A Review of Applying Drones and Remote Sensing Technology in Mangrove Ecology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
2.3. Technical Approach
3. Predicting Mangrove Biomass and Carbon Dynamics
4. Mangrove Mapping and Species Identification
4.1. Support Vector Machine (SVM)
4.2. Random Forest (RF)
4.3. Extreme Gradient Boosting (XGBoost)
4.4. Other ML Methods
Study Area | Study Time | Data | ML Algorithms | Species | OA | Kappa | Reference |
---|---|---|---|---|---|---|---|
Fucheng Town, Guangdong Province, China | 2023 | GF-1 (hyperspectral 8 m), GF-3 (SAR), Sentinel-2 (multispectral), Landsat-9 | Extremely Randomized Trees (ERT) | SA, KO, AM | 90.13% | 0.84 | [80] |
Yingluo Bay, China | 2024 | UAV Hyperspectral data | AdaBoost | BG, RS, AM, AC, EA, HT, SA | 82.96% | 0.79 | [81] |
Yingluo Bay, China | 2024 | UAV Hyperspectral data | LightGBM | 97.15% | 0.97 | [81] | |
Yingluo Bay, China | 2024 | UAV Multispectral data | AdaBoost | 60.05% | 0.56 | [81] | |
Yingluo Bay, China | 2024 | UAV Multispectral data | LightGBM | 80.96% | 0.78 | [81] | |
Qi’ao Island, Guangdong, China | 2015 | Worldview-2 (multispectral, 1.5 m) | Back Propagation Artificial Neural Network (BP ANN) | KO, SA | 87.68% | 0.82 | [94] |
Gaoqiao Mangrove Reserve, China | 2023 | Sentinel-2 (multispectral), Sentinel-1 (SAR), ALOS-2 (SAR) | LightGBM | NA | 92.33% 37% 33.67% | 0.912 0.272 0.208 | [79] |
4.5. Accuracy Assessment of ML Algorithms
5. Mangrove Degradation
6. Gaps and Uncertainties
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LiDAR | Light Detection and Ranging |
UAV | Unmanned Aerial Vehicle |
SAR | Synthetic Aperture Radar |
MABEL | Multiple Altimeter Beam Experimental Lidar |
AGB | Above-ground Biomass |
WOS | Web of Science |
GIS | Geographic Information System |
SRTM | Shuttle Radar Topography Mission |
SVM | Support Vector Machine |
RF | Random Forest |
XGBoost | Extreme Gradient Boosting |
AdaBoost | Adaptive Boosting |
GBM | Gradient Boosting Machine |
GPS | Global Positioning System |
ML | Machine Learning |
LightGBM | Light Gradient Boosting Machine |
SIDS | Small Island Developing States |
NDVI | Normalized Difference Vegetation Index |
References
- Cao, J.; Liu, K.; Liu, L.; Zhu, Y.; Li, J.; He, Z. Identifying mangrove species using field close-range snapshot hyperspectral imaging and machine-learning techniques. Remote Sens. 2018, 10, 2047. [Google Scholar] [CrossRef]
- Ho, D.T.; Lamers, P.; Nawaz, S.; Sugiyama, M.; Fiorini, A.C.O.; Yu, Z.; Holmes, H.; Gadikota, G.; Breyer, C.; Macintosh, A.; et al. Navigating the obstacles of carbon-negative technologies. One Earth 2024, 7, 1471–1476. [Google Scholar] [CrossRef]
- Mukherjee, N.; Sutherland, W.J.; Dicks, L.; Huge, J.; Koedam, N.; Dahdouh-Guebas, F. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises. PLoS ONE 2014, 9, e107706. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Ouyang, X.; Maher, D.T.; Santos, I.R. Climate change decreases groundwater carbon discharges in global tidal wetlands. One Earth 2024, 7, 1442–1455. [Google Scholar] [CrossRef]
- Ouyang, X.; Lee, S.Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. 2020, 11, 317. [Google Scholar] [CrossRef]
- Hati, J.P.; Samanta, S.; Chaube, N.R.; Misra, A.; Giri, S.; Pramanick, N.; Gupta, K.; Majumdar, S.D.; Chanda, A.; Mukhopadhyay, A.; et al. Mangrove classification using airborne hyperspectral AVIRIS-NG and comparing with other spaceborne hyperspectral and multispectral data. Egypt. J. Remote Sens. Space Sci. 2021, 24, 273–281. [Google Scholar]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Hirata, Y.; Tabuchi, R.; Patanaponpaiboon, P.; Poungparn, S.; Yoneda, R.; Fujioka, Y. Estimation of aboveground biomass in mangrove forests using high-resolution satellite data. J. For. Res. 2014, 19, 34–41. [Google Scholar] [CrossRef]
- Huang, Z.; Tian, Y.; Zhang, Q.; Huang, Y.; Liu, R.; Huang, H.; Zhou, G.; Wang, J.; Tao, J.; Yang, Y.; et al. Estimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data. Geocarto Int. 2022, 37, 15778–15805. [Google Scholar] [CrossRef]
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the mapping of mangrove forests at national-scale using Sentinel-1 and Sentinel-2 time-series data with Google Earth Engine: A case study in China. Remote Sens. 2020, 12, 3120. [Google Scholar] [CrossRef]
- Li, W.; Gong, P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sens. Environ. 2016, 179, 196–209. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Z.; Deng, W.; Zhu, Q.; Xu, Z.; Peng, B.; Guo, F.; Zhang, Y.; Yang, Z. Estimation of aboveground biomass of different vegetation types in mangrove forests based on UAV remote sensing. Sustain. Horiz. 2024, 11, 100100. [Google Scholar] [CrossRef]
- Roy, A.D.; Arachchige, P.S.P.; Watt, M.S.; Kale, A.; Davies, M.; Heng, J.E.; Daneil, R.; Galgamuwa, G.P.; Moussa, L.G.; Timsina, K.; et al. Remote sensing-based mangrove blue carbon assessment in the Asia-Pacific: A systematic review. Sci. Total Environ. 2024, 938, 173270. [Google Scholar]
- Tian, Y.; Jia, M.; Wang, Z.; Mao, D.; Du, B.; Wang, C. Monitoring invasion process of Spartina alterniflora by seasonal Sentinel-2 imagery and an object-based random forest classification. Remote Sens. 2020, 12, 1383. [Google Scholar] [CrossRef]
- Salum, R.B.; Souza-Filho, P.W.M.; Simard, M.; Silva, C.A.; Fernandes, M.E.; Cougo, M.F.; Rogers, K. Improving mangrove above-ground biomass estimates using LiDAR. Estuar. Coast. Shelf Sci. 2020, 236, 106585. [Google Scholar] [CrossRef]
- Tran, T.V.; Reef, R.; Zhu, X. A review of spectral indices for mangrove remote sensing. Remote Sens. 2022, 14, 4868. [Google Scholar] [CrossRef]
- Nellemann, C.; Corcoran, E.; Duarte, C.M.; Valdés, L.; De Young, C.; Fonseca, L.; Grimsditch, G. Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal. 2009. Available online: https://www.grida.no/publications/145 (accessed on 1 June 2014).
- Hossain, M.S.; Bujang, J.S.; Zakaria, M.H.; Hashim, M. The application of remote sensing to seagrass ecosystems: An overview and future research prospects. Int. J. Remote Sens. 2015, 36, 61–114. [Google Scholar] [CrossRef]
- Rondon, M.; Ewane, E.B.; Abdullah, M.M.; Watt, M.S.; Blanton, A.; Abulibdeh, A.; Burt, J.A.; Rogers, K.; Ali, T.; Reef, R.; et al. Remote sensing-based assessment of mangrove ecosystems in the Gulf Cooperation Council countries: A systematic review. Front. Mar. Sci. 2023, 10, 1241928. [Google Scholar] [CrossRef]
- He, Y.; Zhang, T.; You, S.; Luo, Z.; Zhang, X.; Zhang, R. Remote Sensing Monitoring of Mangrove Variation in Jiulong River Estuary of Fujian from 1978 to 2018. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6654–6657. [Google Scholar]
- Jamaluddin, I.; Chen, Y.N.; Ridha, S.M.; Mahyatar, P.; Ayudyanti, A.G. Two Decades Mangroves Loss Monitoring Using Random Forest and Landsat Data in East Luwu, Indonesia (2000–2020). Geomatics 2022, 2, 282–296. [Google Scholar] [CrossRef]
- Fu, B.; Jiang, L.; Yao, H.; Wei, Y.; Jia, M.; Sun, W.; Deng, T. Retrieval performance of mangrove tree heights using multiple machine learning regression models and UAV-LiDAR point clouds. Int. J. Digit. Earth 2024, 17, 2392851. [Google Scholar] [CrossRef]
- Li, Q.; Wong, F.K.K.; Fung, T.; Brown, L.A.; Dash, J. Assessment of active LiDAR data and passive optical imagery for double-layered mangrove leaf area index estimation: A case study in Mai Po, Hong Kong. Remote Sens. 2023, 15, 2551. [Google Scholar] [CrossRef]
- Halder, B.; Pereira, P. Climate change impacts assessment on Bangladesh Mangrove Forest using high-resolution datasets and Google Earth Engine. J. Coast. Conserv. 2024, 28, 24. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L. Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sens. Environ. 2019, 223, 34–49. [Google Scholar] [CrossRef]
- Li, Z.; Zan, Q.; Yang, Q.; Zhu, D.; Chen, Y.; Yu, S. Remote estimation of mangrove aboveground carbon stock at the species level using a low-cost unmanned aerial vehicle system. Remote Sens. 2019, 11, 1018. [Google Scholar] [CrossRef]
- Zimudzi, E.; Sanders, I.; Rollings, N.; Omlin, C.W. Remote sensing of mangroves using unmanned aerial vehicles: Current state and future directions. J. Spat. Sci. 2021, 66, 195–212. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Zhao, C.; Wang, Z.; Jia, M. High-resolution mapping of mangrove species height in Fujian Zhangjiangkou National Mangrove Nature Reserve combined GF-2, GF-3, and UAV-LiDAR. Remote Sens. 2023, 15, 5645. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef]
- Deng, L.; Chen, B.; Yan, M.; Fu, B.; Yang, Z.; Zhang, B.; Zhang, L. Estimation of Species-Scale Canopy Chlorophyll Content in Mangroves from UAV and GF-6 Data. Forests 2023, 14, 1417. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, C.; Nie, S.; Pan, F.; Xi, X.; Hu, Z. Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: A case study in Virginia and North Carolina, USA. Ecol. Indic. 2020, 114, 106287. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Zuo, Z.; Wang, R.; Wu, X. Mapping height and aboveground biomass of mangrove forests on Hainan Island using UAV-LiDAR sampling. Remote Sens. 2019, 11, 2156. [Google Scholar] [CrossRef]
- Wang, W.; Shi, J.B.; Chen, L.Z. Research of Conservation and Restoration Strategy of Mangrove Wetlands in China; China Environmental Science Press: Beijing, China, 2021. [Google Scholar]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N.; et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed]
- Siikamäki, J.; Sanchirico, J.N.; Jardine, S.L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl. Acad. Sci. USA 2012, 109, 14369–14374. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.; Sutton-Grier, A.; Herr, D.; Kleypas, J.; Landis, E.; Mcleod, E.; Pidgeon, E.; Simpson, S. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 2017, 15, 42–50. [Google Scholar] [CrossRef]
- Jardine, S.L.; Siikamäki, J.V. A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 2014, 9, 104013. [Google Scholar] [CrossRef]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 2003, 17, 1111. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Saenger, P.; Snedaker, S.C. Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 1993, 96, 293–299. [Google Scholar] [CrossRef]
- Stringer, C.E.; Trettin, C.C.; Zarnoch, S.J.; Tang, W. Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. For. Ecol. Manag. 2015, 354, 139–148. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Donato, D.C. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; Cifor: Bogor, Indonesia, 2012; Volume 86. [Google Scholar]
- Tang, W.; Zheng, M.; Zhao, X.; Shi, J.; Yang, J.; Trettin, C.C. Big geospatial data analytics for global mangrove biomass and carbon estimation. Sustainability 2018, 10, 472. [Google Scholar] [CrossRef]
- Fatoyinbo, T.E.; Simard, M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. Int. J. Remote Sens. 2013, 34, 668–681. [Google Scholar] [CrossRef]
- Tang, W.; Feng, W.; Jia, M.; Shi, J.; Zuo, H.; Trettin, C.C. The assessment of mangrove biomass and carbon in West Africa: A spatially explicit analytical framework. Wetlands Ecol. Manag. 2016, 24, 153–171. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Hutchison, J.; Manica, A.; Swetnam, R.; Balmford, A.; Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 2014, 7, 233–240. [Google Scholar] [CrossRef]
- Manyika, J. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey Global Institute: New York, NY, USA, 2011. [Google Scholar]
- Tamai, S.; Nakasuga, T.; Tabuchi, R.; Ogino, K. Standing biomass of mangrove forests in southern Thailand. J. Jpn. For. Soc. 1986, 68, 384–388. [Google Scholar]
- Slim, F.J.; Gwada, P.M.; Kodjo, M.; Hemminga, M.A. Biomass and litterfall of Ceriops tagal and Rhizophora mucronata in the mangrove forest of Gazi Bay, Kenya. Mar. Freshwater Res. 1996, 47, 999–1007. [Google Scholar] [CrossRef]
- Ross, M.S.; Ruiz, P.L.; Telesnicki, G.J.; Meeder, J.F. Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (USA). Wetlands Ecol. Manag. 2001, 9, 27–37. [Google Scholar] [CrossRef]
- Soares, M.L.G.; Schaeffer-Novelli, Y. Above-ground biomass of mangrove species. I. Analysis of models. Estuar. Coast. Shelf Sci. 2005, 65, 1–18. [Google Scholar] [CrossRef]
- Komiyama, A.; Ong, J.E.; Poungparn, S. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 2008, 89, 128–137. [Google Scholar] [CrossRef]
- Mitra, A.; Sengupta, K.; Banerjee, K. Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. For. Ecol. Manag. 2011, 261, 1325–1335. [Google Scholar] [CrossRef]
- Comley, B.W.T.; McGuinness, K.A. Above-and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust. J. Bot. 2005, 53, 431–436. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plann. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; Bartolo, R. Mangrove species identification: Comparing WorldView-2 with aerial photographs. Remote Sens. 2014, 6, 6064–6088. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S. Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach. Remote Sens. 2011, 3, 2222–2242. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wu, X. Artificial mangrove species mapping using pléiades-1: An evaluation of pixel-based and object-based classifications with selected machine learning algorithms. Remote Sens. 2018, 10, 294. [Google Scholar] [CrossRef]
- Andrew, A.M. An introduction to support vector machines and other kernel-based learning methods. Kybernetes 2001, 30, 103–115. [Google Scholar] [CrossRef]
- Yao, Y.J.; Zhang, Z.X.; Qin, Q.M.; Qiu, Y.F. Study on wetland information extraction of remote sensing images based on support vector machine. J. Appl. Res. Comput. 2008, 25, 989–991. [Google Scholar]
- Wang, Z.; Sun, J.; Yu, Z.; Bu, Y. Review of remote sensing image classification based on support vector machine. Comput. Sci. 2016, 43, 8–15. [Google Scholar]
- Zhang, C.; Zang, S.Y.; Jin, Z.; Zhang, Y.H. Remote sensing classification for Zhalong Wetlands based on support vector machine. Wetland Sci. 2011, 9, 263–269. [Google Scholar]
- Buser, B. A training algorithm for optimal margin classifier. In Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Ding, H.Y.; Bian, Z.F. Theory of support vector machine and its applications in remote sensing image processing. Comput. Eng. Des. 2008, 5, 62–65. [Google Scholar]
- Zhen, J.; Liao, J.; Shen, G. Mapping mangrove forests of Dongzhaigang nature reserve in China using Landsat 8 and Radarsat-2 polarimetric SAR data. Sensors 2018, 18, 4012. [Google Scholar] [CrossRef]
- Fu, C.; Song, X.; Xie, Y.; Wang, C.; Luo, J.; Fang, Y.; Cao, B.; Qiu, Z. Research on the spatiotemporal evolution of mangrove forests in the Hainan Island from 1991 to 2021 based on SVM and Res-UNet algorithms. Remote Sens. 2022, 14, 5554. [Google Scholar] [CrossRef]
- Vidhya, R.; Vijayasekaran, D.; Ahamed Farook, M.; Jai, S.; Rohini, M.; Sinduja, A. Improved classification of mangroves health status using hyperspectral remote sensing data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 667–670. [Google Scholar] [CrossRef]
- Li, Q.; Wong, F.K.K.; Fung, T. Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data. Remote Sens. Environ. 2021, 258, 112403. [Google Scholar] [CrossRef]
- Saputra, R.; Gaol, J.L.; Agus, S.B. Study of mangrove coverage change based on object (OBIA) using satellite imagery in Dompak Island Province of Kepulauan Riau. IOP Conf. Ser. Earth Environ. Sci. 2021, 713, 012001. [Google Scholar]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.Z.; Wang, Z.; Mao, D.; Wang, Y.; Jia, M. Decision surface optimization in mapping exotic mangrove species (Sonneratia apetala) across latitudinal coastal areas of China. ISPRS J. Photogramm. Remote Sens. 2022, 193, 269–283. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shen, Z.; Miao, J.; Wang, J.; Zhao, D.; Tang, A.; Zhen, J. Evaluating Feature Selection Methods and Machine Learning Algorithms for Mapping Mangrove Forests Using Optical and Synthetic Aperture Radar Data. Remote Sens. 2023, 15, 5621. [Google Scholar] [CrossRef]
- Wang, X.; Tan, L.; Fan, J. Performance evaluation of mangrove species classification based on multi-source Remote Sensing data using extremely randomized trees in Fucheng Town, Leizhou city, Guangdong Province. Remote Sens. 2023, 15, 1386. [Google Scholar] [CrossRef]
- Yang, Y.; Meng, Z.; Zu, J.; Cai, W.; Wang, J.; Su, H.; Yang, J. Fine-scale mangrove species classification based on UAV multispectral and hyperspectral remote sensing using machine learning. Remote Sens. 2024, 16, 3093. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Tan, X.; Zhang, Q. Mapping mangrove species using combined UAV-LiDAR and Sentinel-2 data: Feature selection and point density effects. Adv. Space Res. 2022, 69, 1494–1512. [Google Scholar] [CrossRef]
- Nagarajan, P.; Rajendran, L.; Pillai, N.D.; Lakshmanan, G. Comparison of machine learning algorithms for mangrove species identification in Malad creek, Mumbai using WorldView-2 and Google Earth images. J. Coast. Conserv. 2022, 26, 44. [Google Scholar] [CrossRef]
- Chan-Bagot, K.; Herndon, K.E.; Puzzi Nicolau, A.; Martín-Arias, V.; Evans, C.; Parache, H.; Mosely, K.; Narine, Z.; Zutta, B. Integrating SAR, optical, and machine learning for enhanced coastal mangrove monitoring in Guyana. Remote Sens. 2024, 16, 542. [Google Scholar] [CrossRef]
- Miraki, M.; Sohrabi, H.; Immitzer, M. Tree Species Mapping in Mangrove Ecosystems Using UAV-RGB Imagery and Object-Based Image Classification. J. Indian Soc. Remote Sens. 2023, 51, 2095–2103. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.; Mohammadimanesh, F.; Homayouni, S. Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: A comparative evaluation. Remote Sens. 2021, 13, 4405. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Ou, J.; Tian, Y.; Zhang, Q.; Xie, X.; Zhang, Y.; Tao, J.; Lin, J. Coupling UAV Hyperspectral and LiDAR Data for Mangrove Classification Using XGBoost in China’s Pinglu Canal Estuary. Forests 2023, 14, 1838. [Google Scholar] [CrossRef]
- Zhen, J.; Mao, D.; Shen, Z.; Zhao, D.; Xu, Y.; Wang, J.; Jia, M.; Wang, Z.; Ren, C. Performance of XGBoost Ensemble Learning Algorithm for Mangrove Species Classification with Multisource Spaceborne Remote Sensing Data. J. Remote Sens. 2024, 4, 0146. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GISci. Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Ustuner, M.; Balik Sanli, F. Polarimetric target decompositions and light gradient boosting machine for crop classification: A comparative evaluation. ISPRS Int. J. Geo-Inf. 2019, 8, 97. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, K.; Liu, L.; Wang, S.; Liu, H. Retrieval of mangrove aboveground biomass at the individual species level with worldview-2 images. Remote Sens. 2015, 7, 12192–12214. [Google Scholar] [CrossRef]
- Rahmandhana, A.D.; Kamal, M.; Wicaksono, P. Spectral reflectance-based mangrove species mapping from worldview-2 imagery of Karimunjawa and Kemujan Island, Central Java Province, Indonesia. Remote Sens. 2022, 14, 183. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Global Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Lewis, R.R. Mangrove restoration-Costs and benefits of successful ecological restoration. In Proceedings of the Mangrove Valuation Workshop, George, Malaysia, 4–8 April 2001; Volume 4. [Google Scholar]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef]
- Ruslan, N.F.N.; Goh, H.C.; Hattam, C.; Edwards-Jones, A.; Moh, H.H. Mangrove ecosystem services: Contribution to the well-being of the coastal communities in Klang Islands. Mar. Policy 2022, 144, 105222. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef]
- Harris, R.M.; Beaumont, L.J.; Vance, T.R.; Tozer, C.R.; Remenyi, T.A.; Perkins-Kirkpatrick, S.E.; Mitchell, P.J.; Nicotra, A.B.; McGregor, S.; Andrew, N.R.; et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 2018, 8, 579–587. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef]
- Rossi, R.E.; Archer, S.K.; Giri, C.; Layman, C.A. The role of multiple stressors in a dwarf red mangrove (Rhizophora mangle) dieback. Estuar. Coast. Shelf Sci. 2020, 237, 106660. [Google Scholar] [CrossRef]
- Carruthers, L.; Ersek, V.; Maher, D.; Sanders, C.; Tait, D.; Soares, J.; Floyd, M.; Hashim, A.S.; Helber, S.; Garnett, M.; et al. Sea-level rise and extreme Indian Ocean Dipole explain mangrove dieback in the Maldives. Sci. Rep. 2024, 14, 27012. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, S.; Mosley, L.; Stangoulis, J.; Nguyen, V.L.; Beaumont, K.; Dang, T.; Guan, H.; Gutierrez-Jurado, K.; Lam-Gordillo, O.; McGrath, A. Effects of extreme salinity stress on a temperate mangrove ecosystem. Front. For. Global Change 2022, 5, 859283. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Castañeda-Moya, E.; Cook, B.D.; Montesano, P.M.; Neigh, C.S.; Corp, L.A.; Ott, L.E.; Chavez, S.; Morton, D.C. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nat. Commun. 2021, 12, 4003. [Google Scholar] [CrossRef]
- Servino, R.N.; de Oliveira Gomes, L.E.; Bernardino, A.F. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion. Sci. Total Environ. 2018, 628, 233–240. [Google Scholar] [CrossRef]
- Sippo, J.Z.; Santos, I.R.; Sanders, C.J.; Gadd, P.; Hua, Q.; Lovelock, C.E.; Santini, N.S.; Johnston, S.G.; Harada, Y.; Reithmeir, G.; et al. Reconstructing extreme climatic and geochemical conditions during the largest natural mangrove dieback on record. Biogeosciences 2020, 17, 4707–4726. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M.C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 2017, 7, 1680. [Google Scholar] [CrossRef]
- Duke, N.C.; Kovacs, J.M.; Griffiths, A.D.; Preece, L.; Hill, D.J.; Van Oosterzee, P.; Mackenzie, J.; Morning, H.S.; Burrows, D. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: A severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshwater Res. 2017, 68, 1816–1829. [Google Scholar] [CrossRef]
- Duke, N.C.; Bell, A.M.; Pederson, D.K.; Roelfsema, C.M.; Nash, S.B. Herbicides implicated as the cause of severe mangrove dieback in the Mackay region, NE Australia: Consequences for marine plant habitats of the GBR World Heritage Area. Mar. Pollut. Bull. 2005, 51, 308–324. [Google Scholar] [CrossRef]
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global trends in mangrove forest fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef] [PubMed]
- Asbridge, E.F.; Bartolo, R.; Finlayson, C.M.; Lucas, R.M.; Rogers, K.; Woodroffe, C.D. Assessing the distribution and drivers of mangrove dieback in Kakadu National Park, northern Australia. Estuar. Coast. Shelf Sci. 2019, 228, 106353. [Google Scholar] [CrossRef]
- Ghosh, S.; Proisy, C.; Muthusankar, G.; Hassenrück, C.; Helfer, V.; Mathevet, R.; Andrieu, J.; Balachandran, N.; Narendran, R. Multiscale Diagnosis of Mangrove Status in Data-Poor Context Using Very High Spatial Resolution Satellite Images: A Case Study in Pichavaram Mangrove Forest, Tamil Nadu, India. Remote Sens. 2022, 14, 2317. [Google Scholar] [CrossRef]
Criteria | Topic | Publication Date | Language |
---|---|---|---|
Search terms | “Mangrove AND UAV” OR “Mangrove AND Unmanned Aerial Vehicle” OR “Mangrove AND remote sensing” OR “Mangrove AND multispectral” OR “Mangrove AND hyperspectral” OR “Mangrove AND Landsat” OR “Mangrove AND Gaofen” OR “Mangrove AND GF” OR “Mangrove AND sentinel” OR “Mangrove AND LiDAR” | January 1990 to October 2024 | English |
Traditional Field Investigation | UAV-LiDAR and RS |
---|---|
Able to measure diameter at breast height, tree height, and biomass of individual tree | Limited by resolution, difficult to obtain detailed information on individual plants |
Destructive | Non-destructive |
Small-scale, limited by logistics and time, only covers local sites | Large scale, suitable for regional or global monitoring |
Affected by tides, weather, and terrain; some areas are difficult to access | Affected by cloud cover and atmospheric interference, especially in tropical and coastal regions |
High cost, due to labor, transportation, and equipment expenses | Low cost (some satellite data are free), but high-resolution data may be paid |
Suitable for small-scale, high-precision studies such as species identification and soil analysis | Suitable for large-scale, long-term monitoring such as mangrove range changes and ecosystem health assessment |
Study Area | Study Time | Data | Species | OA | Kappa | Reference |
---|---|---|---|---|---|---|
Sundarbans Biosphere Reserve, India (40%) and Bangladesh (60%) | 2021 | Landsat 8 OLI (multispectral 30 m), Hyperion (hyperspectral 30 m), Sentinel-2 data (multispectral) | AA, AM, AO, AR, BC, BG, CD, CE, EA, PP, SA | 76.42% 81.98% 79.81% | 0.71 0.78 0.75 | [7] |
Dongzhaigang, China | 2018 | Radarsat-2 (SAR), Landsat-8 (multispectral 30 m) | NA | 53.4% 83.5% 95% (combined data) | 0.46 0.80 0.95 | [70] |
Hainan Island, China | 2022 | Landsat-5 TM (30 m), Landsat-8 OLI (multispectral 30 m) | NA | 94.2% (2021) | 0.82 | [71] |
Thuraikkadu Reserve Forest area, India | 2014 | Hyperion (hyperspectral 30 m), Earth Observing -1 (hyperspectral 30 m) | NA | 73.74% | 0.62 | [72] |
Mai Po Nature Reserve, HK, China | 2021 | Worldview 3 (hyperspectral 30 m), LiDAR data | AC, AI, AM, KO, AI, SA | 84% | 0.81 | [73] |
Indonesia | 2021 | SPOT 4 (multispectral 20 m), Sentinel 2B (multispectral) | NA | 89% | 0.86 | [74] |
Study Area | Study Time | Data | Species | OA | Kappa | Reference |
---|---|---|---|---|---|---|
Zhangjiangkou National Mangrove Nature Reserve, China | 2023 | GF-2 PMS image (hyperspectral 8 m), GF-3 polarimetric SAR and UAV-LiDAR | KO, AC, AM, SA | 91.43% | 0.89 | [29] |
Fucheng Town, Guangdong Province, China | 2023 | GF-1 (hyperspectral 8 m), GF-3(SAR), Sentinel-2 (multispectral), Landsat-9 | SA, KO, AM | 88.47% | 0.81 | [80] |
Yingluo Bay, Guangxi, China | 2024 | UAV multispectral, hyperspectral image | BG, RS, AM, AC, EA, HT, SA | 80.5% 95.73% | 0.77 0.95 | [81] |
Dongzhaigang National Nature Reserve and Qinglangang Nature Reserve, Hainan Island, China | 2022 | Sentinel-2 (multispectral) and UAV-LiDAR | RS, CT, AM, BS, LR, EA, SS | 85.6% 91.61% | 0.79 0.86 | [82] |
Gaoqiao Mangrove Reserve, China | 2023 | Sentinel-2 (multispectral), Sentinel-1 (SAR), ALOS-2 (SAR) | NA | 92.67% 39.67% 30.33% | 0.915 0.302 0.194 | [79] |
Malad Creek, India | 2022 | WorldView-2 (multispectral, 1.5 m) | AM | 88.64% | 0.86 | [83] |
Guyana | 2024 | Landsat-8 OIL (multispectral 30 m), Sentinel-2 MSI (multispectral) and Sentinel-1 SAR | NA | 95% | NA | [84] |
Sirik, southern Iran | 2023 | UAV | RM, AM | 98% | 0.97 | [85] |
Study Area | Study Time | Data | Species | OA | Kappa | Reference |
---|---|---|---|---|---|---|
Guangxi, southwestern China | 2023 | UAV hyperspectral data and UAV-LiDAR data | SA, AI, CM, AC, KO | 96.78% | 0.9596 | [89] |
The core zones of the ZMNNR, China | 2024 | WV-2 image (multispectral, 1.5 m) and OHS data (hyperspectral, 10 m) and ALOS-2 data (SAR) | AM, KO, SA, RS, BG, AC | 94.02% | NA | [90] |
Gaoqiao Mangrove Reserve, China | 2023 | Sentinel-2 (multispectral), Sentinel-1 (SAR), ALOS-2 (SAR) | NA | 92.33% 36.67% 33.67% | 0.912 0.268 0.235 | [79] |
Yingluo Bay, China | 2024 | UAV hyperspectral data | BG, RS, AM, AC, EA, HT, SA | 94.26% | 0.93 | [81] |
Yingluo Bay, China | 2024 | UAV multispectral data | 80.37% | 0.77 | [81] |
Study Area | Study Time | Data | ML Algorithms | Species | OA | Kappa | Reference |
---|---|---|---|---|---|---|---|
Sundarbans Biosphere Reserve, India (40%), and Bangladesh (60%) | 2021 | Landsat 8 OLI (multispectral 30 m), Sentinel-2 data (multispectral) | SVM | AA, AM, AO, AR, BC, BG, CD, CE, EA, PP, SA | 76.42% 79.81% | 0.71 0.78 0.75 | [7] |
Dongzhaigang, China | 2018 | Radarsat-2 (SAR), Landsat-8 (multispectral 30 m) | SVM | NA | 53.4% 83.5% 95% (combined data) | 0.46 0.80 0.95 | [70] |
Dongzhaigang Nature Reserve and Qinglangang Nature Reserve, China | 2022 | Sentinel-2 data (multispectral), UAV-LiDAR data | RF | RS, CT, AM, BS, LR, EA, SS | 85.6% 91.61% | 0.79 0.86 | [82] |
Gaoqiao Mangrove Reserve, China | 2023 | Sentinel-2 (multispectral), Sentinel-1 (SAR), ALOS-2 (SAR) | RF | NA | 92.67% 39.67% 30.33% | 0.915 0.302 0.194 | [79] |
XGBoost | 92.33% 36.67% 33.67% | 0.912 0.268 0.235 | |||||
LightGBM | 92.33% 37% 33.67% | 0.912 0.272 0.208 |
Study Area | Study Time | Data | Causes of Dieback | Reference |
---|---|---|---|---|
Abaco Island | 2020 | Landsat 5 and 7 annual NDVI composites | Herbivory and disease | [104] |
Across the world | 2020 | Landsat derived dataset | Human activities (e.g., deforestation, aquaculture) | [113] |
Maldives | 2024 | Landsat 8 OLI dataset and Oblique aerial drone image | Sea-level rise | [105] |
Kakadu National Park, northern Australia | 2019 | Airborne remote sensing data and color aerial photography photos | The El Niño–Southern Oscillation (ENSO) | [114] |
Pichavaram, India | 2022 | VHSR satellite images and meteorological observation data | Likely due to hypersaline environment | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Ouyang, X.; Xiao, X.; Hong, Y.; Zhang, Y.; Xu, Z.; Kwon, B.-O.; Yang, Z. A Review of Applying Drones and Remote Sensing Technology in Mangrove Ecology. Forests 2025, 16, 870. https://doi.org/10.3390/f16060870
Xu W, Ouyang X, Xiao X, Hong Y, Zhang Y, Xu Z, Kwon B-O, Yang Z. A Review of Applying Drones and Remote Sensing Technology in Mangrove Ecology. Forests. 2025; 16(6):870. https://doi.org/10.3390/f16060870
Chicago/Turabian StyleXu, Wenjie, Xiaoguang Ouyang, Xi Xiao, Yiguo Hong, Yuan Zhang, Zhihao Xu, Bong-Oh Kwon, and Zhifeng Yang. 2025. "A Review of Applying Drones and Remote Sensing Technology in Mangrove Ecology" Forests 16, no. 6: 870. https://doi.org/10.3390/f16060870
APA StyleXu, W., Ouyang, X., Xiao, X., Hong, Y., Zhang, Y., Xu, Z., Kwon, B.-O., & Yang, Z. (2025). A Review of Applying Drones and Remote Sensing Technology in Mangrove Ecology. Forests, 16(6), 870. https://doi.org/10.3390/f16060870