Phytoaccumulation of Heavy Metals in Flowers of Tilia cordata Mill. and Soil on Background Enzymatic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sampling Procedure
2.3. Analytical Procedure
2.4. Mathematical Calculations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties and Heavy Metal Content in Soil
3.2. Heavy Metals Content in T. cordata Flowers
3.3. Enzyme Activity
Dependent (y) | Independent (x) | R |
---|---|---|
EC * | TOC | 0.918 |
Znt | TOC | 0.937 |
Cut | TOC | 0.973 |
Mnt | TOC | 0.953 |
Pbt | TOC | 0.864 |
Pbf | TOC | 0.863 |
Pbt | Cut | 0.846 |
Znt | Cut | 0.873 |
Znt | Mnt | 0.931 |
Cut | Cuf | 0.909 |
Zna | TOC | 0.852 |
Zna | Znt | 0.980 |
Cua | Cut | 0.963 |
clay fraction | Fet | 0.869 |
clay fraction | Fef | 0.880 |
clay fraction | DHA | 0.858 |
clay fraction | GL | 0.884 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malunguja, G.K.; Thakur, B.; Devi, A. Heavy Metal Contamination of Forest Soils by Vehicular Emissions: Ecological Risks and Effects on Tree Productivity. Environ. Process 2022, 9, 11. [Google Scholar] [CrossRef]
- Patel, K.; ·Chaurasia, M.; Rao, K.S. Heavy metal accumulation in leaves of selected plant species in urban areas of Delhi. Environ. Sci. Pollut. Res. 2023, 30, 27622–27635. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Z.; Li, B.; Peng, Z.R.; Fu, Q. Investigating the relationship between air pollution variation and urban form. Build Environ. 2019, 147, 559–568. [Google Scholar] [CrossRef]
- Bartkowiak, A. The accumulation of selected heavy metals in soils in the vicinity of a busy road. Soil Sci. Annu. 2020, 71, 118–124. [Google Scholar] [CrossRef]
- Fu, Z.; Guo, W.; Dang, Z.; Hu, Q.; Wu, F.; Feng, C.; Zhao, X.; Meng, W.; Xing, B.; Giesy, J.P. Refocusing on nonpriority toxic metals in the aquatic environment in China. Environ. Sci. Technol. 2017, 51, 3117–3118. [Google Scholar] [CrossRef]
- Mansoor, S.; Kour, N.; Manhas, S.; Zahid, S.; Wani, O.A.; Sharma, V.; Wijaya, L.; Alyemeni, M.N.; Alsahli, A.A.; El-Serehy, H.A.; et al. Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere 2021, 271, 129458. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; p. 23. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake toxicity and detoxifcation in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic response of plants under diferent abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Sharma, P.; Yadav, P.; Ghosh, C.; Singh, B. Heavy metal capture from the suspended particulate matter by Morus alba and evidence of foliar uptake and translocation of PM associated zinc using radiotracer (65Zn). Chemosphere 2020, 254, 126863. [Google Scholar] [CrossRef]
- Angon, P.B.; Islam, M.D.S.; Shreejana, K.C.; Das, A.; Anjum, N.; Poudel, A.; Suchi, A.S. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, 7. [Google Scholar] [CrossRef]
- Hazrat, A.; Ezzat, E.; Ikram, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Karahan, F. Evaluation of Trace Element and Heavy Metal Levels of Some Ethnobotanically Important Medicinal Plants Used as Remedies in Southern Turkey in Terms of Human Health Risk. Biol. Trace Elem. Res. 2023, 201, 493–513. [Google Scholar] [CrossRef] [PubMed]
- Jambor, J. Herbalism in Poland–present state and prospects of development. Postępy Fitoter. 2007, 2, 78–81. [Google Scholar]
- Zhou, Y.J.; Ren, Q.; Shen, Y.B. Comprehensive review of Tilia L.: Phytochemical profiles, edible value, therapeutic potentials, and ecological significance. Food Med. Homol. 2025, 2, 9420035. [Google Scholar] [CrossRef]
- Pigott, D. Lime-Trees and Basswoods: A Biological Monograph of Thegenus Tilia; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Janowski, D. Anthropological significance of Tilia trees in Japan. Ecol. Evol. 2023, 13, e10303. [Google Scholar] [CrossRef]
- Eaton, E.; Caudullo, G.; de Rigo, D. Tilia cordata, Tilia platyphyllos and other limes in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; Ayanz, J.S.M., de Rigo, D., Caudullo, G., Durrant, T.H., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Stravinskienė, V.; Snieškienė, V.; Stankevičienė, A. Health condition of Tilia cordata Mill. trees growing in the urban environment. Urban For. Urban Gree. 2015, 14, 115–122. [Google Scholar] [CrossRef]
- Bierza, K.; Bierza, W. The effect of industrial and urban dust pollution on the ecophysiology and leaf element concentration of Tilia cordata Mill. Environ. Sci. Pollut. Res. 2024, 31, 58413–58429. [Google Scholar] [CrossRef]
- Pigott, C.D. Biological fora of the British Isles. Tilia Cordata Miller. J. Ecol. 1991, 79, 1147–1207. [Google Scholar] [CrossRef]
- Kosakowska, O.K.; Bączek, K.; Przybył, J.L.; Ejdys, M.; Kuźma, P.; Obiedziński, M.; Węglarz, Z. Intraspecific variability in thecontent of phenolic compounds, essential oil and mucilage of small-leaved lime (Tilia cordata Mill.) from Poland. Ind. Crops Prod. 2015, 78, 58–65. [Google Scholar] [CrossRef]
- Gil, W.; Zajączkowski, G. Występowanie drzewostanów z udziałem lipy drobnolistnej (Tilia cordata Mill.) na terenie zarządzanym przez Lasy Państwowe. Sylwan 2014, 158, 743–753. (In Polish) [Google Scholar]
- Kvavadze, E.; Gambashidze, I.; Mindiashvili, G.; Gogochuri, G. The first find in southern Georgia of fossil honey from the Bronze Age, based on palynological data. Veg. Hist. Archaeobot. 2006, 16, 399–404. [Google Scholar] [CrossRef]
- Turrini, F.; Vallarino, G.; Cisani, F.; Donno, D.; Beccaro, G.L.; Zunin, P.; Boggia, R.; Pittaluga, A.; Grilli, M. Use of an animal model to evaluate anxiolytic effects of dietary supplementation with Tilia tomentosa Moench bud extracts. Nutrients 2020, 12, 3328. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, G.B.; Jiménez-Ferrer, E.; Román-Ramos, R.; Zamilpa, A.; González-Cortazar, M.; León-Rivera, I.; Vargas-Villa, G.; Herrera-Ruiz, M. A mixture of quercetin 4′-O-rhamnosideand isoquercitrin from Tilia americana var. mexicana and its biotrans-formation products with antidepressant activity in mice. J. Ethnopharmacol. 2021, 267, 113619. [Google Scholar] [CrossRef]
- Rashed, K.; Medda, R.; Spano, D.; Pintus, F. Evaluation of antioxidant, anti-tyrosinase potentials and phytochemical composition of four Egyptian plants. Int. Food Res. J. 2016, 23, 316–321. [Google Scholar]
- Negri, G.; Santi, D.; Tabach, R. Flavonol glycosides found in hydroethanolic extracts from Tilia cordata, a species utilized as anxiolytics. Rev. Bras. Plantas Med. 2013, 5, 217–224. [Google Scholar] [CrossRef]
- Fitsiou, I.; Tzakou, O.; Hancianu, M.; Poiata, A. Volatile constituents and antimicrobial activity of Tilia tomentosa Moench and Tilia cordata Miller oils. J. Essent. Oil Res. 2007, 19, 183–185. [Google Scholar] [CrossRef]
- Arcos, M.L.B.; Cremaschi, G.; Werner, S.; Coussio, J.; Ferraro, G.; Anesini, C. Tília cordata Mill. extracts and scopoletin (isolated compound): Differential cell growth effects on lymphocytes. Phytother. Res. 2006, 20, 34–40. [Google Scholar] [CrossRef]
- Kowalski, R.; Baj, T.; Kalwa, K.; Kowalska, G.; Sujka, M. Essential Oil Composition of Tilia cordata Flowers. J. Essent. Oil-Bear. Plants 2017, 20, 1137–1142. [Google Scholar] [CrossRef]
- Marczyński, Z.; Zgoda, M.; Stańczak, A.; Nowak, S.; Jambor, J.; Skibska, B. Predicted real solubility (–log x2) and the level of hydrophilic-lipophilic balance (HLBRequ.) of phytochemicals contained in extracts isolated from linden inflorescence (Tiliae flos) with solvents of diversified polarity (εM). Herba Pol. 2019, 65, 39–50. [Google Scholar] [CrossRef]
- Vinha, A.F.; Sérgio, V.P.B.; Ana, C.; Marisa, M. Comparison Between the Phytochemical and Antioxidant Properties of Plants Used in Plant Infusions for Medicinal Purposes. J. Agric. Sci. 2013, 5, 11–19. [Google Scholar] [CrossRef]
- Özbucak, T.B.; Akçin, O.E.; Ertürk, O. The change in ecological, anatomical and antimicrobiological properties of the medicinal plant Tilia rubra Dc. Subsp. Caucasica (Rupr.) V. Engler along an elevational gradient. Pak. J. Bot. 2013, 45, 1735–1742. [Google Scholar]
- Wissam, Z.; Nour, A.A.; Jarkas, B.; Nukari, Z.; Dunia, S. Extracting and studying the antioxidant capacity of polyphenols in dry linden leaves (Tilia cordata). J. Pharmacogn. Phytochem. 2017, 6, 258–262. [Google Scholar]
- Prus-Walendziak, W.; Rodríguez Villegas, N.; Douglas, T.E.L.; Kozlowska, J. Phytochemical Studies of Plant Extracts Enclosed in Chitosan Microparticles and the Effect of Phytoformulations on Skin Condition. Eur. Polym. J. 2025, 233, 113968. [Google Scholar] [CrossRef]
- Siger, A.; Antkowiak, W.; Dwiecki, K.; Rokosik, E.; Rudzińska, M. Nutlets of Tilia cordata Mill. and Tilia platyphyllos Scop—Source of bioactive compounds. Food Chem. 2021, 346, 128888. [Google Scholar] [CrossRef]
- Sucholas, J.; Ukhanova, M.; Greinwald, A.; Luick, R. Wild collection of medicinal and aromatic plants (MAPs) in Poland for commercial purposes: A system reviewed. Herba Pol. 2021, 67, 1–18. [Google Scholar] [CrossRef]
- Kowalska, G. Pesticide Residues in Some Polish Herbs. Agriculture 2020, 10, 154. [Google Scholar] [CrossRef]
- Figas, A.; Tomaszewska-Sowa, M.; Kobierski, M.; Sawilska, A.K.; Klimkowska, K. Hazard of contamination with heavy metals in Thymus serpyllum L. herbs from rural areas. Agriculture 2021, 11, 375. [Google Scholar] [CrossRef]
- World Health Organization. Traditional Medicine Strategy (2002–2005); World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Balekundri, A.; Mannur, V. Quality control of the traditional herbs and herbal products: A review. Futur. J. Pharm. Sci. 2020, 6, 67. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Mostafa, M.Y.A.; Zhukovsky, M.V. Heavy metal contamination in urban surface sediments: Sources, distribution, contamination control, and remediation. Environ. Monit. Assess. 2020, 192, 32. [Google Scholar] [CrossRef]
- Nannipieri, P.; Kandler, E.; Ruggiero, P. Enzyme activities and microbiological and biochemical processes in soil. In Activity, Ecology, and Applications; Burns, R.G., Dick, R.P., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 1–36. [Google Scholar] [CrossRef]
- Shi, Z.J.; Lu, Y.; Xu, Z.G.; Fu, S.L. Enzyme activities of urban soils under different land use in the Shenzhen city, China. Plant Soil Environ. 2008, 54, 341–346. [Google Scholar] [CrossRef]
- Utobo, E.B.; Tewari, L. Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Environ. Res. 2015, 13, 147–169. [Google Scholar]
- Tenche-Constantinescu, A.M.; Chira, D.; Madoşa, E.; Hernea, C.; Ţenche-Constantinescu, R.-V.; Lalescu, D.; Borlea, G.F. Tilia sp.—Urban Trees for Future. Not. Bot. Horti Agrobot. 2015, 43, 259–264. [Google Scholar] [CrossRef]
- Crock, J.G.; Severson, R. Four reference soil and rock samples for measuring element availability in the western energy regions. U.S. Geol. Surv. Circular. 1980, 841, 16. [Google Scholar]
- Thalmann, A. Zur Methodik derestimmung der Dehydrodgenaseaktivität in Boden mittels Triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch 1968, 21, 249–258. [Google Scholar]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Factors affecting soil arylsulfatase activity. Soil Sci. Soc. Am. Proc. 1970, 34, 427–429. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemia Pierwiastków Śladowych; PWN: Warsaw, Poland, 1993. (In Polish) [Google Scholar]
- Wilding, L.P. Spatial variability: Its documentation. accommodation and implication to soil surveys. In Soil Spatial Variability; Nielsen, D.R., Bouma, J., Eds.; Pudoc: Wageningen, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- Förstner, U.; Ahlf, W.; Calmano, W. Sediment quality objectives and criteria development in Germany. Water Sci. Technol. 1993, 28, 307–316. [Google Scholar] [CrossRef]
- StatSoft Inc. STATISTICA, Version 12.0. Data Analysis Software System 2012. StatSoft Inc.: OK, USA. Available online: https://statisticasoftware.wordpress.com/2013/05/15/statsoft-releases-version-12-of-statistica-software (accessed on 7 May 2013).
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- USDA (United States Department of Agriculture). Soil Mechanics Level I-Module 3: USDA Textural Classification StudybGuide. National Employee Development Staff; Soil Conservation Service: Washington, DC, USA, 1987. [Google Scholar]
- Journal of Laws. Item 1395. Regulation of the Minister of the Environment of 1 September 2016 on the Method for Assessment of Land Surface Contamination. 2016. Available online: https://www.gdos.gov.pl (accessed on 5 September 2016). (In Polish)
- Zeng, L.S.; Liao, M.; Chen, C.L.; Huang, C.Y. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicol. Environ. Saf. 2007, 67, 67–74. [Google Scholar] [CrossRef]
- Niesiobędzka, K.; Krajewska, E. Metale ciężkie w układzie gleba-rośliność w środowisku wielkomiejskim. In Ekotoksykologia w Ochronie Środowiska; Ekotoksykologia w Ochronie Środowiska: Szklarska Poręba, Poland, 2008. (In Polish) [Google Scholar]
- Kobierski, M.; Dąbkowska-Naskręt, H. Local background concentration of heavy metals in various soil types formed from glacial till of the Inowrocławska Plain. J. Elem. 2012, 17, 559–585. [Google Scholar] [CrossRef]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Rogowska, W. Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland. Minerals 2021, 11, 1290. [Google Scholar] [CrossRef]
- Sereni, L.; Guenet, B.; Lamy, I. Mapping risks associated with soil copper contamination using availability and bio-availability proxies at the European scale. Environ. Sci. Pollut. Res. 2023, 30, 19828–19844. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Skwaryło-Bednarz, B.; Kwapisz, M.; Onuch, J.; Krzepiłko, A. Assessment of the content of heavy metals and catalase activity in soils located in protected zone of the Roztocze National Park. Acta Agroph. 2014, 21, 351–359. [Google Scholar]
- Kobierski, M.; Tomaszewska-Sowa, M.; Figas, A.; Gatz, A.; Sawilska, A.K. Bioaccumulation of heavy metals in herbal plants from areas not exposed to heavy anthropopressure. J. Soil Sci. 2017, 50, 41–53. [Google Scholar] [CrossRef]
- Figas, A.; Kobierski, M.; Siwik-Ziomek, A.; Tomaszewska-Sowa, M.; Gruszka, Z. Anthropression as a Factor Affecting the Content of Heavy Metals in the Flowers of Sambucus nigra L.—A Medicinal Plant Affecting Human Health. Sustainability 2024, 16, 4641. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment of 1 September 2016 on the Method of Conducting the Assessment of Soil Surface Pollution (Journal of Laws 2016, Item 1395). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20160001395 (accessed on 1 April 2025).
- EDQM. European Pharmacopoeia 10.0; EDQM: Strasburg, France, 2020. [Google Scholar]
- WHO—World Health Organization. Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues; WHO Press, World Health Organization: Geneva, Switzerland, 2007; Available online: https://apps.who.int/iris/bitstream/handle/10665/43510/9789241594448_eng.pdf (accessed on 1 April 2025).
- PTFarm. Polish Pharmacopoeia; PTFarm: Warsaw, Poland, 2014. [Google Scholar]
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Shaukat, K.; Wahid, A.; Hasanuzzaman, M. Fe toxicity in plants: Impacts and remediation. Physiol. Plant. 2021, 173, 201–222. [Google Scholar] [CrossRef]
- Laan, P.; Smolders, A.J.P.; Blom, C.W.P.M. The relative importance of anaerobiosis and high iron levels in flood tolerance of Rumex species. Plant Soil 1991, 136, 153–161. [Google Scholar] [CrossRef]
- Tomaszewska-Sowa, M.; Kobierski, M.; Sawilska, A.K.; Figas, A. Assessment of phytoaccumulation of trace elements in medicinal plants from natural habitats. Herba Pol. 2018, 64, 11–19. [Google Scholar] [CrossRef]
- Andresen, E.; Peiter, E.; Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 2018, 69, 909–954. [Google Scholar] [CrossRef] [PubMed]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid. Med. Cell. Longev. 2018, 5, 7580707. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; pp. 191–248. [Google Scholar]
- Fernando, D.R.; Lynch, J.P. Manganese phytotoxicity: New light on an old problem. Annals Bot. 2015, 116, 313–319. [Google Scholar] [CrossRef]
- Führs, H.; Behrens, C.; Gallien, S.; Heintz, D.; Van Dorsselaer, A.; Braun, H.P.; Horst, W.J. Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare). Ann. Bot. 2010, 105, 1129–1140. [Google Scholar] [CrossRef]
- Fernando, D.R.; Bakkaus, E.J.; Perrier, N.; Baker, A.J.M.; Woodrow, I.E.; Batianoff, G.N.; Collins, R.N. Manganese accumulation in the leaf mesophyll of four tree species: A PIXE/EDAX localization study. New Phytol. 2006, 171, 751–758. [Google Scholar] [CrossRef]
- Malzahn, E. Monitoring zagrożeń i zanieczyszczenia środowiska leśnego Puszczy Białowieskiej. Kosmos 2002, 51, 435–441. (In Polish) [Google Scholar]
- Cakmak, I. Identification and Correction of Widespread Zinc Deficiency in Turkey—A Success Story (A NATO-Science for Stability Project); Proceedings of the International Fertiliser Society: NewYork, NY, UK, 2004; pp. 1–26. [Google Scholar]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytologist. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Vaculík, M.; Mišljenović, T.; Lukačová, Z.; Jakovljević, K.; Podar, D.; Kováč, J. Zinc hyperaccumulation in plants: Mechanisms and principles. In Zinc in Plants: Current Knowledge and Recent Advances; Tripathi, D.K., Singh, V.P., Pandey, S., Sharma, S., Chauhan, D.K., Eds.; Elsevier Science Academic Press: Amsterdam, The Netherlands, 2025; pp. 1–39. [Google Scholar]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Obasi, P.N.; Akudinobi, B.B. Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Appl. Water Sci. 2020, 10, 184. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Zinc. Environmental Health Criteria; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Ociepa-Kubicka, A.; Ociepa, E. Toksyczne oddziaływanie metali ciężkich na rośliny, zwierzęta i ludzi. Inżynieria I Ochr. Środowiska 2012, 15, 169–180. [Google Scholar]
- Pietrelli, L.; Menegoni, P.; Papetti, P. Bioaccumulation of heavy metals by herbaceous species grown in urban and rural sites. Water Air Soil Pollut. 2022, 233, 141. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Raven, J.A.; Evans, M.C.W.; Korb, R.E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 1999, 60, 111–149. [Google Scholar] [CrossRef]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Bouazizi, H.; Jouili, H.; Geitmann, A.; Ferjani, E.E.I. Copper toxicity in expanding leaves of Phaseolus vulgaris L.: Antioxidant enzyme response and nutrient element uptake. Ecotoxicol. Environ. Saf. 2010, 7, 1304–1308. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Van Assche, F.; Clijsters, H. Effects of metals on enzyme activity in plants. Plant Cell Environ. 1990, 13, 195–206. [Google Scholar] [CrossRef]
- Poggere, G.; Gasparin, A.; Zimmer Barbosa, J.; Melo, G.W.; Corrêa, R.S.; Vargas Motta, A.C. Soil contamination by copper: Sources, ecological risks, and mitigation strategies in Brazil. J. Trace Elem. Min. 2023, 4, 100059. [Google Scholar] [CrossRef]
- Georgieva, S.K.; Georgieva, A.; Peteva, Z.; Dimova, D. Trace elements in commonly used medicinal plants from Varna region, Bulgaria. Environ. Sci. Pollut. Res. 2021, 28, 59277–59283. [Google Scholar] [CrossRef]
- Mitrović, M.; Kostić, O.; Miletić, Z.; Marković, M.; Radulović, N.; Sekulić, D.; Jarić, S.; Pavlović, P. Bioaccumulation of Potentially Toxic Elements in Tilia tomentosa Moench Trees from Urban Parks and Potential Health Risks from Using Leaves and Flowers for Medicinal Purposes. Forests 2023, 14, 2204. [Google Scholar] [CrossRef]
- Basgel, S.; Erdemoglu, S.B. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci. Total Environ. 2006, 359, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Smita, K.; Flores, L.C. Plant mediated detoxification of mercury and lead. Arab. J. Chem. 2017, 10, S2335–S2342. [Google Scholar] [CrossRef]
- Nas, F.S.; Ali, M. The effect of lead on plants in terms of growing and biochemical parameters: A review. MOJ Eco. Environ. Sci. 2018, 3, 265–268. [Google Scholar] [CrossRef]
- Hung, N.M.; Hiep, N.V.; Dung, B.N.; Hai, N.X. Lead Accumulation in different parts of okra plant (Abelmoschus esculentus). ARPN J. Agric. Biol. Sci. 2014, 9, 190–194. [Google Scholar]
- Alloway, B.J. (Ed.) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, The Netherlands, 2013; pp. 195–210. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Moghanm, F.S.; Youssef, M.S.; El-Mohsnawy, E.; Haroun, S.A. Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: Perspectives for phytoremediation. Int. J. Phytoremediation 2019, 21, 821–830. [Google Scholar] [CrossRef]
- Wolińska, A.; Stępniewska, Z. Dehydrogenase activity in the soil environment. Dehydrogenases 2012, 10, 183–210. [Google Scholar]
- Uhlirova, E.; Elhottova, D.; Triska, J.; Santruckova, H. Physiology and Microbial Community Structure in Soil at Extreme Water Content. Folia Microbiol. 2005, 50, 161–166. [Google Scholar] [CrossRef]
- Datt, N.; Singh, D. Enzymes in relation to soil biological properties and sustainability. In Sustainable Management of Soil and Environment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 383–406. [Google Scholar] [CrossRef]
- Busto, M.D.; Perez-Mateos, M. Characterization of β-d-glucosidase extracted from soil fractions. Eur. J. Soil Sci. 2000, 51, 193–200. [Google Scholar] [CrossRef]
- Weaver, M.; Zablotowicz, R.; Krutz, L.; Bryson, C.; Locke, M. Microbial and Vegetative Changes Associated with Development of a Constructed Wetland. Ecol. Indic. 2012, 13, 3745. [Google Scholar] [CrossRef]
- Stewart, B.J.; Leatherwood, J.M. Derepressed synthesis of cellulase by Cellulomonas. J. Bacteriol. 1976, 128, 609–615. [Google Scholar] [CrossRef]
- Schnürer, J.; Rosswall, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 1982, 43, 1256–1261. [Google Scholar] [CrossRef]
- Asitok, A.; Ekpenyong, M.; Antai, S. Multivariate statistics of fertility parameter fluxes in cement-dust-polluted soils in Mfamosing, Nigeria: Impact on agriculture. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 781. [Google Scholar] [CrossRef]
Sampling Location | The Place Where the Material Was Collected | The GPS Coordinates | Road Distance | The Degree of Traffic Intensity * | Surroundings |
---|---|---|---|---|---|
A | Bydgoszcz city | 53°07′15.6″ N 18°00′23.1″ E | 10 m | a | A tree in the old town center stands on a regularly trimmed lawn, surrounded by old, tall trees, separated from the road by a lawn and other lower plants. |
B | Łochowo village | 53°07′30.8″ N 17°49′30.3″ E | 5 m | b | A tree growing near the road and urbanized area, separated from the road by an area of wild weeds and grass. |
C | Łochowo village | 53°08′01.2″ N 17°49′24.0″ E | 200 m | c | A tree growing near the field, on the edges of mixed forests with a predominance of deciduous trees, away from roads and urban area. |
D | Węgorzyn village | 53°12′21.7″ N 18°47′18.2″ E | 2 m | b | A tree growing near the field, near the rural road on rural area close to residential and farm buildings. |
E | Pszczółczyn village | 53°00′41.0″ N 17°53′45.0″ E | 2 m | b | A tree growing in the area of the Aleja Lipowa Reserve protected by law, by the road. Nearby there are meadows and fields. In the area there are fragments of a deciduous forest with limes, alders, and ash trees. |
F | Olimpin village | 53°01′39.0″ N 17°57′50.3″ E | 15 m | b | A tree growing near the field, near a rural road, far from residential and farm buildings. |
Sampling Location * | Grain Size Composition [%] | Textural Class USDA *** | pH ** | TOCs | ECs | ||
---|---|---|---|---|---|---|---|
Sand 2.0–0.05 mm | Silt 0.05–0.002 mm | Clay <0.002 mm | 1 M KCl | g∙kg−1 | µS∙cm−1 | ||
A | 68.5 | 27.7 | 3.8 | SL | 6.74 ± 0.04 | 19.3 ± 0.26 | 185.0 |
B | 64.6 | 31.2 | 4.2 | SL | 7.12 ± 0.05 | 13.1 ± 0.28 | 111.5 |
C | 74.4 | 22.8 | 2.8 | LS | 6.96 ± 0.07 | 10.3 ± 0.23 | 89.7 |
D | 59.9 | 33.7 | 6.4 | SL | 6.87 ± 0.05 | 14.1 ± 0.30 | 124.0 |
E | 65.5 | 31.1 | 3.4 | SL | 5.97 ± 0.03 | 13.3 ± 0.28 | 89.9 |
F | 68.7 | 28.1 | 3.2 | SL | 7.10 ± 0.05 | 9.9 ± 0.38 | 97.5 |
mean | 66.9 | 29.10 | 3.97 | 6.79 | 13.3 | 116.3 | |
SD | 4.86 | 3.80 | 1.29 | 0.43 | 3.39 | 36.2 | |
CV (%) | 7.3 | 13.1 | 32.5 | 6.3 | 25.5 | 31.1 |
Sampling Location * | Zn | Cu | Mn | Fe | Pb |
---|---|---|---|---|---|
mg·kg−1 | g·kg⁻1 | mg·kg−1 | |||
A | 164.7 ± 47.4 | 16.7 ± 6.11 | 265.5 ± 23.7 | 6.37 ± 0.78 | 14.0 ± 1.34 |
B | 45.3 ± 3.12 | 6.9 ± 1.85 | 152.2 ± 15.8 | 3.43 ± 0.68 | 12.5 ± 2.26 |
C | 16.6 ± 2.89 | 5.67 ± 0.98 | 75.5 ± 14.9 | 3.08 ± 0.28 | 11.2 ± 1.21 |
D | 46.9 ± 5.88 | 8.67 ± 5.34 | 179.0 ± 34.8 | 8.83 ± 0.65 | 13.1 ± 1.42 |
E | 48.9 ± 6.25 | 2.00 ± 0.87 | 141.6 ± 29.0 | 3.18 ± 0.39 | 10.9 ± 1.32 |
F | 33.6 ± 5.65 | 4.73 ± 0.46 | 124.4 ± 36.8 | 3.03 ± 0.41 | 9.9 ± 1.25 |
Mean for location | 59.33 | 7.45 | 156.37 | 3.82 | 11.93 |
SD | 48.39 | 4.61 | 58.05 | 1.17 | 1.39 |
CV (%) | 81.6 | 61.9 | 37.1 | 30.6 | 11.7 |
Sampling Location * | Zna | Cua | Mna | Pba | Fea | Zna/Znt | Cua/Cut | Mna/Mnt | Pba/Pbt | Fea/Fet |
---|---|---|---|---|---|---|---|---|---|---|
mg·kg⁻1 | % | |||||||||
A | 38.3 | 4.24 | 58.8 | 1.20 | 232.1 | 23.2 | 25.4 | 22.1 | 8.6 | 3.64 |
B | 5.21 | 0.91 | 21.1 | 0.89 | 78.4 | 11.5 | 13.2 | 13.9 | 7.1 | 2.29 |
C | 2.32 | 1.32 | 8.32 | 0.67 | 87.5 | 14.0 | 23.3 | 11.0 | 6.0 | 2.84 |
D | 5.47 | 1.81 | 32.2 | 0.90 | 83.9 | 11.7 | 20.9 | 18.0 | 6.9 | 0.95 |
E | 7.20 | 0.32 | 20.5 | 0.98 | 98.7 | 14.7 | 16.0 | 14.5 | 9.0 | 3.10 |
F | 8.80 | 1.43 | 31.4 | 1.30 | 245.6 | 26.2 | 30.2 | 25.2 | 13.1 | 8.11 |
Sampling Location * | Zn (EF) | Zn (I_geo) | Cu (EF) | Cu (I_geo) | Mn (EF) | Mn (I_geo) | Pb (EF) | Pb (I_geo) | HC ** |
---|---|---|---|---|---|---|---|---|---|
A | 7.5 | 1.80 | 3.9 | 0.85 | 0.8 | −1.35 | 1.3 | −0.77 | 2 |
B | 3.8 | −0.06 | 3.0 | −0.42 | 0.9 | −2.15 | 2.1 | −0.93 | 3 |
C | 1.6 | −1.51 | 2.7 | −0.71 | 0.5 | −3.16 | 2.1 | −1.09 | 5 |
D | 1.5 | −0.01 | 1.5 | −0.09 | 0.4 | −1.92 | 0.9 | −0.86 | 3 |
E | 4.5 | 0.05 | 0.9 | −2.21 | 0.9 | −2.26 | 2.0 | −1.13 | 4 |
F | 3.2 | −0.49 | 2.3 | −0.97 | 0.8 | −2.44 | 1.9 | −1.27 | 4 |
Sampling Location * | Zn ** | Cu | Mn | Fe | Pb |
---|---|---|---|---|---|
mg·kg−1 | |||||
A | 23.0 ± 4.58 | 4.27 ± 2.25 | 15.5 ± 0.46 | 930.0 ± 60.1 | 4.0 ± 0.34 |
B | 23.0 ± 1.28 | 9.73 ± 2.80 | 24.2 ± 0.1 | 530.0 ± 20.3 | 3.5 ± 0.26 |
C | 31.7 ± 0.85 | 11.4 ± 1.07 | 38.1 ± 1.72 | 490.0 ± 50.2 | 2.2 ± 0.21 |
D | 18.6 ± 0.98 | 10.7 ± 1.31 | 13.3 ± 1.44 | 1560.0 ± 150.2 | 3.1 ± 0.41 |
E | 33.9 ± 0.98 | 10.9 ± 0.45 | 104.7 ± 1.72 | 380.0 ± 10.9 | 3.2 ± 0.32 |
F | 26.4 ± 0.51 | 10.8 ± 0.61 | 57.5 ± 0.85 | 670.0 ± 10.7 | 2.9 ± 0.25 |
Mean for location | 26.10 | 9.63 | 42.22 | 760.00 | 3.15 |
SD | 5.29 | 2.45 | 31.70 | 397.32 | 0.55 |
CV (%) | 20.3 | 25.4 | 75.1 | 52.3 | 17.5 |
Sampling Location * | BCFf | ||||
---|---|---|---|---|---|
Zn | Cu | Mn | Fe | Pb | |
A | 0.14 | 0.26 | 0.06 | 0.15 | 0.28 |
medium | medium | weak | medium | medium | |
B | 0.51 | 1.41 | 0.16 | 0.15 | 0.28 |
medium | intensive | medium | medium | medium | |
C | 1.90 | 2.01 | 0.21 | 0.16 | 0.20 |
intensive | intensive | medium | medium | medium | |
D | 0.40 | 1.23 | 0.74 | 1.18 | 0.23 |
medium | intensive | medium | intensive | medium | |
E | 0.70 | 5.45 | 0.74 | 0.12 | 0.29 |
medium | intensive | medium | medium | medium | |
F | 0.79 | 2.28 | 0.46 | 0.22 | 0.29 |
medium | intensive | medium | medium | medium |
Sampling Location * | DHA ** | FDA | GL | AR |
---|---|---|---|---|
µg TPF·g−1·h−1 | µg F·g−1·h−1 | µg pNP·g−1·h−1 | µg pNP·g−1·h−1 | |
A | 47.86 ± 7.26 | 35.78 ± 0.69 | 2.466 ± 0.03 | 0.030 ± 0.030 |
B | 84.71 ± 17.64 | 59.76 ± 0.77 | 3.166 ± 0.12 | 0.062 ± 0.004 |
C | 47.03 ± 4.20 | 38.07 ± 0.26 | 2.816 ± 0.27 | 0.035 ± 0.016 |
D | 239.6 ± 17.94 | 42.10 ± 0.15 | 4.143 ± 0.24 | 0.051 ± 0.007 |
E | 133.4 ± 16.53 | 43.70 ± 0.65 | 2.307 ± 0.02 | 0.018 ± 0.014 |
F | 10.56 ± 2.70 | 48.30 ± 0.04 | 2.194 ± 0.07 | 0.124 ± 0.024 |
Mean for location | 82.61 | 8.62 | 0.727 | 0.038 |
SD | 93.85 | 44.62 | 2.849 | 0.054 |
CV (%) | 88.02 | 19.31 | 25.53 | 70.91 |
Component | PC1 | PC2 |
---|---|---|
sand fraction | 0.34392 | 0.776781 |
silt fraction | −0.28147 | −0.700461 |
clay fraction | −0.46887 | −0.867700 |
TOC * | −0.91872 ** | 0.071594 |
EC | −0.97647 | 0.180229 |
Znt | −0.90019 | 0.377934 |
Cut | −0.92945 | 0.172712 |
Mnt | −0.96752 | 0.059829 |
Fet | −0.74030 | −0.570136 |
Pbt | −0.86458 | −0.269903 |
Cuf | 0.88000 | −0.428250 |
Pbf | −0.80075 | 0.086439 |
DHA | −0.17054 | −0.899274 |
GL | −0.21352 | −0.920609 |
Zna | −0.84578 | 0.521446 |
Cua | −0.88175 | 0.338314 |
Mna | −0.92369 | 0.254936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figas, A.; Tomaszewska-Sowa, M.; Siwik-Ziomek, A.; Kobierski, M. Phytoaccumulation of Heavy Metals in Flowers of Tilia cordata Mill. and Soil on Background Enzymatic Activity. Forests 2025, 16, 991. https://doi.org/10.3390/f16060991
Figas A, Tomaszewska-Sowa M, Siwik-Ziomek A, Kobierski M. Phytoaccumulation of Heavy Metals in Flowers of Tilia cordata Mill. and Soil on Background Enzymatic Activity. Forests. 2025; 16(6):991. https://doi.org/10.3390/f16060991
Chicago/Turabian StyleFigas, Anna, Magdalena Tomaszewska-Sowa, Anetta Siwik-Ziomek, and Mirosław Kobierski. 2025. "Phytoaccumulation of Heavy Metals in Flowers of Tilia cordata Mill. and Soil on Background Enzymatic Activity" Forests 16, no. 6: 991. https://doi.org/10.3390/f16060991
APA StyleFigas, A., Tomaszewska-Sowa, M., Siwik-Ziomek, A., & Kobierski, M. (2025). Phytoaccumulation of Heavy Metals in Flowers of Tilia cordata Mill. and Soil on Background Enzymatic Activity. Forests, 16(6), 991. https://doi.org/10.3390/f16060991