Interplay of Topography, Fire History, and Climate on Interior Alaska Boreal Forest Vegetation Dynamics in the 21st Century: A Landsat Time-Series Analysis
Abstract
:1. Introduction
1.1. Topography and Boreal Forest Vegetation Composition in Interior Alaska
1.2. Wildfires and Boreal Forest Vegetation Dynamics in Interior Alaska
1.3. Climate Change Impacts on Boreal Forest Vegetation in Interior Alaska
1.4. Application of Space-Based Observations in Boreal Vegetation Monitoring
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.3. Data Processing and Analysis
2.3.1. Preparation of Annual Summer Maximum Composites
2.3.2. Identify Trends in Vegetation Canopy Across the Study Area Characterized by Topography and Fire History
2.3.3. Temporal Analysis of Spectral Metrics to Assess Post-Fire Photosynthetic Recovery of Canopy
2.3.4. Correlation of Spectral Metrics with Climate Variables
+ MMT July(1 year before tree growth)
+ MMT July(2 years before tree growth))/3
April(year) +March(year) + February(year)
+August(year−1) + July(year−1) + March(year−1) + February(year−1) +
+August(year−2) + March(year−2) + February(year−2) + January(year−2)
−November(year−3)
3. Results
3.1. Trends in Vegetation Canopy Across the Study Area Characterized by Topography and Fire History
3.2. Temporal Analysis of Spectral Metrics to Assess Post-Fire Photosynthetic Recovery of Canopy
3.3. Correlation Between Spectral Metrics and Climate Variables
+ Normalized Spring Mean Snowdepth(year)
4. Discussion
4.1. Interpretation of Vegetation Canopy Trends Across the Study Area Characterized by Topography and Fire History
4.2. Post-Fire Recovery of Photosynthetic Activity in Canopy
4.3. Effect of Climate on Boreal Forest Canopy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viereck, L.A.; Dyrness, C.T.; Batten, A.R.; Wenzlick, K.J. The Alaska Vegetation Classification; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1992; p. PNW-GTR-286.
- Nowacki, G.J.; Spencer, P.; Fleming, M.; Brock, T.; Jorgenson, T. Unified Ecoregions of Alaska: 2001; Open-File Report; US Geological Survey: Reston, VA, USA, 2003.
- Chapin, F.S.; Oswood, M.W.; Van Cleve, K.; Viereck, L.A.; Verbyla, D.L. Alaska’s Changing Boreal Forest; Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-756192-8. [Google Scholar]
- Douglas, T.A.; Jones, M.C.; Hiemstra, C.A.; Arnold, J.R. Sources and Sinks of Carbon in Boreal Ecosystems of Interior Alaska: A Review. Elem. Sci. Anthr. 2014, 2, 000032. [Google Scholar] [CrossRef]
- Thoman, R.; Walsh, J.E. Alaska’s Changing Environment, 1st ed.; International Arctic Research Center, University of Alaska Fairbanks: Fairbanks, AK, USA, 2019. [Google Scholar]
- Thoman, R.; McFarland, H.R. Alaska’s Changing Environment, 2nd ed.; Alaska Center for Climate Assessment and Policy, International Arctic Research Center, University of Alaska Fairbanks: Fairbanks, AK, USA, 2024; Available online: https://uaf-iarc.org/communicating-change/ (accessed on 30 December 2024).
- Buma, B.; Hayes, K.; Weiss, S.; Lucash, M. Short-Interval Fires Increasing in the Alaskan Boreal Forest as Fire Self-Regulation Decays across Forest Types. Sci. Rep. 2022, 12, 4901. [Google Scholar] [CrossRef]
- Chapin, F.S.; McGuire, A.D.; Ruess, R.W.; Hollingsworth, T.N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; et al. Resilience of Alaska’s Boreal Forest to Climatic change; This Article Is One of a Selection of Papers from the Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Can. J. For. Res. 2010, 40, 1360–1370. [Google Scholar] [CrossRef]
- Euskirchen, E.S.; McGuire, A.D.; Chapin, F.S.; Rupp, T.S. The Changing Effects of Alaska’s Boreal Forests on the Climate system; This Article Is One of a Selection of Papers from the Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Can. J. For. Res. 2010, 40, 1336–1346. [Google Scholar] [CrossRef]
- Wolken, J.M.; Hollingsworth, T.N.; Rupp, T.S.; Chapin, F.S., III; Trainor, S.F.; Barrett, T.M.; Sullivan, P.F.; McGuire, A.D.; Euskirchen, E.S.; Hennon, P.E.; et al. Evidence and Implications of Recent and Projected Climate Change in Alaska’s Forest Ecosystems. Ecosphere 2011, 2, art124. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S.I.; Hollingsworth, T.N.; Mack, M.C.; Romanovsky, V.; Turetsky, M. Fire, Climate Change, and Forest Resilience in Interior Alaska. Can. J. For. Res. 2010, 40, 1302–1312. [Google Scholar] [CrossRef]
- Nicklen, E.F.; Roland, C.A.; Ruess, R.W.; Schmidt, J.H.; Lloyd, A.H. Local Site Conditions Drive Climate–Growth Responses of Picea Mariana and Picea Glauca in Interior Alaska. Ecosphere 2016, 7, e01507. [Google Scholar] [CrossRef]
- Young-Robertson, J.M.; Bolton, W.R.; Bhatt, U.S.; Cristóbal, J.; Thoman, R. Deciduous Trees Are a Large and Overlooked Sink for Snowmelt Water in the Boreal Forest. Sci. Rep. 2016, 6, 29504. [Google Scholar] [CrossRef] [PubMed]
- Roland, C.A.; Schmidt, J.H.; Winder, S.G.; Stehn, S.E.; Nicklen, E.F. Regional Variation in Interior Alaskan Boreal Forests Is Driven by Fire Disturbance, Topography, and Climate. Ecol. Monogr. 2019, 89, e01369. [Google Scholar] [CrossRef]
- Jin, X.-Y.; Jin, H.-J.; Iwahana, G.; Marchenko, S.S.; Luo, D.-L.; Li, X.-Y.; Liang, S.-H. Impacts of Climate-Induced Permafrost Degradation on Vegetation: A Review. Adv. Clim. Change Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Douglas, T.A.; Hiemstra, C.A.; Anderson, J.E.; Barbato, R.A.; Bjella, K.L.; Deeb, E.J.; Gelvin, A.B.; Nelsen, P.E.; Newman, S.D.; Saari, S.P.; et al. Recent Degradation of Interior Alaska Permafrost Mapped with Ground Surveys, Geophysics, Deep Drilling, and Repeat Airborne Lidar. Cryosphere 2021, 15, 3555–3575. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S. Effects of Soil Burn Severity on Post-Fire Tree Recruitment in Boreal Forest. Ecosystems 2006, 9, 14–31. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Rupp, T.S.; Olson, M.; Verbyla, D. Modeling Impacts of Fire Severity on Successional Trajectories and Future Fire Behavior in Alaskan Boreal Forests. Landsc. Ecol. 2011, 26, 487–500. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S., III; Mack, M.C. Changes in Fire Regime Break the Legacy Lock on Successional Trajectories in Alaskan Boreal Forest. Glob. Change Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Massey, R.; Rogers, B.M.; Berner, L.T.; Cooperdock, S.; Mack, M.C.; Walker, X.J.; Goetz, S.J. Forest Composition Change and Biophysical Climate Feedbacks across Boreal North America. Nat. Clim. Change 2023, 13, 1368–1375. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Williams, D.; Barry, D. Analysis of the Patterns of Large Fires in the Boreal Forest Region of Alaska. Int. J. Wildland Fire 2002, 11, 131. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S. Recent Acceleration of Biomass Burning and Carbon Losses in Alaskan Forests and Peatlands. Nat. Geosci. 2011, 4, 27–31. [Google Scholar] [CrossRef]
- Brown, E.K.; Wang, J.; Feng, Y. US Wildfire Potential: A Historical View and Future Projection Using High-Resolution Climate Data. Environ. Res. Lett. 2021, 16, 034060. [Google Scholar] [CrossRef]
- Weiss, S.A.; Marshall, A.M.; Hayes, K.R.; Nicolsky, D.J.; Buma, B.; Lucash, M.S. Future Transitions from a Conifer to a Deciduous-Dominated Landscape Are Accelerated by Greater Wildfire Activity and Climate Change in Interior Alaska. Landsc. Ecol. 2023, 38, 2569–2589. [Google Scholar] [CrossRef]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-Observed Photosynthetic Trends across Boreal North America Associated with Climate and Fire Disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef]
- Shenoy, A.; Johnstone, J.F.; Kasischke, E.S.; Kielland, K. Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska. For. Ecol. Manag. 2011, 261, 381–390. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Goetz, S.J. Satellite Observations of High Northern Latitude Vegetation Productivity Changes between 1982 and 2008: Ecological Variability and Regional Differences. Environ. Res. Lett. 2011, 6, 045501. [Google Scholar] [CrossRef]
- Mekonnen, Z.A.; Riley, W.J.; Randerson, J.T.; Grant, R.F.; Rogers, B.M. Expansion of High-Latitude Deciduous Forests Driven by Interactions between Climate Warming and Fire. Nat. Plants 2019, 5, 952–958. [Google Scholar] [CrossRef]
- Bernier, P.Y.; Gauthier, S.; Jean, P.-O.; Manka, F.; Boulanger, Y.; Beaudoin, A.; Guindon, L. Mapping Local Effects of Forest Properties on Fire Risk across Canada. Forests 2016, 7, 157. [Google Scholar] [CrossRef]
- Mack, M.C.; Walker, X.J.; Johnstone, J.F.; Alexander, H.D.; Melvin, A.M.; Jean, M.; Miller, S.N. Carbon Loss from Boreal Forest Wildfires Offset by Increased Dominance of Deciduous Trees. Science 2021, 372, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Barber, V.A.; Juday, G.P.; Finney, B.P. Reduced Growth of Alaskan White Spruce in the Twentieth Century from Temperature-Induced Drought Stress. Nature 2000, 405, 668–673. [Google Scholar] [CrossRef]
- Lloyd, A.H.; Bunn, A.G. Responses of the Circumpolar Boreal Forest to 20th Century Climate Variability. Environ. Res. Lett. 2007, 2, 045013. [Google Scholar] [CrossRef]
- Juday, G.P.; Alix, C. Consistent Negative Temperature Sensitivity and Positive Influence of Precipitation on Growth of Floodplain Picea Glauca in Interior Alaska. Can. J. For. Res. 2012, 42, 561–573. [Google Scholar] [CrossRef]
- Walker, X.; Johnstone, J.F. Widespread Negative Correlations between Black Spruce Growth and Temperature across Topographic Moisture Gradients in the Boreal Forest. Environ. Res. Lett. 2014, 9, 064016. [Google Scholar] [CrossRef]
- Campbell, J.L.; Driscoll, C.T.; Jones, J.A.; Boose, E.R.; Dugan, H.A.; Groffman, P.M.; Jackson, C.R.; Jones, J.B.; Juday, G.P.; Lottig, N.R.; et al. Forest and Freshwater Ecosystem Responses to Climate Change and Variability at US LTER Sites. BioScience 2022, 72, 851–870. [Google Scholar] [CrossRef]
- Verbyla, D. The Greening and Browning of Alaska Based on 1982–2003 Satellite Data. Glob. Ecol. Biogeogr. 2008, 17, 547–555. [Google Scholar] [CrossRef]
- Parent, M.B.; Verbyla, D. The Browning of Alaska’s Boreal Forest. Remote Sens. 2010, 2, 2729–2747. [Google Scholar] [CrossRef]
- Verbyla, D. Browning Boreal Forests of Western North America. Environ. Res. Lett. 2011, 6, 041003. [Google Scholar] [CrossRef]
- Verbyla, D. Remote Sensing of Interannual Boreal Forest NDVI in Relation to Climatic Conditions in Interior Alaska. Environ. Res. Lett. 2015, 10, 125016. [Google Scholar] [CrossRef]
- Baird, R.A.; Verbyla, D.; Hollingsworth, T.N. Browning of the Landscape of Interior Alaska Based on 1986–2009 Landsat Sensor NDVI. Can. J. For. Res. 2012, 42, 1371–1382. [Google Scholar] [CrossRef]
- Berner, L.T.; Goetz, S.J. Satellite Observations Document Trends Consistent with a Boreal Forest Biome Shift. Glob. Change Biol. 2022, 28, 3275–3292. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The Global Landsat Archive: Status, Consolidation, and Direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.; van Leeuwen, W.J.D. The Use of Vegetation Indices in Forested Regions: Issues of Linearity and Saturation. In Proceedings of the IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; Volume 4, pp. 1966–1968. [Google Scholar]
- Mutanga, O.; Skidmore, A.K. Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of Remotely Sensed Indices for Assessing Burn Severity in Interior Alaska Using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Pickell, P.D.; Coops, N.C.; Gergel, S.E.; Andison, D.W.; Marshall, P.L. Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space. PLoS ONE 2016, 11, e0157736. [Google Scholar] [CrossRef]
- Hunt, E.R.; Wang, L.; Qu, J.J.; Hao, X. Remote Sensing of Fuel Moisture Content from the Ratios of Canopy Water Indices with a Foliar Dry Matter Index. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability IX, SPIE, San Diego, CA, USA, 24 October 2012; Volume 8513, pp. 9–16. [Google Scholar]
- Juday, G.P. The Rosie Creek Fire. Agroborealis 1985, 17, 11–20. [Google Scholar]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty Years of Landsat Science and Impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4–7, 8, and Sentinel 2 Images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Wu, Q. Geemap: A Python Package for Interactive Mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- Tucker, C.J.; Vanpraet, C.L.; Sharman, M.J.; Van Ittersum, G. Satellite Remote Sensing of Total Herbaceous Biomass Production in the Senegalese Sahel: 1980–1984. Remote Sens. Environ. 1985, 17, 233–249. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics; Raj, B., Koerts, J., Eds.; Advanced Studies in Theoretical and Applied Econometrics; Springer: Dordrecht, The Netherlands, 1992; Volume 23, pp. 345–381. ISBN 978-94-010-5124-8. [Google Scholar]
- Hussain, M.; Mahmud, I. pyMannKendall: A Python Package for Non Parametric Mann Kendall Family of Trend Tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Gamon, J.; Field, C.; Goulden, M.; Griffin, K.; Hartley, A.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Ensminger, I.; Schmidt, L.; Lloyd, J. Soil Temperature and Intermittent Frost Modulate the Rate of Recovery of Photosynthesis in Scots Pine under Simulated Spring Conditions. New Phytol. 2008, 177, 428–442. [Google Scholar] [CrossRef]
- Grossnicke, S.C. Ecophysiology of Northern Spruce Species: The Performance of Planted Seedlings, 1st ed.; NRC Research Press: Ottawa, ON, Canada, 2000; ISBN 978-0-660-17959-9. [Google Scholar]
- Stuart, F.; Viereck, L.A.; Adams, P.C.; Cleve, K.; Fastie, C.; Ott, R.; Mann, D.; Johnstone, J. Successional Processes in the Alaskan Boreal Forest, Chapin III; Oxford University Press Inc.: New York, NY, USA, 2006; ISBN 978-0-19-515431-3. [Google Scholar]
- Jorgenson, M.T.; Racine, C.H.; Walters, J.C.; Osterkamp, T.E. Permafrost Degradation and Ecological Changes Associated with a Warming Climate in Central Alaska. Clim. Change 2001, 48, 551–579. [Google Scholar] [CrossRef]
- Morresi, D.; Vitali, A.; Urbinati, C.; Garbarino, M. Forest Spectral Recovery and Regeneration Dynamics in Stand-Replacing Wildfires of Central Apennines Derived from Landsat Time Series. Remote Sens. 2019, 11, 308. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Verbyla, D.L. Fire Trends in the Alaskan Boreal Forest. In Alaska’s Changing Boreal Forest; Chapin, F.S., Oswood, M.W., Van Cleve, K., Viereck, L.A., Verbyla, D.L., Eds.; Oxford University Press Inc.: Oxford, New York, 2006; pp. 285–301. ISBN 978-0-19-515431-3. [Google Scholar]
- Euskirchen, E.S.; McGuire, A.D.; Chapin, F.S., III; Yi, S.; Thompson, C.C. Changes in Vegetation in Northern Alaska under Scenarios of Climate Change, 2003–2100: Implications for Climate Feedbacks. Ecol. Appl. 2009, 19, 1022–1043. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S., III; Foote, J.; Kemmett, S.; Price, K.; Viereck, L. Decadal Observations of Tree Regeneration Following Fire in Boreal Forests. Can. J. For. Res. 2004, 34, 267–273. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Goetz, S.J.; Mack, M.C.; Alexander, H.D.; Jin, Y.; Randerson, J.T.; Loranty, M.M. The Impacts and Implications of an Intensifying Fire Regime on Alaskan Boreal Forest Composition and Albedo. Glob. Change Biol. 2011, 17, 2853–2866. [Google Scholar] [CrossRef]
- Kim, J.E.; Wang, J.A.; Li, Y.; Czimczik, C.I.; Randerson, J.T. Wildfire-Induced Increases in Photosynthesis in Boreal Forest Ecosystems of North America. Glob. Change Biol. 2024, 30, e17151. [Google Scholar] [CrossRef]
- The Oxford Companion to Global Change. Goudie, E.A.; Cuff, D. (Eds.) Oxford Companions; Oxford University Press: Oxford, UK; New York, NY, USA, 2008; ISBN 978-0-19-532488-4. [Google Scholar]
- Hollingsworth, T.N.; Johnstone, J.F.; Bernhardt, E.L.; Chapin, F.S., III. Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska’s Boreal Forest. PLoS ONE 2013, 8, e56033. [Google Scholar] [CrossRef] [PubMed]
Study | Study Period | Satellite Data | Spatial Resolution | Temporal Resolution | Extent | Study Area |
---|---|---|---|---|---|---|
[36] | 1982–2003 | GIMMS-NDVI | 64 km | 15-day composite | Regional | Arctic and sub-arctic Alaska |
[37] | 1980–2009 | Landsat-NDVI | 30 m | 16-day revisit | Scene-based | Interior Boreal |
1981–2008 | GIMMS-NDVI | 64 km | 15-day composite | Regional | ||
2000–2009 | MODIS-NDVI | 1 km | 16-day composite | Regional | ||
[39] | 2000–2014 | MODIS-NDVI | 250 m | 8-day composite | Regional | Interior Boreal |
[27] | 1982–2008 | GIMMS-NDVI MODIS-NDVI | 0.07° 1 km | 15-day composite Monthly | Continental | North America and Eurasia |
[40] | 1986–2009 | Landsat NDVI | 30 m | 16-day revisit | Scene-based | Bonanza Creek Experimental Forest |
[41] | 1985–2019 2000–2019 (includes Alaska) | Landsat based greenness indices | 30 m | 16-day revisit | Continental | Circumpolar boreal region |
Climate Variables | NDVI | NDMI | ||
---|---|---|---|---|
r | p-Value | r | p-Value | |
Annual Total Precipitation | 0.19 | 0.37 | 0.18 | 0.41 |
Annual Total Precipitation Lag 1 | 0.47 | 0.02 | 0.73 | 0.00 |
Annual Total Precipitation Lag 2 | 0.61 | 0.00 | 0.54 | 0.01 |
Annual Total Precipitation Lag 3 | 0.59 | 0.00 | 0.45 | 0.03 |
Spring Mean Snow depth | 0.68 | 0.00 | 0.56 | 0.00 |
Spring Mean Snow depth Lag 1 | 0.30 | 0.16 | 0.20 | 0.35 |
Spring Mean Snow depth Lag 2 | 0.10 | 0.64 | 0.05 | 0.81 |
Spring Mean Snow depth Lag 3 | 0.01 | 0.96 | 0.20 | 0.34 |
Annual Mean Temperature | 0.22 | 0.30 | 0.27 | 0.20 |
Annual Mean Temperature Lag 1 | 0.07 | 0.73 | 0.26 | 0.21 |
Annual Mean Temperature Lag 2 | 0.34 | 0.10 | 0.36 | 0.09 |
Annual Mean Temperature Lag 3 | 0.52 | 0.01 | 0.42 | 0.04 |
Annual Growing Degree Days | 0.32 | 0.13 | 0.28 | 0.19 |
Annual Growing Degree Days Lag 1 | 0.25 | 0.24 | −0.01 | 0.96 |
Annual Growing Degree Days Lag 2 | 0.19 | 0.38 | 0.21 | 0.32 |
Annual Growing Degree Days Lag 3 | 0.30 | 0.15 | −0.07 | 0.76 |
Growing Season Length | 0.44 | 0.03 | 0.20 | 0.34 |
Growing Season Length Lag1 | 0.57 | 0.00 | 0.47 | 0.02 |
Growing Season Length Lag2 | 0.46 | 0.02 | 0.52 | 0.01 |
Growing Season Length Lag3 | 0.67 | 0.00 | 0.52 | 0.01 |
Climate Variables | NDVI | NDMI | ||
---|---|---|---|---|
r | p-Value | r | p-Value | |
Annual Total Precipitation | 0.26 | 0.22 | −0.03 | 0.89 |
Annual Total Precipitation Lag 1 | 0.55 | 0.01 | 0.47 | 0.02 |
Annual Total Precipitation Lag 2 | 0.59 | 0.00 | 0.31 | 0.14 |
Annual Total Precipitation Lag 3 | 0.45 | 0.03 | 0.22 | 0.29 |
Spring Mean Snow depth | 0.64 | 0.00 | 0.29 | 0.17 |
Spring Mean Snow depth Lag 1 | 0.22 | 0.30 | 0.19 | 0.37 |
Spring Mean Snow depth Lag 2 | 0.11 | 0.61 | 0.03 | 0.88 |
Spring Mean Snow depth Lag 3 | 0.10 | 0.65 | −0.03 | 0.88 |
Annual Mean Temperature | 0.26 | 0.23 | 0.21 | 0.33 |
Annual Mean Temperature Lag 1 | 0.12 | 0.57 | 0.24 | 0.26 |
Annual Mean Temperature Lag 2 | 0.51 | 0.01 | −0.04 | 0.85 |
Annual Mean Temperature Lag 3 | 0.55 | 0.01 | 0.26 | 0.22 |
Annual Growing Degree Days | 0.26 | 0.23 | 0.10 | 0.66 |
Annual Growing Degree Days Lag 1 | 0.07 | 0.74 | −0.33 | 0.12 |
Annual Growing Degree Days Lag 2 | 0.22 | 0.30 | 0.10 | 0.65 |
Annual Growing Degree Days Lag 3 | 0.27 | 0.20 | −0.17 | 0.44 |
Growing Season Length | 0.39 | 0.06 | 0.17 | 0.43 |
Growing Season Length Lag1 | 0.33 | 0.11 | −0.03 | 0.89 |
Growing Season Length Lag2 | 0.47 | 0.02 | 0.24 | 0.26 |
Growing Season Length Lag3 | 0.52 | 0.01 | 0.31 | 0.14 |
Dendrochronology-Based Indices | Upland | Lowland | ||||||
---|---|---|---|---|---|---|---|---|
NDVI | NDMI | NDVI | NDMI | |||||
r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
Normalized Supplemental Precipitation Index (nSPI) | 0.37 | 0.07 | 0.56 | 0.04 | 0.39 | 0.06 | 0.45 | 0.02 |
Normalized Temperature Favorability Index (nTFI) | −0.12 | 0.59 | −0.06 | 0.76 | 0.08 | 0.71 | 0.03 | 0.88 |
Normalized Climate Favorability Index (nCFI) | 0.27 | 0.21 | 0.50 | 0.01 | 0.42 | 0.04 | 0.51 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, S.; Juday, G.P.; Panda, S.K.; Genet, H.; Brown, D.R.N.; Hutten, K. Interplay of Topography, Fire History, and Climate on Interior Alaska Boreal Forest Vegetation Dynamics in the 21st Century: A Landsat Time-Series Analysis. Forests 2025, 16, 777. https://doi.org/10.3390/f16050777
Sahoo S, Juday GP, Panda SK, Genet H, Brown DRN, Hutten K. Interplay of Topography, Fire History, and Climate on Interior Alaska Boreal Forest Vegetation Dynamics in the 21st Century: A Landsat Time-Series Analysis. Forests. 2025; 16(5):777. https://doi.org/10.3390/f16050777
Chicago/Turabian StyleSahoo, Sumana, Glenn P. Juday, Santosh K. Panda, Helene Genet, Dana R. N. Brown, and Karen Hutten. 2025. "Interplay of Topography, Fire History, and Climate on Interior Alaska Boreal Forest Vegetation Dynamics in the 21st Century: A Landsat Time-Series Analysis" Forests 16, no. 5: 777. https://doi.org/10.3390/f16050777
APA StyleSahoo, S., Juday, G. P., Panda, S. K., Genet, H., Brown, D. R. N., & Hutten, K. (2025). Interplay of Topography, Fire History, and Climate on Interior Alaska Boreal Forest Vegetation Dynamics in the 21st Century: A Landsat Time-Series Analysis. Forests, 16(5), 777. https://doi.org/10.3390/f16050777