Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Field Methods
2.4. LAI Raster Generation
2.5. Statistical Analysis
3. Results
3.1. Burn Severity and Stand Structure
3.2. LAI and Plant Cover
3.3. Understory Shrubs, Regeneration and Climate
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, R.B.; Coop, J.D.; Parks, S.A.; Trader, L. Fire Regimes Approaching Historic Norms Reduce Wildfire-facilitated Conversion from Forest to Non-forest. Ecosphere 2018, 9, e02182. [Google Scholar] [CrossRef]
- Covington, W.W.; Moore, M.M. Postsettlement Changes in Natural Fire Regimes and Forest Structure. J. Sustain. For. 1994, 2, 153–181. [Google Scholar] [CrossRef]
- Singleton, M.P.; Thode, A.E.; Meador, A.J.S.; Iniguez, J.M. Increasing Trends in High-Severity Fire in the Southwestern USA from 1984 to 2015. For. Ecol. Manag. 2019, 433, 709–719. [Google Scholar] [CrossRef]
- Mueller, S.E.; Thode, A.E.; Margolis, E.Q.; Yocom, L.L.; Young, J.D.; Iniguez, J.M. Climate Relationships with Increasing Wildfire in the Southwestern US from 1984 to 2015. For. Ecol. Manag. 2020, 460, 117861. [Google Scholar] [CrossRef]
- Cartier, E.A.; Taylor, L.L. Living in a Wildfire: The Relationship between Crisis Management and Community Resilience in a Tourism-Based Destination. Tour. Manag. Perspect. 2020, 34, 100635. [Google Scholar] [CrossRef]
- Rust, A.J.; Hogue, T.S.; Saxe, S.; McCray, J. Post-Fire Water-Quality Response in the Western United States. Int. J. Wildland Fire 2018, 27, 203. [Google Scholar] [CrossRef]
- Romme, W.H.; Floyd, M.L.; Hanna, D.; Crist, M.; Green, D.; Lindsey, J.P.; Mcgarigal, K.; Redders, J.S. Historical Range of Variability and Current Landscape Condition Analysis: South Central Highlands Section, Southwestern Colorado & Northwestern New Mexico; Colorado Forest Restoration Institute: Fort Collins, CO, USA, 2009; pp. 1–186. [Google Scholar]
- Stevens-Rumann, C.; Morgan, P. Repeated Wildfires Alter Forest Recovery of Mixed-conifer Ecosystems. Ecol. Appl. 2016, 26, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Dore, S.; Montes-Helu, M.; Hart, S.C.; Hungate, B.A.; Koch, G.W.; Moon, J.B.; Finkral, A.J.; Kolb, T.E. Recovery of Ponderosa Pine Ecosystem Carbon and Water Fluxes from Thinning and Stand-replacing Fire. Glob. Change Biol. 2012, 18, 3171–3185. [Google Scholar] [CrossRef]
- Messier, C.; Baeten, L.; Bauhus, J.; Barsoum, N.; Sousa-silva, R.; Auge, H.; Bruelheide, H.; Caldwell, B.; Hall, J.S.; Hector, A.; et al. For the Sake of Resilience and Multifunctionality, Let’ s Diversify Planted Forests! Conserv. Lett. 2021, 15, e12829. [Google Scholar] [CrossRef]
- DeRose, R.J.; Long, J.N.; Waring, K.M.; Windmuller-Campione, M.A.; Nelson, A.S.; Nabel, M.R. What Does It Mean to Be a Silviculturist? J. For. 2023, 122, 185–193. [Google Scholar] [CrossRef]
- Rust, A.J.; Randell, J.; Todd, A.S.; Hogue, T.S. Wildfire Impacts on Water Quality, Macroinvertebrate, and Trout Populations in the Upper Rio Grande. For. Ecol. Manag. 2019, 453, 117636. [Google Scholar] [CrossRef]
- Prichard, S.J.; Povak, N.A.; Kennedy, M.C.; Peterson, D.W. Fuel Treatment Effectiveness in the Context of Landform, Vegetation, and Large, Wind-driven Wildfires. Ecol. Appl. 2020, 30, e02104. [Google Scholar] [CrossRef] [PubMed]
- Fulé, P.Z.; Barrett, M.P.; Cocke, A.E.; Crouse, J.E.; Roccaforte, J.P.; Normandin, D.P.; Covington, W.W.; Moore, M.M.; Heinlein, T.A.; Stoddard, M.T.; et al. Fire Regimes over a 1070-m Elevational Gradient, San Francisco Peaks/Dook’o’oosłííd, Arizona, USA. Fire Ecol. 2023, 19, 41. [Google Scholar] [CrossRef]
- Korb, J.E.; Fulé, P.Z.; Wu, R. Variability of Warm/Dry Mixed Conifer Forests in Southwestern Colorado, USA: Implications for Ecological Restoration. For. Ecol. Manag. 2013, 304, 182–191. [Google Scholar] [CrossRef]
- Remke, M.J.; Chambers, M.E.; Tuten, M.C.; Pelz, K.A. The Status of Our Knowledge and Management Implications Mixed Conifer Forests in the San Juan Mountain Region. Colo. For. Restor. Inst. 2021. CFRI-2110. [Google Scholar] [CrossRef]
- Rodman, K.C.; Meador, A.J.S.; Moore, M.M.; Huffman, D.W. Reference Conditions Are Influenced by the Physical Template and Vary by Forest Type: A Synthesis of Pinus Ponderosa-Dominated Sites in the Southwestern United States. For. Ecol. Manag. 2017, 404, 316–329. [Google Scholar] [CrossRef]
- Baker, W. Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Landscapes of the San Juan Mountains, Colorado, USA, from Multiple Sources. Fire 2018, 1, 23. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Korb, J.E.; Wu, R. Changes in Forest Structure of a Mixed Conifer Forest, Southwestern Colorado, USA. For. Ecol. Manag. 2009, 258, 1200–1210. [Google Scholar] [CrossRef]
- Zahura, F.; Bisht, G.; Li, Z.; McKnight, S.; Chen, X. Impact of Topography and Climate on Post-Fire Vegetation Recovery Across Different Burn Severity and Land Cover Types Through Machine Learning. arXiv 2024, arXiv:2404.16834. [Google Scholar]
- Rodman, K.C.; Meador, A.J.S.; Huffman, D.W.; Waring, K.M. Reference Conditions and Historical Fine-Scale Spatial Dynamics in a Dry Mixed-Conifer Forest, Arizona, USA. For. Sci. 2016, 62, 268–280. [Google Scholar] [CrossRef]
- Chambers, J.C.; Allen, C.R.; Cushman, S.A. Operationalizing Ecological Resilience Concepts for Managing Species and Ecosystems at Risk. Front. Ecol. Evol. 2019, 7, 241. [Google Scholar] [CrossRef]
- Price, J.C. Estimating Leaf Area Index from Satellite Data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 727–734. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Liu, Q.; Dong, Y.; Li, S.; Zhang, Z.; Zhu, X.; Liu, L.; Zhao, J. Estimating Leaf Area Index with Dynamic Leaf Optical Properties. Remote Sens. 2021, 13, 4898. [Google Scholar] [CrossRef]
- Pierce, L.L.; Running, S.W.; Walker, J. Regional-Scale Relationships of Leaf Area Index to Specific Leaf Area and Leaf Nitrogen Content. Ecol. Appl. 1994, 4, 313–321. [Google Scholar] [CrossRef]
- Mauget, S.A.; Upchurch, D.R. Vegetation Index Response to Leaf Area Index and Fractional Vegetated Area over Cotton. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 1, pp. 372–374. [Google Scholar] [CrossRef]
- Palán, L.; Křeček, J.; Sato, Y. Leaf Area Index in a Forested Mountain Catchment. Hung. Geogr. Bull. 2018, 67, 3–11. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Kooistra, C.; Hall, T.E.; Paveglio, T.; Pickering, M. Understanding the Factors That Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States. Environ. Manag. 2018, 61, 85–102. [Google Scholar] [CrossRef]
- Baker, A.W.L.; Romme, W.H.; Binkley, D.; Cheng, T. The Landscapes They Are A-Changin’—Severe 19th-Century Fires, Spatial Complexity, and Natural Recovery in Historical Landscapes on the Uncompahgre Plateau; Colorado Forest Restoration Institute: Fort Collins, CO, USA, 2017; ISBN 1-103-16000-1. [Google Scholar]
- McMichael, C.E.; Hope, A.S.; Roberts, D.A.; Anaya, M.R. Post-Fire Recovery of Leaf Area Index in California Chaparral: A Remote Sensing-Chronosequence Approach. Int. J. Remote Sens. 2004, 25, 4743–4760. [Google Scholar] [CrossRef]
- Shrestha, S.; Williams, C.A.; Rogers, B.M.; Rogan, J.; Kulakowski, D. Forest Types Show Divergent Biophysical Responses After Fire: Challenges to Ecological Modeling. EGUsphere 2023, 2023, 1–64. [Google Scholar] [CrossRef]
- Korb, J.E.; Stoddard, M.T.; Huffman, D.W. Effectiveness of Restoration Treatments for Reducing Fuels and Increasing Understory Diversity in Shrubby Mixed-Conifer Forests of the Southern Rocky Mountains, USA. Forests 2020, 11, 508. [Google Scholar] [CrossRef]
- Springer, J.D.; Stoddard, M.T.; Rodman, K.C.; Huffman, D.W.; Fornwalt, P.J.; Pedersen, R.J.; Laughlin, D.C.; McGlone, C.M.; Daniels, M.L.; Fulé, P.Z.; et al. Increases in Understory Plant Cover and Richness Persist Following Restoration Treatments in Pinus Ponderosa Forests. J. Appl. Ecol. 2024, 61, 25–35. [Google Scholar] [CrossRef]
- Young, M.; Remke, M.; Korb, J. The Interacting Influence of Fire and Tree Characteristics on Douglas-Fir Beetle Host-Tree Selection Five Years Post. Fire 2024, 7, 64. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A Review of the Effects of Forest Fire on Soil Properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Huffman, E.L.; MacDonald, L.H.; Stednick, J.D. Strength and Persistence of Fire-induced Soil Hydrophobicity under Ponderosa and Lodgepole Pine, Colorado Front Range. Hydrol. Process. 2001, 15, 2877–2892. [Google Scholar] [CrossRef]
- Hohner, A.K.; Rhoades, C.C.; Wilkerson, P.; Rosario-Ortiz, F.L. Wildfires Alter Forest Watersheds and Threaten Drinking Water Quality. Acc. Chem. Res. 2019, 52, 1234–1244. [Google Scholar] [CrossRef]
- Crockett, J.L.; Hurteau, M.D. Climate Limits Vegetation Green-up More than Slope, Soil Erodibility, and Immediate Precipitation Following High-Severity Wildfire. Fire Ecol. 2024, 20, 41. [Google Scholar] [CrossRef]
- Kemp, K.B.; Higuera, P.E.; Morgan, P.; Abatzoglou, J.T. Climate Will Increasingly Determine Post-fire Tree Regeneration Success in Low-elevation Forests, Northern Rockies, USA. Ecosphere 2019, 10, e02568. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, L.; Clemmensen, K.E.; Strengbom, J.; Granath, G.; Wardle, D.A.; Nilsson, M.; Lindahl, B.D. Crown-Fire Severity Is More Important than Ground-Fire Severity in Determining Soil Fungal Community Development in the Boreal Forest. J. Ecol. 2021, 109, 504–518. [Google Scholar] [CrossRef]
- Safford, H.D.; Miller, J.; Schmidt, D.; Roath, B.; Parsons, A. BAER Soil Burn Severity Maps Do Not Measure Fire Effects to Vegetation: A Comment on Odion and Hanson (2006). Ecosystems 2008, 11, 1–11. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Hammill, K.A.; Collins, L.; Price, O. Effects of Weather, Fuel and Terrain on Fire Severity in Topographically Diverse Landscapes of South-Eastern Australia. Landsc. Ecol. 2010, 25, 607–619. [Google Scholar] [CrossRef]
- Anderson, B.; Schnackenberg, L. 416 Fire Burned Area Emergency Response (BAER) Executive Summary; San Juan National Forest: Durango, CO, USA, 2019; pp. 1–9.
- Western Regional Climate Center. Available online: https://wrcc.dri.edu (accessed on 22 April 2019).
- Loveland, T.R.; Merchant, J.W.; Brown, J.F.; Ohlen, D.O.; Reed, B.C.; Olson, P.; Hutchinson, J. Seasonal Land-Cover Regions of the United States. Ann. Assoc. Am. Geogr. 1995, 85, 339–355. [Google Scholar] [CrossRef]
- Korb, J.E.; Daniels, M.L.; Laughlin, D.C.; Ful, P.Z. Understory Communities of Warm-Dry, Mixed-Conifer Forests in Southwestern Colorado. Southwest. Nat. 2007, 52, 493–503. [Google Scholar] [CrossRef]
- Kaufmann, M.R.; Moir, W.H.; Bassett, R.L. Old-Growth in San Juan N. F. Dry Forests (Ponderosa Pine and Warm, Dry Mixed-Conifer Forests) Is Older than Mature Forest and Other Mehl 3. Historical Old Growth in San Juan Ponderosa Pine and Dry Mixed-Conifer Forests (Bake); General Technical Report RM-213; Rocky Mountain Research Station Publications: Fort Collins, CO, USA, 1992; pp. 3–4.
- Homepage, [MTBS Project; Survey]. U.F.S.S.G. Monitoring Trends in Burn Severity. (2017, July—Last Revised). Available online: https://www.mtbs.gov/ (accessed on 14 June 2022).
- LANDFIRE: LANDFIRE Existing Vegetation Type Layer. (2018, June—Last Update). U.S. Department of Interior, Geological Survey, and U.S. Department of Agriculture. Available online: https://landfire.gov/viewer/ (accessed on 22 April 2019).
- Cocke, A.A.E.; Fulé, P.Z.; Crouse, J.E.J. Comparison of Burn Severity Assessments Using Differenced Normalized Burn Ratio and Ground Data. Int. J. Wildland Fire 2005, 14, 189–198. [Google Scholar] [CrossRef]
- Kang, Y.; Ozdogan, M.; Gao, F.; Anderson, M.C.; White, W.A.; Yang, Y.; Yang, Y.; Erickson, T.A. A Data-Driven Approach to Estimate Leaf Area Index for Landsat Images over the Contiguous US. Remote Sens. Environ. 2021, 258, 112383. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized Linear Mixed Models: A Practical Guide for Ecology and Evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Andrus, R.A.; Veblen, T.T.; Harvey, B.J.; Hart, S.J. Fire Severity Unaffected by Spruce Beetle Outbreak in Spruce-Fir Forests in Southwestern Colorado. Ecol. Appl. 2019, 26, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Nesbit, K.A.; Yocom, L.L.; Trudgeon, A.M.; DeRose, R.J.; Rogers, P.C. Tamm Review: Quaking Aspen’s Influence on Fire Occurrence, Behavior, and Severity. For. Ecol. Manag. 2023, 531, 120752. [Google Scholar] [CrossRef]
- Musselman, K.N.; Pomeroy, J.W.; Link, T.E. Variability in Shortwave Irradiance Caused by Forest Gaps: Measurements, Modelling, and Implications for Snow Energetics. Agric. For. Meteorol. 2015, 207, 69–82. [Google Scholar] [CrossRef]
- Harvey, B.J.; Andrus, R.A.; Battaglia, M.A.; Negrón, J.F.; Orrego, A.; Veblen, T.T. Droughty Times in Mesic Places: Factors Associated with Forest Mortality Vary by Scale in a Temperate Subalpine Region. Ecosphere 2021, 12, 3318. [Google Scholar] [CrossRef]
- Dillon, G.K.; Holden, Z.A.; Morgan, P.; Crimmins, M.A.; Heyerdahl, E.K.; Luce, C.H. Both Topography and Climate Affected Forest and Woodland Burn Severity in Two Regions of the Western US, 1984 to 2006. Ecosphere 2011, 2, art130. [Google Scholar] [CrossRef]
- Keyser, A.; Westerling, A.L. Climate Drives Inter-Annual Variability in Probability of High Severity Fire Occurrence in the Western United States. Environ. Res. Lett. 2017, 12, 065003. [Google Scholar] [CrossRef]
- Liu, Z.; Wimberly, M.C. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States. PLoS ONE 2015, 10, e0140839. [Google Scholar] [CrossRef]
- Matosziuk, L.M.; Alleau, Y.; Kerns, B.K.; Bailey, J.; Johnson, M.G.; Hatten, J.A. Effects of Season and Interval of Prescribed Burns on Pyrogenic Carbon in Ponderosa Pine Stands in the Southern Blue Mountains, Oregon, USA. Geoderma 2019, 348, 1–11. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Hudak, A.T.; Morgan, P.; Arnold, A.; Strand, E.K. Fuel Dynamics Following Wildfire in US Northern Rockies Forests. Front. For. Glob. Change 2020, 3, 51. [Google Scholar] [CrossRef]
- McGarigal, K.; Romme, W.H.; Crist, M.; Roworth, E. Cumulative Effects of Roads and Logging on Landscape Structure in the San Juan Mountains, Colorado (USA). Landsc. Ecol. 2001, 16, 327–349. [Google Scholar] [CrossRef]
- Keeling, E.G.; Sala, A.; DeLuca, T.H. Effects of Fire Exclusion on Forest Structure and Composition in Unlogged Ponderosa Pine/Douglas-Fir Forests. For. Ecol. Manag. 2006, 237, 418–428. [Google Scholar] [CrossRef]
- Vorster, A.G.; Stevens-Rumann, C.; Young, N.; Woodward, B.; Choi, C.T.H.; Chambers, M.E.; Cheng, A.S.; Caggiano, M.; Schultz, C.; Thompson, M.; et al. Metrics and Considerations for Evaluating How Forest Treatments Alter Wildfire Behavior and Effects. J. For. 2024, 122, 13–30. [Google Scholar] [CrossRef]
- Adams, H.D.; Kolb, T.E. Tree Growth Response to Drought and Temperature in a Mountain Landscape in Northern Arizona, USA. J. Biogeogr. 2005, 32, 1629–1640. [Google Scholar] [CrossRef]
- McDowell, N.G.; Adams, H.D.; Bailey, J.D.; Kolb, T.E. The Role of Stand Density on Growth Efficiency, Leaf Area Index, and Resin Flow in Southwestern Ponderosa Pine Forests. Can. J. For. Res. 2007, 37, 343–355. [Google Scholar] [CrossRef]
- Rodman, K.C.; Veblen, T.T.; Andrus, R.A.; Enright, N.J.; Fontaine, J.B.; Gonzalez, A.D.; Redmond, M.D.; Wion, A.P. A Trait-based Approach to Assessing Resistance and Resilience to Wildfire in Two Iconic North American Conifers. J. Ecol. 2021, 109, 313–326. [Google Scholar] [CrossRef]
- Andrus, R.A.; Harvey, B.J.; Rodman, K.C.; Hart, S.J.; Veblen, T.T. Moisture Availability Limits Subalpine Tree Establishment. Ecology 2018, 99, 567–575. [Google Scholar] [CrossRef]
- Nikinmaa, L.; Lindner, M.; Cantarello, E.; Gardiner, B.; Jacobsen, J.B.; Jump, A.S.; Parra, C.; Plieninger, T.; Schuck, A.; Seidl, R.; et al. A Balancing Act: Principles, Criteria and Indicator Framework to Operationalize Social-Ecological Resilience of Forests. J. Environ. Manag. 2023, 331, 117039. [Google Scholar] [CrossRef]
- Bryant, T.; Waring, K.; Meador, A.S.; Bradford, J.B. A Framework for Quantifying Resilience to Forest Disturbance. Front. For. Glob. Change 2019, 2, 56. [Google Scholar] [CrossRef]
- Windmuller-Campione, M.A.; DeRose, J.; Long, J.N. Landscape-Scale Drivers of Resistance and Resilience to Bark Beetles: A Conceptual Susceptibility Model. Forests 2021, 12, 798. [Google Scholar] [CrossRef]
- Wu, X.-X.; Gu, Z.-J.; Luo, H.; Shi, X.-Z.; Yu, D.-S. Analyzing Forest Effects on Runoff and Sediment Production Using Leaf Area Index. J. Mt. Sci. 2014, 11, 119–130. [Google Scholar] [CrossRef]
- Singleton, M.P.; Thode, A.E.; Meador, A.J.S.; Iniguez, J.M. Moisture and Vegetation Cover Limit Ponderosa Pine Regeneration in High-Severity Burn Patches in the Southwestern US. Fire Ecol. 2021, 17, 14. [Google Scholar] [CrossRef]
- Falk, D.A.; van Mantgem, P.J.; Keeley, J.E.; Gregg, R.M.; Guiterman, C.H.; Tepley, A.J.; Young, D.J.; Marshall, L.A. Mechanisms of Forest Resilience. For. Ecol. Manag. 2022, 512, 120129. [Google Scholar] [CrossRef]
- Marsh, C.; Krofcheck, D.; Hurteau, M.D. Identifying Microclimate Tree Seedling Refugia in Post-Wildfire Landscapes. Agric. For. Meteorol. 2022, 313, 108741. [Google Scholar] [CrossRef]
- Marsh, C.; Blankinship, J.C.; Hurteau, M.D. Effects of Nurse Shrubs and Biochar on Planted Conifer Seedling Survival and Growth in a High-Severity Burn Patch in New Mexico, USA. For. Ecol. Manag. 2023, 537, 120971. [Google Scholar] [CrossRef]
- Rodman, K.C.; Andrus, R.A.; Carlson, A.R.; Carter, T.A.; Chapman, T.B.; Coop, J.D.; Fornwalt, P.J.; Gill, N.S.; Harvey, B.J.; Hoffman, A.E.; et al. Rocky Mountain Forests Are Poised to Recover Following Bark Beetle Outbreaks but with Altered Composition. J. Ecol. 2022, 110, 2929–2949. [Google Scholar] [CrossRef]
- Rodman, K.C.; Veblen, T.T.; Chapman, T.B.; Rother, M.T.; Wion, A.P.; Redmond, M.D. Limitations to Recovery Following Wildfire in Dry Forests of Southern Colorado and Northern New Mexico, USA. Ecol. Appl. 2020, 30, e02001. [Google Scholar] [CrossRef]
- Marshall, L.A.E.; Fornwalt, P.J.; Stevens-Rumann, C.S.; Rodman, K.C.; Rhoades, C.C.; Zimlinghaus, K.; Chapman, T.B.; Schloegel, C.A. North-Facing Aspects, Shade Objects, and Microtopographic Depressions Promote the Survival and Growth of Tree Seedlings Planted after Wildfire. Fire Ecol. 2023, 19, 26. [Google Scholar] [CrossRef]
- Rodman, K.C.; Veblen, T.T.; Battaglia, M.A.; Chambers, M.E.; Fornwalt, P.J.; Holden, Z.A.; Kolb, T.E.; Ouzts, J.R.; Rother, M.T. A Changing Climate Is Snuffing out Post-fire Recovery in Montane Forests. Glob. Ecol. Biogeogr. 2020, 29, 2039–2051. [Google Scholar] [CrossRef]
- Schapira, Z.; Stevens-Rumann, C.; Shorrock, D.; Hoffman, C.; Chambers, A. Beetlemania: Is the Bark Worse than the Bite? Rocky Mountain Subalpine Forests Recover Differently after Spruce Beetle Outbreaks and Wildfires. For. Ecol. Manag. 2021, 482, 118879. [Google Scholar] [CrossRef]
- Chambers, M.E.; Fornwalt, P.J.; Malone, S.L.; Battaglia, M.A. Patterns of Conifer Regeneration Following High Severity Wildfire in Ponderosa Pine—Dominated Forests of the Colorado Front Range. For. Ecol. Manag. 2016, 378, 57–67. [Google Scholar] [CrossRef]
- Yocom-Kent, L.L.; Fulé, P.Z.; Bunn, W.A.; Gdula, E.G. Historical High-Severity Fire Patches in Mixed Conifer Forests. Can. J. For. Res. 2015, 45, 1587–1596. [Google Scholar] [CrossRef]
- Roos, C.I.; Guiterman, C.H. Dating the Origins of Persistent Oak Shrubfields in Northern New Mexico Using Soil Charcoal and Dendrochronology. Holocene 2021, 31, 1212–1220. [Google Scholar] [CrossRef]
- Roos, C.I.; Rittenour, T.M.; Swetnam, T.W.; Loehman, R.A.; Hollenback, K.L.; Liebmann, M.J.; Rosenstein, D.D. Fire Suppression Impacts on Fuels and Fire Intensity in the Western U. S. Insights from Archaeological Luminescence Dating in Northern New Mexico. Fire 2020, 3, 32. [Google Scholar] [CrossRef]
- Baker, W.L. Restoration of Forest Resilience to Fire from Old Trees Is Possible across a Large Colorado Dry-forest Landscape by 2060, but Only under the Paris 1.5 °C Goal. Glob. Change Biol. 2021, 27, 4074–4095. [Google Scholar] [CrossRef]
- Lutz, J.A.; Struckman, S.; Furniss, T.J.; Birch, J.D.; Yocom, L.L.; McAvoy, D.J. Large-Diameter Trees, Snags, and Deadwood in Southern Utah, USA. Ecol. Process. 2021, 10, 9. [Google Scholar] [CrossRef]
- Moris, J.V.; Reilly, M.J.; Yang, Z.; Cohen, W.B.; Motta, R.; Ascoli, D. Using a Trait-Based Approach to Asses Fire Resistance in Forest Landscapes of the Inland Northwest, USA. Landsc. Ecol. 2022, 37, 2149–2164. [Google Scholar] [CrossRef]
- Fornwalt, P.J.; Huckaby, L.S.; Alton, S.K.; Kaufmann, M.R.; Brown, P.M.; Cheng, A.S. Did the 2002 Hayman Fire, Colorado, USA, Burn with Uncharacteristic Severity? Fire Ecol. 2016, 12, 117–132. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Berner, L.T.; Law, B.E.; Birdsey, R.A.; Moomaw, W.R. Protect Large Trees for Climate Mitigation, Biodiversity, and Forest Resilience. Conserv. Sci. Pract. 2023, 5, e12944. [Google Scholar] [CrossRef]
- Andrus, R.; Hart, S.; Veblen, T.T. Future Dominance by Quaking Aspen Expected Following Short-Interval, Compounded Disturbance Interaction Future Dominance by Quaking Aspen Expected Following Short-Interval, Compounded Disturbance Interaction. Ecosphere 2021, 12, e03345. [Google Scholar] [CrossRef]
- Kreider, M.R.; Yocom, L.L. Aspen Seedling Establishment, Survival, and Growth Following a High-Severity Wildfire. Forest Ecol. Manag. 2021, 493, 119248. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Plavcová, L.; Anderegg, L.D.L.; Hacke, U.G.; Berry, J.A.; Field, C.B. Drought’s Legacy: Multiyear Hydraulic Deterioration Underlies Widespread Aspen Forest Die-off and Portends Increased Future Risk. Glob. Change Biol. 2013, 19, 1188–1196. [Google Scholar] [CrossRef]
- Dudley, M.M.; Burns, K.S.; Jacobi, W.R. Aspen Mortality in the Colorado and Southern Wyoming Rocky Mountains: Extent, Severity, and Causal Factors. For. Ecol. Manag. 2015, 353, 240–259. [Google Scholar] [CrossRef]
- Marsh, C.D.; Crockett, J.L.; Krofcheck, D.; Keyser, A.; Allen, C.D.; Litvak, M.; Hurteau, M.D. Planted Seedling Survival in a Post-Wildfire Landscape: From Experimental Planting to Predictive Probabilistic Surfaces. SSRN Electron. J. 2022, 525, 120524. [Google Scholar] [CrossRef]
- Breshears, D.D.; Huxman, T.E.; Adams, H.D.; Zou, C.B.; Davison, J.E. Vegetation Synchronously Leans Upslope as Climate Warms. Proc. Natl. Acad. Sci. USA 2008, 105, 11591–11592. [Google Scholar] [CrossRef]
- Stevens-rumann, C.S.; Morgan, P. Tree Regeneration Following Wildfires in the Western US: A Review. Fire Ecol. 2019, 1, 1–17. [Google Scholar] [CrossRef]
- Owen, S.M.; Sieg, C.H.; Fulé, P.Z.; Gehring, C.A.; Baggett, L.; Iniguez, J.M.; Fornwalt, P.J.; Battaglia, M.A. Persistent Effects of Fire Severity on Ponderosa Pine Regeneration Niches and Seedling Growth. For. Ecol. Manag. 2020, 477, 118502. [Google Scholar] [CrossRef]
- Brown, P.M.; Wu, R. Climate and Disturbance Forcing of Episodic Tree Recruitment in a Southwestern Ponderosa Pine Landscape. Ecology 2005, 86, 3030–3038. [Google Scholar] [CrossRef]
- Auken, O.W.V.; Bush, K.J. Succession in Quercus Gambelii (Gambel’s Oak) Woodlands. Am. J. Plant Sci. 2017, 08, 96–112. [Google Scholar] [CrossRef]
- Busby, S.U.; Holz, A. Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires. Front. For. Glob. Change 2022, 5, 890893. [Google Scholar] [CrossRef]
- Coop, J.D.; DeLory, T.J.; Downing, W.M.; Haire, S.L.; Krawchuk, M.A.; Miller, C.; Parisien, M.; Walker, R.B. Contributions of Fire Refugia to Resilient Ponderosa Pine and Dry Mixed-conifer Forest Landscapes. Ecosphere 2019, 10, e02809. [Google Scholar] [CrossRef]
- Jones, G.M.; Kramer, H.A.; Berigan, W.J.; Whitmore, S.A.; Gutiérrez, R.J.; Peery, M.Z. Megafire Causes Persistent Loss of an Old-forest Species. Anim. Conserv. 2021, 24, 925–936. [Google Scholar] [CrossRef]
- Steel, Z.L.; Jones, G.M.; Collins, B.M.; Green, R.; Koltunov, A.; Purcell, K.L.; Sawyer, S.C.; Slaton, M.R.; Stephens, S.L.; Stine, P.; et al. Mega-disturbances Cause Rapid Decline of Mature Conifer Forest Habitat in California. Ecol. Appl. 2023, 33, e2763. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current Research Issues Related to Post-Wildfire Runoff and Erosion Processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Rust, A.J.; Saxe, S.; McCray, J.; Rhoades, C.C.; Hogue, T.S. Evaluating the Factors Responsible for Post-Fire Water Quality Response in Forests of the Western USA. Int. J. Wildland Fire 2019, 28, 769–784. [Google Scholar] [CrossRef]
- Rust, A.J.; Roberts, S.; Eskelson, M.; Randell, J.; Hogue, T.S. Forest Fire Mobilization and Uptake of Metals by Biota Temporarily Exacerbates Impacts of Legacy Mining. Sci. Total Environ. 2022, 832, 155034. [Google Scholar] [CrossRef] [PubMed]
- Rodman, K.C.; Fornwalt, P.J.; Holden, Z.A.; Crouse, J.E.; Davis, K.T.; Marshall, L.A.E.; Stoddard, M.T.; Andrus, R.A.; Chambers, M.E.; Chapman, T.B.; et al. Green Is the New Black: Outcomes of Post-Fire Tree Planting Across the Us Interior West. For. Ecol. Manag. 2024, 574, 122358. [Google Scholar] [CrossRef]
- Rodman, K.; Fornwalt, P.; Chapman, T.; Coop, J.; Edwards, G.; Stevens, J.; Veblen, T. SRRT: A Decision Support Tool to Inform Postfire Reforestation of Ponderosa Pine and Douglas-Fir in the Southern Rocky Mountains; Res. Note RMRS-RN-95; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2022; Volume 95. [CrossRef]
Burn Severity | Brief Description of the Forest Type | |||||
---|---|---|---|---|---|---|
Forest Type | Unburned | Low | Moderate | High | Total | |
PIPO | 8 | 8 | 8 | 8 | 32 | Ponderosa pine—Dominated by ponderosa pine, generally single-species stands. Frequent fire regime |
XMC | 8 | 8 | 8 | 8 | 32 | Xeric-Mixed Conifer—Dominated by ponderosa pine and Douglas-fir. Mixed species stand with intermediate fire regime |
MMC | 8 | 8 | 8 | 8 | 32 | Mesic-Mixed Conifer—Dominated by white fir, Douglas-fir and spruce species, intermediate-infrequent fire regime |
AMC | 8 | 8 | 8 | 8 | 32 | Aspen-Mixed Conifer—Dominated by aspen, white fir, Douglas-fir and spruce species. Often the result of historic mixed-severity fire with groups of aspen intermixed with other species. |
Aspen | 5 | 5 | 5 | 5 | 20 | Aspen—Dominated by Aspen with relatively infrequent fire, tends to be early successional to other forest types. |
SF | 4 | 4 | 4 | 4 | 16 | Spruce-fir—Dominated by Englemann spruce and subalpine fir. Infrequent fire regime |
Total: | 41 | 41 | 41 | 41 | 164 |
Forest Type | Mean Density (Trees/ha) in Unburned Stands | Mean Density (Trees/ha) in Low-Severity Stands | Mean Density (Trees/ha) in Moderate Burn Severity | Mean Density (Trees/ha) in High Burn Severity | Mean Density (Trees/ha) for Forest Type |
---|---|---|---|---|---|
Ponderosa Pine | 138 (45, 180) N = 8 | 203 (75, 200) N = 8 | 211 (105, 273) N = 8 | 212 (108, 302) N = 8 | 191 (65, 210) N = 8 |
Xeric-Mixed Conifer | 195 (110, 245) N = 8 | 194 (108, 246) N = 8 | 269 (205, 320) N = 8 | 311 (220, 412) N = 8 | 242 (123, 287) N = 8 |
Mesic-Mixed Conifer | 350 (280, 420) * N = 8 | 320 (276, 415) * N = 8 | 375 (282, 434) * N = 8 | 437 (331, 510) * N = 8 | 370 (293, 408) * N = 8 |
Aspen-Mixed Conifer | 428 (350, 600) * N = 8 | 455 (362, 687) * N = 8 | 481 (401, 704) * N = 8 | 434 (387, 512) * N = 8 | 449 (371, 508) * N = 8 |
Aspen | 242 (203, 315) * N = 5 | 312 (251, 401) * N = 5 | 707 (581, 1112) *X N = 5 | 532 (434, 912) *X N = 5 | 448 (267, 608) * N = 5 |
Spruce-fir | 262 (245, 389) * N = 4 | 312 (289, 402) * N = 4 | 306 (255, 402) N = 4 | 291 (225, 396) N = 8 | 292 (263, 337) * N = 8 |
Average density for crown burn severity | 269 (68, 343) N = 41 | 299 (109, 453) N = 41 | 391.5 (143, 536) N = 41 | 369 (160, 487) N = 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remke, M.; Schneider, K.; Korb, J. Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado. Forests 2025, 16, 872. https://doi.org/10.3390/f16060872
Remke M, Schneider K, Korb J. Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado. Forests. 2025; 16(6):872. https://doi.org/10.3390/f16060872
Chicago/Turabian StyleRemke, Michael, Katie Schneider, and Julie Korb. 2025. "Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado" Forests 16, no. 6: 872. https://doi.org/10.3390/f16060872
APA StyleRemke, M., Schneider, K., & Korb, J. (2025). Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado. Forests, 16(6), 872. https://doi.org/10.3390/f16060872