The Effects of Nearshore Forest Thinning on Upland Habitat Use by Pond-Breeding Amphibians in a Montane Coniferous Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Study System
2.2. Experimental Design
2.3. Habitat Characteristics
2.4. Amphibian Surveys—Drift Fence Arrays
2.5. Amphibian Surveys—Time- and Area-Constrained Surveys
2.6. Slash Pile Surveys
2.7. Statistical Analyses—Summary
2.8. Hand-Thinning Treatment Effects
2.9. Spatiotemporal Patterns and Habitat Associations
3. Results
3.1. Effect of Hand-Thinning on Habitat Characteristics
3.2. Effects of Hand-Thinning on Amphibian Activity
3.3. Spatiotemporal Patterns in Amphibian Activity
3.4. Upland Habitat Associations
4. Discussion
4.1. Effects of Hand-Thinning and Upland Habitat Associations
4.2. Temporal and Spatial Patterns of Activity and Upland Habitat Use
5. Conclusions and Management Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agee, J.K.; Skinner, C.N. Basic Principles of Forest Fuel Reduction Treatments—ScienceDirect. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing Western US Forest Wildfire Activity: Sensitivity to Changes in the Timing of Spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Higuera, P.E.; Abatzoglou, J.T. Record-Setting Climate Enabled the Extraordinary 2020 Fire Season in the Western United States. Glob. Change Biol. 2021, 27, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Keeley, J.E. Wildfires and Global Change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z. Estimation of Wildfire Size and Risk Changes Due to Fuels Treatments. Int. J. Wildland Fire 2012, 21, 357–367. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Liu, Z.; Liang, Y. Comparing Fuel Reduction Treatments for Reducing Wildfire Size and Intensity in a Boreal Forest Landscape of Northeastern China. Sci. Total Environ. 2013, 454–455, 30–39. [Google Scholar] [CrossRef]
- Abelson, E.S.; Reynolds, K.M.; White, A.M.; Long, J.W.; Maxwell, C.; Manley, P.N. Evaluating Pathways to Social and Ecological Landscape Resilience. Ecol. Soc. 2022, 27, 8. [Google Scholar] [CrossRef]
- Zong, X.; Tian, X.; Wang, X. The Role of Fuel Treatments in Mitigating Wildfire Risk. Landsc. Urban Plan. 2024, 242, 104957. [Google Scholar] [CrossRef]
- Safford, H.D.; Stevens, J.T.; Merriam, K.; Meyer, M.D.; Latimer, A.M. Fuel Treatment Effectiveness in California Yellow Pine and Mixed Conifer Forests. For. Ecol. Manag. 2012, 274, 17–28. [Google Scholar] [CrossRef]
- Butler, B.W.; Ottmar, R.D.; Rupp, T.S.; Jandt, R.; Miller, E.; Howard, K.; Schmoll, R.; Theisen, S.; Vihnanek, R.E.; Jimenez, D. Quantifying the Effect of Fuel Reduction Treatments on Fire Behavior in Boreal Forests. Can. J. For. Res. 2013, 43, 97–102. [Google Scholar] [CrossRef]
- Donovan, V.M.; Roberts, C.P.; Fogarty, D.T.; Wedin, D.A.; Twidwell, D. Targeted Grazing and Mechanical Thinning Enhance Forest Stand Resilience under a Narrow Range of Wildfire Scenarios. Ecosphere 2022, 13, e4061. [Google Scholar] [CrossRef]
- Prichard, S.J.; Hessburg, P.F.; Hagmann, R.K.; Povak, N.A.; Dobrowski, S.Z.; Hurteau, M.D.; Kane, V.R.; Keane, R.E.; Kobziar, L.N.; Kolden, C.A.; et al. Adapting Western North American Forests to Climate Change and Wildfires: 10 Common Questions. Ecol. Appl. 2021, 31, e02433. [Google Scholar] [CrossRef]
- Slauson, K.; Howard, B.; White, A.M.; Maxwell, C.; Holland, T. Evaluating the Effects of Alternative Landscape Management Scenarios on Three Old-Forest-Associated Predators over 100 Years in the Fire-Prone Forests of the Sierra Nevada, USA. Ecol. Soc. 2022, 27, 28. [Google Scholar] [CrossRef]
- Marczak, L.B.; Sakamaki, T.; Turvey, S.L.; Deguise, I.; Wood, S.L.R.; Richardson, J.S. Are Forested Buffers an Effective Conservation Strategy for Riparian Fauna? An Assessment Using Meta-Analysis. Ecol. Appl. 2010, 20, 126–134. [Google Scholar] [CrossRef]
- Warrington, B.M.; Aust, W.M.; Barrett, S.M.; Ford, W.M.; Dolloff, C.A.; Schilling, E.B.; Wigley, T.B.; Bolding, M.C. Forestry Best Management Practices Relationships with Aquatic and Riparian Fauna: A Review. Forests 2017, 8, 331. [Google Scholar] [CrossRef]
- Larsen-Gray, A.L.; Loehle, C. Relationship Between Riparian Buffers and Terrestrial Wildlife in the Eastern United States. J. For. 2022, 120, 336–357. [Google Scholar] [CrossRef]
- Richardson, J.S.; Naiman, R.J.; Bisson, P.A. How Did Fixed-Width Buffers Become Standard Practice for Protecting Freshwaters and Their Riparian Areas from Forest Harvest Practices? Freshw. Sci. 2012, 31, 232–238. [Google Scholar] [CrossRef]
- California Natural Resources Agency. State of the State’s Wetlands: 10 Years of Challenges and Progress; California Natural Resources Agency: Sacramento, CA, USA, 2010. [Google Scholar]
- Naiman, R.J.; Bilby, R.E.; Bisson, P.A. Riparian Ecology and Management in the Pacific Coastal Rain Forest. BioScience 2000, 50, 996–1011. [Google Scholar] [CrossRef]
- Olson, D.H.; Anderson, P.D.; Frissell, C.A.; Welsh, H.H.; Bradford, D.F. Biodiversity Management Approaches for Stream–Riparian Areas: Perspectives for Pacific Northwest Headwater Forests, Microclimates, and Amphibians. For. Ecol. Manag. 2007, 246, 81–107. [Google Scholar] [CrossRef]
- Kreutzweiser, D.P.; Sibley, P.K.; Richardson, J.S.; Gordon, A.M. Introduction and a Theoretical Basis for Using Disturbance by Forest Management Activities to Sustain Aquatic Ecosystems. Freshw. Sci. 2012, 31, 224–231. [Google Scholar] [CrossRef]
- Sibley, P.K.; Kreutzweiser, D.P.; Naylor, B.J.; Richardson, J.S.; Gordon, A.M. Emulation of Natural Disturbance (END) for Riparian Forest Management: Synthesis and Recommendations. Freshw. Sci. 2012, 31, 258–264. [Google Scholar] [CrossRef]
- Maher Hasselquist, E.; Kuglerová, L.; Sjögren, J.; Hjältén, J.; Ring, E.; Sponseller, R.A.; Andersson, E.; Lundström, J.; Mancheva, I.; Nordin, A.; et al. Moving towards Multi-Layered, Mixed-Species Forests in Riparian Buffers Will Enhance Their Long-Term Function in Boreal Landscapes. For. Ecol. Manag. 2021, 493, 119254. [Google Scholar] [CrossRef]
- Hunsaker, C.T.; Long, J. Chapter 6.2—Forested Riparian Areas in: Science Synthesis to Support Socioecological Resilience in the Sierra Nevada and Southern Cascade Range; United States Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2014. [Google Scholar]
- North, M.; Brough, A.; Long, J.; Collins, B.; Bowden, P.; Yasuda, D.; Miller, J.; Sugihara, N. Constraints on Mechanized Treatment Significantly Limit Mechanical Fuels Reduction Extent in the Sierra Nevada. J. For. 2015, 113, 40–48. [Google Scholar] [CrossRef]
- Dwire, K.A.; Meyer, K.E.; Riegel, G.; Burton, T. Riparian Fuel Treatments in the Western USA: Challenges and Considerations; United States Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016. [Google Scholar]
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzée, A.; Hamidy, A.; Aowphol, A.; Jean, A.; et al. Ongoing Declines for the World’s Amphibians in the Face of Emerging Threats. Nature 2023, 622, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Davic, R.D.; Welsh, H.H., Jr. On the Ecological Roles of Salamanders. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 405–434. [Google Scholar] [CrossRef]
- Best, M.L.; Welsh, H.H., Jr. The Trophic Role of a Forest Salamander: Impacts on Invertebrates, Leaf Litter Retention, and the Humification Process. Ecosphere 2014, 5, art16. [Google Scholar] [CrossRef]
- deMaynadier, P.G.; Hunter, M.L., Jr. The Relationship between Forest Management and Amphibian Ecology: A Review of the North American Literature. Environ. Rev. 1995, 3, 230–261. [Google Scholar] [CrossRef]
- Verschuyl, J.; Riffell, S.; Miller, D.; Wigley, T.B. Biodiversity Response to Intensive Biomass Production from Forest Thinning in North American Forests—A Meta-Analysis. For. Ecol. Manag. 2011, 261, 221–232. [Google Scholar] [CrossRef]
- Naughton, G.P.; Henderson, C.B.; Foresman, K.R.; McGraw II, R.L. Long-Toed Salamanders in Harvested and Intact Douglas-Fir Forests of Western Montana. Ecol. Appl. 2000, 10, 1681–1689. [Google Scholar] [CrossRef]
- Semlitsch, R.D.; Conner, C.A.; Hocking, D.J.; Rittenhouse, T.A.G.; Harper, E.B. Effects of Timber Harvesting on Pond-Breeding Amphibian Persistence: Testing the Evacuation Hypothesis. Ecol. Appl. 2008, 18, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Semlitsch, R.D.; Todd, B.D.; Blomquist, S.M.; Calhoun, A.J.K.; Gibbons, J.W.; Gibbs, J.P.; Graeter, G.J.; Harper, E.B.; Hocking, D.J.; Hunter, M.L.; et al. Effects of Timber Harvest on Amphibian Populations: Understanding Mechanisms from Forest Experiments. BioScience 2009, 59, 853–862. [Google Scholar] [CrossRef]
- Skelly, D.K.; Bolden, S.R.; Freidenburg, L.K. Experimental Canopy Removal Enhances Diversity of Vernal Pond Amphibians. Ecol. Appl. 2014, 24, 340–345. [Google Scholar] [CrossRef]
- Thomson, R.C.; Wright, A.N.; Shaffer, H.B. California Amphibian and Reptile Species of Special Concern; University of California Press: Oakland, CA, USA, 2016. [Google Scholar]
- Mott, C.M.; Hofstetter, R.W.; Antoninka, A.J. Post-Harvest Slash Burning in Coniferous Forests in North America: A Review of Ecological Impacts. For. Ecol. Manag. 2021, 493, 119251. [Google Scholar] [CrossRef]
- Hardage, K.; Wheelock, S.J.; Gaffney, R.; O’Halloran, T.; Serpa, B.; Grant, G.; Coppoletta, M.; Csank, A.; Tague, C.; Staudacher, M.; et al. Soil Moisture and Micrometeorological Differences across Reference and Thinned Stands during Extremes of Precipitation, Southern Cascade Range. Front. For. Glob. Change 2022, 5, 898998. [Google Scholar] [CrossRef]
- Welsh, H.H., Jr.; Pope, K.L.; Boiano, D. Sub-Alpine Amphibian Distributions Related to Species Palatability to Non-Native Salmonids in the Klamath Mountains of Northern California. Divers. Distrib. 2006, 12, 298–309. [Google Scholar] [CrossRef]
- Pearson, K.J.; Goater, C.P. Effects of Predaceous and Nonpredaceous Introduced Fish on the Survival, Growth, and Antipredation Behaviours of Long-Toed Salamanders. Can. J. Zool. 2009, 87, 948–955. [Google Scholar] [CrossRef]
- Kenison, E.K.; Litt, A.R.; Pilliod, D.S.; McMahon, T.E. Role of Habitat Complexity in Predator–Prey Dynamics between an Introduced Fish and Larval Long-Toed Salamanders (Ambystoma Macrodactylum). Can. J. Zool. 2016, 94, 243–249. [Google Scholar] [CrossRef]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire Effects Monitoring and Inventory System; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2006; p. RMRS-GTR-164. [Google Scholar]
- Pilliod, D.S.; Bury, R.B.; Hyde, E.J.; Pearl, C.A.; Corn, P.S. Fire and Amphibians in North America. For. Ecol. Manag. 2003, 178, 163–181. [Google Scholar] [CrossRef]
- Englund, S.R.; O’Brien, J.J.; Clark, D.B. Evaluation of Digital and Film Hemispherical Photography and Spherical Densiometry for Measuring Forest Light Environments. Can. J. For. Res. 2000, 30, 1999–2005. [Google Scholar] [CrossRef]
- Paletto, A.; Tosi, V. Forest Canopy Cover and Canopy Closure: Comparison of Assessment Techniques. Eur. J. For. Res. 2009, 128, 265–272. [Google Scholar] [CrossRef]
- Corn, P.S.; Bury, R.B. Sampling Methods for Terrestrial Amphibians and Reptiles; United States Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1990; p. PNW-GTR-256. [Google Scholar]
- Amphibian Ecology and Conservation: A Handbook of Techniques; Dodd, C.K., Ed.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Karraker, N.E. String Theory: Reducing Mortality of Mammals in Pitfall Traps. Wildl. Soc. Bull. (1973–2006) 2001, 29, 1158–1162. [Google Scholar]
- Smith, C.K.; Petranka, J.W. Monitoring Terrestrial Salamanders: Repeatability and Validity of Area-Constrained Cover Object Searches. J. Herpetol. 2000, 34, 547–557. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Hartig, F.; Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models 2022. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 15 January 2025).
- Ver Hoef, J.M.; Boveng, P.L. Quasi-Poisson vs. Negative Binomial Regression: How Should We Model Overdispersed Count Data? Ecology 2007, 88, 2766–2772. [Google Scholar] [CrossRef]
- Clark-Carter, D. Z Scores. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; ISBN 978-1-118-44511-2. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bartoń, K. MuMIn: Multi-Model Inference 2023. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 15 January 2025).
- Munger, J.C.; Gerber, M.; Madrid, K.; Carroll, M.-A.; Petersen, W.; Heberger, L.U.S. National Wetland Inventory Classifications as Predictors of the Occurrence of Columbia Spotted Frogs (Rana Luteiventris) and Pacific Treefrogs (Hyla Regilla). Conserv. Biol. 1998, 12, 320–330. [Google Scholar] [CrossRef]
- Bosakowski, T. Amphibian Macrohabitat Associations on a Private Industrial Forest in Western Washington. Northwestern Nat. 1999, 80, 61–69. [Google Scholar] [CrossRef]
- Goldberg, C.S.; Waits, L.P. Using Habitat Models to Determine Conservation Priorities for Pond-Breeding Amphibians in a Privately-Owned Landscape of Northern Idaho, USA. Biol. Conserv. 2009, 142, 1096–1104. [Google Scholar] [CrossRef]
- Lee-Yaw, J.A.; Sechley, T.H.; Irwin, D.E. Conflicting Effects of Microhabitats on Long-Toed Salamander (Ambystoma Macrodactylum) Movement: Implications for Landscape Connectivity. Can. J. Zool. 2015, 93, 1–7. [Google Scholar] [CrossRef]
- Morneault, A.E.; Naylor, B.J.; Schaeffer, L.S.; Othmer, D.C. The Effect of Shelterwood Harvesting and Site Preparation on Eastern Red-Backed Salamanders in White Pine Stands. For. Ecol. Manag. 2004, 199, 1–10. [Google Scholar] [CrossRef]
- Olson, D.H.; Burton, J.I. Near-Term Effects of Repeated-Thinning with Riparian Buffers on Headwater Stream Vertebrates and Habitats in Oregon, USA. Forests 2014, 5, 2703–2729. [Google Scholar] [CrossRef]
- Anderson, P.D.; Poage, N.J. The Density Management and Riparian Buffer Study: A Large-Scale Silviculture Experiment Informing Riparian Management in the Pacific Northwest, USA. For. Ecol. Manag. 2014, 316, 90–99. [Google Scholar] [CrossRef]
- Thompson, I.D.; Baker, J.A.; Ter-Mikaelian, M. A Review of the Long-Term Effects of Post-Harvest Silviculture on Vertebrate Wildlife, and Predictive Models, with an Emphasis on Boreal Forests in Ontario, Canada. For. Ecol. Manag. 2003, 177, 441–469. [Google Scholar] [CrossRef]
- Greenberg, C.H.; Moorman, C.E.; Matthews-Snoberger, C.E.; Waldrop, T.A.; Simon, D.; Heh, A.; Hagan, D. Long-Term Herpetofaunal Response to Repeated Fuel Reduction Treatments. J. Wildl. Manag. 2018, 82, 553–565. [Google Scholar] [CrossRef]
- Anderson, J.D. A Comparison of the Life Histories of Coastal and Montane Populations of Ambystoma Macrodactylum in California. Am. Midl. Nat. 1967, 77, 323–355. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Bull, E.S.; Hayes, J.L.; Wales, B.C. Wildlife and Invertebrate Response to Fuel Reduction Treatments in Dry Coniferous Forests of the Western United States: A Synthesis; United States Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006. [Google Scholar]
- Welsh, H.H., Jr.; Hodgson, G.R. Amphibians as Metrics of Critical Biological Thresholds in Forested Headwater Streams of the Pacific Northwest, U.S.A. Freshw. Biol. 2008, 53, 1470–1488. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Fronzuto, J.A. Ambystoma Macrodactylum Baird, 1849; Long-Toed Salamander. In Amphibian Declines: The Conservation Status of United States Species; Lannoo, M.J., Ed.; University of California Press: Berkeley, CA, USA, 2005; pp. 617–621. [Google Scholar]
- Rorabaugh, J.C.; Lannoo, M.J. Pseudacris Regilla Baird and Girard, 1852(b). Pacific Treefrog. In Amphibian Declines: The Conservation Status of United States Species; Lannoo, M.J., Ed.; University of California Press: Berkeley, CA, USA, 2005. [Google Scholar]
- Kezer, J.; Farner, D.S. Life History Patterns of the Salamander Ambystoma Macrodactylum in the High Cascade Mountains of Southern Oregon. Copeia 1955, 1955, 127–131. [Google Scholar] [CrossRef]
- Howard, J.H.; Wallace, R.L. Life History Characteristics of Populations of the Long-Toed Salamander (Ambystoma Macrodactylum) from Different Altitudes. Am. Midl. Nat. 1985, 113, 361–373. [Google Scholar] [CrossRef]
- Pagnucco, K.S.; Paszkowski, C.A.; Scrimgeour, G.J. Characterizing Movement Patterns and Spatio-Temporal Use of under-Road Tunnels by Long-Toed Salamanders in Waterton Lakes National Park, Canada. Copeia 2012, 2012, 331–340. [Google Scholar] [CrossRef]
- Regosin, J.V.; Windmiller, B.S.; Reed, J.M. Effects of Conspecifics on the Burrow Occupancy Behavior of Spotted Salamanders (Ambystoma Maculatum). Cope 2004, 2004, 152–158. [Google Scholar] [CrossRef]
AMMA Adult | AMMA Metamorph | PSSI Metamorph | ANBO Metamorph | |||||
---|---|---|---|---|---|---|---|---|
Predictor | Weight | IRR | Weight | IRR | Weight | IRR | Weight | IRR |
Ordinal date | 1.00 | 2.93 *** | 1.00 | 1.25 ** | 1.00 | 0.71 *** | 1.00 | 0.53 *** |
Distance to late-season water | 0.62 | - | 0.94 | 0.60 *** | 1.00 | 1.03 | 0.83 | 5.04 † |
Distance to lake edge | 1.00 | 0.48 *** | 1.00 | 0.89 *** | 1.00 | 0.67 | 1.00 | 0.45 *** |
Slope | 0.26 | - | 0.41 | - | 0.27 | - | 0.28 | - |
Latitude | 1.00 | 1.50 *** | 0.32 | - | 0.74 | 1.11 | 1.00 | 1.38 † |
Longitude | 0.35 | 0.33 | - | 0.86 | 1.16 | 0.98 | 3.86 | |
Latitude * Longitude | 0.10 | 0.03 | - | 0.63 | 1.47 ** | 0.97 | 0.38 *** | |
Ordinal date * Distance to late-season water | 0.48 | - | 0.54 | - | 1.00 | 0.83 *** | 0.55 | - |
Ordinal date * Distance to lake edge | 0.90 | 0.84 ** | 1.00 | 1.14 *** | 0.99 | 0.92 *** | 0.35 | - |
AMMA Adult | AMMA Metamorph | PSSI Metamorph | PSSI Adult | ANBO Metamorph | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictor | Weight | IRR | Weight | IRR | Weight | IRR | Weight | IRR | Weight | IRR |
Distance to lake edge | 1.00 | 0.58 *** | 0.94 | 0.62 *** | 0.77 | - | 0.48 | - | 0.52 | - |
Distance to late-season water | 0.24 | - | 0.36 | - | 0.32 | 0.75 *** | 0.35 | - | 0.53 | - |
Canopy closure | 0.90 | 1.35 ** | 0.28 | - | 0.31 | - | 0.51 | - | 0.62 | 1.34 † |
Tree density | 0.47 | - | 0.89 | 0.65 ** | 0.62 | - | 0.76 | 0.32 ** | 0.29 | - |
Litter depth | 0.43 | - | 0.28 | - | 0.29 | - | 0.27 | - | 0.32 | - |
Latitude | 1.00 | 1.67 *** | 0.81 | 1.33 ** | 0.94 | 0.99 | 1.54 ** | 0.92 | ||
Longitude | 1.00 | 1.18 | 0.81 | 1.07 | 0.94 | 0.99 | 0.65 ** | 0.92 | ||
Latitude * Longitude | 1.00 | 1.23 | 0.81 | 0.81 | 0.94 | 0.99 | 0.94 | 0.92 | ||
Woody debris | 0.28 | - | 0.34 | - | 0.34 | - | 0.38 | - | 0.42 | - |
Slope | 0.78 | 1.33 * | 0.34 | - | 0.27 | - | 0.36 | - | 0.31 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McIntyre, A.; Pope, K.L.; Cummings, A.K.; Wheelock, S.J.; Piovia-Scott, J. The Effects of Nearshore Forest Thinning on Upland Habitat Use by Pond-Breeding Amphibians in a Montane Coniferous Forest. Forests 2025, 16, 1059. https://doi.org/10.3390/f16071059
McIntyre A, Pope KL, Cummings AK, Wheelock SJ, Piovia-Scott J. The Effects of Nearshore Forest Thinning on Upland Habitat Use by Pond-Breeding Amphibians in a Montane Coniferous Forest. Forests. 2025; 16(7):1059. https://doi.org/10.3390/f16071059
Chicago/Turabian StyleMcIntyre, Andrew, Karen L. Pope, Adam K. Cummings, Shawn J. Wheelock, and Jonah Piovia-Scott. 2025. "The Effects of Nearshore Forest Thinning on Upland Habitat Use by Pond-Breeding Amphibians in a Montane Coniferous Forest" Forests 16, no. 7: 1059. https://doi.org/10.3390/f16071059
APA StyleMcIntyre, A., Pope, K. L., Cummings, A. K., Wheelock, S. J., & Piovia-Scott, J. (2025). The Effects of Nearshore Forest Thinning on Upland Habitat Use by Pond-Breeding Amphibians in a Montane Coniferous Forest. Forests, 16(7), 1059. https://doi.org/10.3390/f16071059