trees and grasses to variations in water availability. Geophys. Res. Lett. 2019, 46, 1429–1440. [Google Scholar] [CrossRef]
- Gentine, P.; Massmann, A.; Lintner, B.R.; Alemohammad, S.H.; Fu, R.; Green, J.K.; Kennedy, D.; Vilà-Guerau de Arellano, J. Land–atmosphere interactions in the tropics—A review. Hydrol. Earth Syst. Sci. 2019, 23, 4171–4197. [Google Scholar] [CrossRef]
- Guan, K.; Pan, M.; Li, H.; Wolf, A.; Wu, J.; Medvigy, D.; Caylor, K.K.; Sheffield, J.; Wood, E.F.; Malhi, Y.; et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 2015, 8, 284–289. [Google Scholar] [CrossRef]
- Ye, C.; Zou, Y.; He, Y.; Lin, Y.; Li, D.; Zhu, L. Temporal and spatial distribution characteristics of drought and flood considering the influence of underlying surface in Hainan Island, tropical areas of China. Theor. Appl. Climatol. 2022, 150, 507–520. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Lin, A.; Zou, L.; Qin, W.; Du, Q. Evaluation of the latest MODIS GPP products across multiple biomes using global eddy covariance flux data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.M.; Chen, J.; Gough, C.M.; Martin, T.A.; Dragoni, D. Evaluating spatial and temporal patterns of MODIS GPP over the conterminous US against flux measurements and a process model. Remote Sens. Environ. 2012, 124, 717–729. [Google Scholar] [CrossRef]
Copula | Display Formula | Parameter α |
---|---|---|
Gumbel | [1,∞] | |
Clayton | (−1, 0)∪(0, ∞) | |
Frank | (−∞, 0)∪(0, ∞) | |
Gaussian | (−1, 1) | |
T | (−1, 1), k≠0 |
Copula | Squared Euclidean Distance (d) |
---|---|
Gumbel | 0.1521 |
Clayton | 0.1521 |
Frank | 0.1806 |
Gaussian | 0.1422 |
T | 0.1754 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Q.; Wang, Z.; Sun, Z. The Impact of Compound Drought and Heatwave Events on the Gross Primary Productivity of Rubber Plantations. Forests 2025, 16, 1146. https://doi.org/10.3390/f16071146
Bao Q, Wang Z, Sun Z. The Impact of Compound Drought and Heatwave Events on the Gross Primary Productivity of Rubber Plantations. Forests. 2025; 16(7):1146. https://doi.org/10.3390/f16071146
Chicago/Turabian StyleBao, Qinggele, Ziqin Wang, and Zhongyi Sun. 2025. "The Impact of Compound Drought and Heatwave Events on the Gross Primary Productivity of Rubber Plantations" Forests 16, no. 7: 1146. https://doi.org/10.3390/f16071146
APA StyleBao, Q., Wang, Z., & Sun, Z. (2025). The Impact of Compound Drought and Heatwave Events on the Gross Primary Productivity of Rubber Plantations. Forests, 16(7), 1146. https://doi.org/10.3390/f16071146