Global Warming Regulates the Contraction and Expansion of the Adaptive Distribution of Cupressus funebris Forests in China
Abstract
:1. Introduction
2. Data Integration and Methods
2.1. Data Screening and Processing
2.2. Maximum Entropy Model
2.3. Identification of Driving Variables and Calculation of Ranges
2.4. Calculation of the Adaptive Distribution
2.5. Calculation of Centroid Migration and Altitude Changes
3. Results
3.1. Adaptive Distribution and Driving Variables
3.2. Contraction and Expansion of the Adaptive Distribution
3.3. Centroid Migration and Altitude Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ullah, S.; Wu, J.; Shah, J.A.; Wang, X.; Lyu, Y.; Guo, Z.; Ali, K.; Chen, D.; Sun, H. Tree diversity drives understory carbon storage rather than overstory carbon storage across forest types. J. For. Res. 2024, 35, 125. [Google Scholar] [CrossRef]
- Wu, F.; Jia, J.W.; Li, C.; Cao, Y.; Zhao, J.F.; Yan, X.D.; Cui, X.F. Climate changes have alleviated constraints on forest carbon storage capacity since 1970 in most of the Northern Hemisphere. Ecol. Indic. 2024, 169, 112925. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Fei, X.H.; Liu, F.; Chen, J.X.; You, X.L.; Huang, S.J.; Wang, M.H.; Dong, J.W. Advances in Forest Management Research in the Context of Carbon Neutrality: A Bibliometric Analysis. Forests 2022, 13, 1810. [Google Scholar] [CrossRef]
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef]
- Urban, M.C. Climate change extinctions. Science 2024, 386, 1123–1128. [Google Scholar] [CrossRef]
- Xi, Y.B.; Zhang, W.M.; Wei, F.L.; Fang, Z.X.; Fensholt, R. Boreal tree species diversity increases with global warming but is reversed by extremes. Nat. Plants 2024, 10, 1473–1483. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Xu, L.; Zhang, Y.; Wen, Y.F.; Zhang, D.L. Climate-change impacts on distribution, habitats, sustainability and cultivation planning of two economically and ecologically important forest trees (China fir and Masson pine) in China. Glob. Ecol. Conserv. 2025, 57, e03349. [Google Scholar] [CrossRef]
- Yong, J.; Duan, G.S.; Chen, S.Z.; Lei, X.D. Environmental Response of Tree Species Distribution in Northeast China with the Joint Species Distribution Model. Forests 2024, 15, 1026. [Google Scholar] [CrossRef]
- Xie, C.P.; Li, M.; Jim, C.Y.; Liu, D.W. Environmental Factors Driving the Spatial Distribution Pattern of Venerable Trees in Sichuan Province, China. Plants 2022, 11, 3581. [Google Scholar] [CrossRef]
- Yan, W.; Xiang, Y.Q.; Gao, M.; Deng, R.Y.; Sun, Y.; Wan, R.P.; Pan, X.Y.; Li, W.Z.; Zhong, Y. Phenotypic diversity and provenance variation of Cupressus funebris: A case study in the Sichuan Basin, China. Peerj 2024, 12, e18494. [Google Scholar] [CrossRef]
- Chen, J.; Liu, W.; Jiang, C.; Liu, Y.; Wang, K.; Xie, C.; Tang, Y.; Mu, C. Study on Biomass Model and Carbon Metrology Parameters of Artificial Cypress Forest in Hilly Areas of Central Sichuan. J. Sichuan For. Sci. Technol. 2023, 44, 32–39. [Google Scholar] [CrossRef]
- Li, Y.Y.; Xiang, H.W.; Huang, Z.S.; Zhang, Y.B.; Zou, J.; Fu, Y.H.; Qian, C.J. Carbon sequestration characteristics of two plantation forest ecosystems with different lithologies of karst. PLoS ONE 2022, 17, e0276537. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, J.T.; Yang, Y.L.; Yang, J.P.; Dong, Q.; Zeng, H.Y.; Zhang, K.Y.; Xu, N.; Yuan, J.Y.; Liu, M.; et al. Response of Thinning to C:N:P Stoichiometric Characteristics and Seasonal Dynamics of Leaf-Litter-Soil System in Cupressus funebris Endl. Artificial Forests in Southwest, China. Forests 2024, 15, 1435. [Google Scholar] [CrossRef]
- Yang, J.T.; Huang, Y.; Su, M.M.; Liu, M.; Yang, J.X.; Wu, Q.G. Spatial Distribution Patterns of the Key Afforestation Species Cupressus funebris: Insights from an Ensemble Model under Climate Change Scenarios. Forests 2024, 15, 1280. [Google Scholar] [CrossRef]
- Miao, G.T.; Zhao, Y.J.; Wang, Y.J.; Yu, C.J.; Xiong, F.; Sun, Y.K.; Cao, Y. Suitable Habitat Prediction and Analysis of Dendrolimus houi and Its Host Cupressus funebris in the Chinese Region. Forests 2024, 15, 162. [Google Scholar] [CrossRef]
- Devi, V.; Fulekar, M.H.; Charles, B.; Reddy, C.S.; Pathak, B. Predicting the habitat suitability and species richness of plants of Great Himalayan National Park under different climate change scenarios. Environ. Monit. Assess. 2024, 196, 1136. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, A.; Deka, J.R.; Majumdar, K.; Sileshi, G.W.; Nath, A.J.; Das, A.K. MaxEnt modeling for habitat suitability assessment of threatened Dipterocarpus species in the Indian East Himalayas. Biodivers. Conserv. 2025, 34, 859–876. [Google Scholar] [CrossRef]
- Xu, D.P.; Zhuo, Z.H.; Wang, R.L.; Ye, M.; Pu, B. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Glob. Ecol. Conserv. 2019, 19, e00691. [Google Scholar] [CrossRef]
- He, Y.L.; Ma, J.M.; Chen, G.S. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model. Ecol. Indic. 2023, 154, 110790. [Google Scholar] [CrossRef]
- Li, G.Q.; Du, S.; Wen, Z.M. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci. Rep. 2016, 6, 30009. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Z.N.; Li, Z.Y.; Liu, Y.; Fang, S.Z. Predictive Modeling of Suitable Habitats for Cinnamomum Camphora (L.) Presl Using Maxent Model under Climate Change in China. Int. J. Environ. Res. Public Health 2019, 16, 3185. [Google Scholar] [CrossRef]
- Liu, Y.W.; Zhao, L.; Tan, G.R.; Shen, X.Y.; Nie, S.P.; Li, Q.Q.; Zhang, L. Evaluation of multidimensional simulations of summer air temperature in China from CMIP5 to CMIP6 by the BCC models: From trends to modes. Adv. Clim. Change Res. 2022, 13, 28–41. [Google Scholar] [CrossRef]
- Wu, T.W.; Lu, Y.X.; Fang, Y.j.; Xin, X.G.; Li, L.; Li, W.P.; Jie, W.H.; Zhang, J.; Liu, Y.M.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Gao, M.L.; Zhao, G.H.; Zhang, S.N.; Wang, Z.R.; Wen, X.Y.; Liu, L.; Zhang, C.; Tie, N.; Sa, R. Priority conservation area of Larix gmelinii under climate change: Application of an ensemble modeling. Front. Plant Sci. 2023, 14, 1177307. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.L.; Xiang, J.G.; Li, D.L.; Liu, X.H. Prediction of Potential Suitable Distribution Areas of Quasipaa spinosa in China Based on MaxEnt Optimization Model. Biology 2023, 12, 366. [Google Scholar] [CrossRef]
- Sousa, J.B.d.O.; Benathar, I.d.S.C.; Ebling, A.A.; Kohler, S.V.; de Oliveira, X.M.; Protasio, T.d.P.; Rodrigues, M.; Goulart, S.L. Using maximum entropy modeling to predict the potential distributions of genus Copaifera L. in a conservation unit in the Brazilian Amazon. Plant Ecol. 2025, 226, 185–196. [Google Scholar] [CrossRef]
- Zhong, X.R.; Zhang, L.; Zhang, J.B.; He, L.R.; Sun, R.X. Maxent Modeling for Predicting the Potential Geographical Distribution of Castanopsis carlesii under Various Climate Change Scenarios in China. Forests 2023, 14, 1397. [Google Scholar] [CrossRef]
- Koldasbayeva, D.; Tregubova, P.; Gasanov, M.; Zaytsev, A.; Petrovskaia, A.; Burnaev, E. Challenges in data-driven geospatial modeling for environmental research and practice. Nat. Commun. 2024, 15, 10700. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.N.; Liu, N.; Zhang, X.; Zhou, H.; Hou, Y.J.; Wu, P.; Zhang, X. Prediction of the potential distribution of Chimonobambusa utilis (Poaceae, Bambusoideae) in China, based on the MaxEnt model. Biodivers. Data J. 2024, 12, e126620. [Google Scholar] [CrossRef]
- Mahmoud, A.R.; Farahat, E.A.; Hassan, L.M.; Halmy, M.W.A. Towards optimizing conservation planning: A performance evaluation of modeling techniques for predicting Mediterranean native species distribution. J. Nat. Conserv. 2024, 82, 126733. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernandez, I.C. Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy? Entropy 2020, 22, 342. [Google Scholar] [CrossRef]
- Wang, Y.L.; Liu, H.C.; Xu, J.K.; Yu, S.; Huang, Y.Q.; Zhang, Y.; He, X.Y.; Chen, W. Prediction of suitable planting areas of Rubia cordifolia in China based on a species distribution model and analysis of specific secondary metabolites. Ind. Crops Prod. 2023, 206, 117651. [Google Scholar] [CrossRef]
- Shamloo, N.; Sattari, M.T.; Kamran, K.V.; Apaydin, H. An integrated artificial intelligence-deep learning approach for vegetation canopy assessment and monitoring through satellite images. Stoch. Environ. Res. Risk Assess. 2025, 29, 1623–1645. [Google Scholar] [CrossRef]
- Díaz-Vallejo, M.; Peña-Peniche, A.; Mota-Vargas, C.; Piña-Torres, J.; Valencia-Rodríguez, D.; Rangel-Rivera, C.E.; Gaviria-Hernández, J.; Rojas-Soto, O. Analyses of the variable selection using correlation methods: An approach to the importance of statistical inferences in the modelling process. Ecol. Model. 2024, 498, 110893. [Google Scholar] [CrossRef]
- Lv, Z.; Jiu, S.; Wang, L.; Xu, Y.; Wang, J.; Liu, X.; Xu, J.; Wang, Y.; Haider, M.S.; Liu, R.; et al. Climate change affects the suitability of Chinese cherry (Prunus pseudocerasus Lindl.) in China. Mol. Hortic. 2025, 5, 26. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, S.; Wu, K.; Zhao, R.; Zhao, G.; Wang, Y. Potential habitat areas and priority protected areas of Tilia amurensis Rupr in China under the context of climate change. Front. Plant Sci. 2024, 15, 1365264. [Google Scholar] [CrossRef]
- Jin, S.; Chi, Y.; Li, X.; Shu, P.; Zhu, M.; Yuan, Z.; Liu, Y.; Chen, W.; Han, Y. Predicting the response of three common subtropical tree species in China to climate change. Front. For. Glob. Change 2023, 6, 1299120. [Google Scholar] [CrossRef]
- Liang, J.; Peng, Y.H.; Zhu, Z.Q.; Li, X.; Xing, W.L.; Li, X.D.; Yan, M.; Yuan, Y.J. Impacts of changing climate on the distribution of migratory birds in China: Habitat change and population centroid shift. Ecol. Indic. 2021, 127, 107729. [Google Scholar] [CrossRef]
- Rubenstein, M.A.; Weiskopf, S.R.; Bertrand, R.; Carter, S.L.; Comte, L.; Eaton, M.J.; Johnson, C.G.; Lenoir, J.; Lynch, A.J.; Miller, B.W.; et al. Climate change and the global redistribution of biodiversity: Substantial variation in empirical support for expected range shifts. Environ. Evid. 2023, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Hamann, A.; Wang, T. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 2006, 87, 2773–2786. [Google Scholar] [CrossRef]
- Shi, J.Y.; Xia, M.X.; He, G.Q.; Gonzalez, N.C.T.; Zhou, S.; Lan, K.; Ouyang, L.; Shen, X.B.; Jiang, X.L.; Cao, F.L.; et al. Predicting Quercus gilva distribution dynamics and its response to climate change induced by GHGs emission through MaxEnt modeling. J. Environ. Manag. 2024, 357, 120841. [Google Scholar] [CrossRef]
- McDowell, W.G.; Benson, A.J.; Byers, J.E. Climate controls the distribution of a widespread invasive species: Implications for future range expansion. Freshw. Biol. 2014, 59, 847–857. [Google Scholar] [CrossRef]
- Yuan, Y.D.; Zuo, J.J.; Zhang, H.Y.; Tang, X.G.; Zu, M.T. Climate change on potential suitable areas for typical Pinaceae species on the Western Sichuan Plateau. Geocarto Int. 2022, 37, 14739–14757. [Google Scholar] [CrossRef]
- Feeley, K.J.; Zuleta, D. Changing forests under climate change. Nat. Plants 2021, 8, 984–985. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.S.; Wu, S.H. Responses of vegetation distribution to climate change in China. Theor. Appl. Climatol. 2014, 117, 15–28. [Google Scholar] [CrossRef]
- Bai, M.W.; Dong, Z.P.; Chen, D.; Zheng, H.Z.; Zhou, F.F.; Cao, X.G.; Ou, T.H.; Fang, K.Y. Different responses of the radial growth of the planted and natural forests to climate change in humid subtropical China. Geogr. Ann. Ser. A Phys. Geogr. 2020, 102, 235–246. [Google Scholar] [CrossRef]
- Li, W.X.; Liu, S.B. Large scaled cedar DBH growth models including climatic variables. J. Cent. S. Univ. For. Technol. 2015, 35, 74–77. [Google Scholar] [CrossRef]
- Li, W.Y.; Zhang, H.R.; Xin, Q.; Gu, X.Z.; Ma, H.R.; Cao, H.; Bao, Z.F.; Ye, L.; Huai, X.W. Analysis of Extreme Precipitation under Nonstationary Conditions in the Yangtze River Basin. J. Hydrol. Eng. 2025, 30, 05024025. [Google Scholar] [CrossRef]
- Zhang, X.L.; Rademacher, T.; Liu, H.Y.; Wang, L.; Manzanedo, R.D. Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species. Nat. Commun. 2023, 14, 6916. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Gu, H.S.; Xu, H.F.; Ma, Q.M.; Zhang, X.; Yan, Q.; Gao, J.; Yang, Y.C.; Rossi, S.; Smith, N.G.; et al. Accelerating effects of growing-season warming on tree seasonal activities are progressively disappearing. Curr. Biol. 2023, 33, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, C.J.; Wan, J.Z. Relationships between topographic variation and plant functional trait distribution across different biomes. Flora 2022, 293, 152116. [Google Scholar] [CrossRef]
- Giuliani, L.M.; Hallett, P.D.; Loades, K.W. Effects of soil structure complexity to root growth of plants with contrasting root architecture. Soil Tillage Res. 2024, 238, 106023. [Google Scholar] [CrossRef]
- Gxasheka, M.; Gajana, C.S.; Dlamini, P. The role of topographic and soil factors on woody plant encroachment in mountainous rangelands: A mini literature review. Heliyon 2023, 9, e20615. [Google Scholar] [CrossRef]
- Yao, W.H.; Wang, Z.H.; Fan, Y.; Liu, D.Y.; Ding, Z.Y.; Zhou, Y.M.; Hu, S.Y.; Zhang, W.; Ou, J. Prediction of Potential Habitat Distributions and Climate Change Impacts on the Rare Species Woonyoungia septentrionalis (Magnoliaceae) in China Based on MaxEnt. Plants Basel 2025, 14, 86. [Google Scholar] [CrossRef]
- Ao, Q.; Li, H.E.; Yang, L.; Li, Q.; Long, F.F.; Xiao, Y.; Zuo, W.W. Projecting the global potential distribution of nine Rhododendron Subgenus Hymenanthes species under different climate change scenarios. Sci. Rep. 2025, 15, 3459. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paz-Dyderska, S.; Jagodzinski, A.M.; Puchalka, R. Shifts in native tree species distributions in Europe under climate change. J. Environ. Manag. 2025, 373, 123504. [Google Scholar] [CrossRef]
- Tang, X.H.; Zhao, J.; Zhou, J.Y.; Zhu, Q.C.; Sheng, X.Y.; Yue, C. Elevated CO2 Shifts Photosynthetic Constraint from Stomatal to Biochemical Limitations During Induction in Populus tomentosa and Eucalyptus robusta. Plants 2025, 14, 47. [Google Scholar] [CrossRef]
- Liu, C.-S.; Li, T.; Zhang, R.; Wang, C.; Qu, X.; Luo, D. Growth characteristics and biomass model of Cupressus gigantea sapling. Trees 2024, 38, 27–35. [Google Scholar] [CrossRef]
- Lyu, J.H.; Wang, J.L.; Chen, M. Effects of Heat Treatment on the Chemical Composition and Microstructure of Cupressus funebris Endl. Wood. Forests 2024, 15, 1370. [Google Scholar] [CrossRef]
- Yang, J.T.; Wu, Q.G.; Dakhil, M.A.; Halmy, M.W.A.; Bedair, H.; Fouad, M.S. Towards Forest Conservation Planning: How Temperature Fluctuations Determine the Potential Distribution and Extinction Risk of Cupressus funebris Conifer Trees in China. Forests 2023, 14, 2234. [Google Scholar] [CrossRef]
- Xu, W.H.; Rhemtulla, J.M.; Luo, D.W.; Wang, T.L. Common drivers shaping niche distribution and climate change responses of one hundred tree species. J. Environ. Manag. 2024, 370, 123074. [Google Scholar] [CrossRef]
- Zhu, K.; Song, Y.L.; Lesage, J.C.; Luong, J.C.; Bartolome, J.W.; Chiariello, N.R.; Dudney, J.; Field, C.B.; Hallett, L.M.; Hammond, M.; et al. Rapid shifts in grassland communities driven by climate change. Nat. Ecol. Evol. 2024, 8, 2252–2264. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Ciceu, A.; Ballian, D.; Garzon, M.B.; Bolte, A.; Bozic, G.; Buchacher, R.; Cepl, J.; Cremer, E.; Ducousso, A.; et al. Assisted tree migration can preserve the European forest carbon sink under climate change. Nat. Clim. Change 2024, 14, 845–852. [Google Scholar] [CrossRef]
- Kumar, S.; Khanduri, V.P. Impact of climate change on the Himalayan alpine treeline vegetation. Heliyon 2024, 10, e40797. [Google Scholar] [CrossRef]
Variable | Environment Variable | Unit | Percent Contribution | Permutation Importance |
---|---|---|---|---|
Bio12 | Annual precipitation | mm | 40.6 | 2.7 |
Bio6 | Min temperature of coldest month | °C | 14.4 | 81.3 |
T_caco3 | Carbonate content | % | 13.2 | 2.0 |
Elev | Altitude | m | 11.1 | 1.9 |
Bio3 | Isothermality | - | 9.9 | 6.1 |
T_gravel | Percentage of crushed stone by volume | % | 6.0 | 0.2 |
Bio4 | Temperature seasonality | - | 2.4 | 4.6 |
T_cec_clay | Cation exchange capacity of cohesive layer soil | cmol/kg | 1.5 | 0.4 |
T_bs | Basic saturation | % | 0.6 | 0.4 |
T_teb | Exchangeable base | cmol/kg | 0.2 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, S.; Ji, X.; Wang, Z.; Liu, Z. Global Warming Regulates the Contraction and Expansion of the Adaptive Distribution of Cupressus funebris Forests in China. Forests 2025, 16, 778. https://doi.org/10.3390/f16050778
Zhang H, Li S, Ji X, Wang Z, Liu Z. Global Warming Regulates the Contraction and Expansion of the Adaptive Distribution of Cupressus funebris Forests in China. Forests. 2025; 16(5):778. https://doi.org/10.3390/f16050778
Chicago/Turabian StyleZhang, Huayong, Shijia Li, Xiande Ji, Zhongyu Wang, and Zhao Liu. 2025. "Global Warming Regulates the Contraction and Expansion of the Adaptive Distribution of Cupressus funebris Forests in China" Forests 16, no. 5: 778. https://doi.org/10.3390/f16050778
APA StyleZhang, H., Li, S., Ji, X., Wang, Z., & Liu, Z. (2025). Global Warming Regulates the Contraction and Expansion of the Adaptive Distribution of Cupressus funebris Forests in China. Forests, 16(5), 778. https://doi.org/10.3390/f16050778