Stand States Drive Disparities in the Carbon Storage Within a Masson Pine Forest Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Establish and Survey
2.3. Sample Collection and Processing
2.4. Evaluation Index Measuring Forest Stand State
2.5. Calculation of C Storage in Forest Ecosystems
2.6. Mantel Test and Canonical Correspondence Analysis (CCA)
2.7. Statistical Analyses
3. Results
3.1. Characteristics of Stand State and C Storage in P. massoniana Forests
3.2. The Correlation Between Stand State and C Storage in P. massoniana Forests
3.3. The Coupling Correlation Between the Stand State and C Storage in P. massoniana Forests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruiz–Benito, P.; Madrigal–Gonzalez, J.; Ratcliffe, S.; Coomes, D.A.; Kaendler, G.; Lehtonen, A.; Wirth, C.; Zavala, M.A. Stand Structure and Recent Climate Change Constrain Stand Basal Area Change in European Forests: A Comparison Across Boreal, Temperate, and Mediterranean Biomes. Ecosystems 2014, 17, 1439–1454. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Ahtikoski, A.; Ahtikoski, R.; Haapanen, M.; Hynynen, J.; Karkkainen, K. Economic Performance of Genetically Improved Reforestation Material in Joint Production of Timber and Carbon Sequestration: A Case Study from Finland. Forests 2020, 11, 847. [Google Scholar] [CrossRef]
- Ouimette, A.P.; Ollinger, S.V.; Lepine, L.C.; Stephens, R.B.; Rowe, R.J.; Vadeboncoeur, M.A.; Tumber–Davila, S.J.; Hobbie, E.A. Accounting for Carbon Flux to Mycorrhizal Fungi May Resolve Discrepancies in Forest Carbon Budgets. Ecosystems 2020, 23, 715–729. [Google Scholar] [CrossRef]
- Straus, H.; Podvinsek, S.; Klopcic, M. Identifying Optimal Forest Management Maximizing Carbon Sequestration in Mountain Forests Impacted by Natural Disturbances: A Case Study in the Alps. Forests 2023, 14, 947. [Google Scholar] [CrossRef]
- Nilsen, P.; Strand, L.T. Carbon stores and fluxes in even- and uneven- aged Norway spruce stands. Silva Fenn. 2013, 47, 1024. [Google Scholar] [CrossRef]
- Sharma, A.; Bohn, K.K.; Jose, S.; Dwivedi, P. Even-Aged vs. Uneven-Aged Silviculture: Implications for Multifunctional Management of Southern Pine Ecosystems. Forests 2016, 7, 86. [Google Scholar] [CrossRef]
- Magnani, F.; Dewar, R.C.; Borghetti, M. Leakage and spillover effects of forest management on carbon storage: Theoretical insights from a simple model. Tellus Ser. B Chem. Phys. Meteorol. 2009, 61, 385–393. [Google Scholar] [CrossRef]
- Tu, J.; Zhao, Z.; Chai, Z. The Short-Term Impact of Logging Intensity on the Stand State of Middle-Aged Masson Pine (Pinus massoniana Lamb.) Plantations. Forests 2025, 16, 183. [Google Scholar] [CrossRef]
- Jagodzinski, A.M.; Dyderski, M.K.; Gesikiewicz, K.; Horodecki, P.; Cysewska, A.; Wierczynska, S.; Maciejczyk, K. How do tree stand parameters affect young Scots pine biomass?—Allometric equations and biomass conversion and expansion factors. For. Ecol. Manag. 2018, 409, 74–83. [Google Scholar] [CrossRef]
- Thom, D.; Keeton, W. Stand structure drives disparities in carbon storage in northern hardwood-conifer forests. For. Ecol. Manag. 2019, 442, 10–20. [Google Scholar] [CrossRef]
- Takagi, K.; Hirayama, K.; Hayashi, M.; Makoto, K.; Okada, K.; Oguma, H.; Saigusa, N. Forest structure explains spatial heterogeneity of decadal carbon dynamics in a cool–temperate forest. Environ. Res. Lett. 2024, 19, 114022. [Google Scholar] [CrossRef]
- Penne, C.; Ahrends, B.; Deurer, M.; Boettcher, J. The impact of the canopy structure on the spatial variability in forest floor carbon stocks. Geoderma 2010, 158, 282–297. [Google Scholar] [CrossRef]
- Feng, Q.; Chen, C.; Qin, L.; He, Y.; Wang, P.; Duan, Y.; Wang, Y.; He, Y. Effects of Different Management Models on Stand Structure and Plant Diversity of Natural Secondary Forests of Quercus Mongolica. Sci. Silvae Sin. 2018, 54, 12–21. [Google Scholar]
- Rota, E.; Caruso, T.; Bargagli, R. Community structure, diversity and spatial organization of enchytraeids in Mediterranean urban holm oak stands. Eur. J. Soil Biol. 2014, 62, 83–91. [Google Scholar] [CrossRef]
- Aussenac, R.; Bergeron, Y.; Ghotsa, M.C.; Gravel, D.; Pilch, K.; Drobyshev, I. Intraspecific variability in growth response to environmental fluctuations modulates the stabilizing effect of species diversity on forest growth. J. Ecol. 2017, 105, 1010–1020. [Google Scholar] [CrossRef]
- Haq, S.M.; Waheed, M.; Khoja, A.A.; Amjad, M.S.; Bussmann, R.W.; Ali, K.; Jones, D.A. Measuring forest health at stand level: A multi–indicator evaluation for use in adaptive management and policy. Ecol. Indic. 2023, 150, 110225. [Google Scholar] [CrossRef]
- Chai, Z.; Zhu, J.; Zhao, Z. Close-to-nature management alleviated microbial P limitation in middle–aged Masson pine plantations: Evidence derived from ecoenzymatic stoichiometry. For. Ecol. Manag. 2025, 580, 122543. [Google Scholar] [CrossRef]
- Fang, X.; Tan, W.; Gao, X.; Chai, Z. Close-to-nature management positively improves the spatial structure of Masson pine forest stands. Web Ecol. 2021, 21, 45–54. [Google Scholar] [CrossRef]
- Chai, Z.; Tan, W. Impacts of close-to-nature management on the stand states of Masson pine forests. Ecosyst. Health Sustain. 2020, 6, 1846461. [Google Scholar] [CrossRef]
- Zou, F.; Chai, Z. Effects of Close-to-Nature Management on Carbon Storage of Pinus massoniana Plantation Ecosystem. Guangxi Sci. 2024, 31, 405–415. [Google Scholar]
- Li, Y.; Mo, Y.; Qin, J.; Ma, J. Carbon Storage and Distribution Pattern of Pinus massoniana Plantations Ecosystem in Different Forest Ages in Guangxi. Guangxi Sci. 2024, 31, 346–356. [Google Scholar]
- Wei, M.; Wang, C.; Yang, Z.; Huang, Z.; Wang, H.; He, B. Carbon storage and distribution of Pinus massoniana plantation ecosystem in northwest Guangxi. Subtrop. Agric. Res. 2019, 15, 152–156. [Google Scholar]
- Zhang, K.; Gao, D.; Guo, H.; Zeng, J.; Liu, X. Forest structure characteristics on soil carbon and nitrogen storage of Pinus massoniana plantations in southern subtropic region. Front. For. Glob. Change 2022, 5, 1022221. [Google Scholar] [CrossRef]
- Hui, G.; Zhang, G.; Zhao, Z.; Yang, A. Methods of Forest Structure Research: A Review. Curr. For. Rep. 2019, 5, 142–154. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Y.; Dong, L.; Liu, Z.; Chen, Y. Comprehensive evaluation of spatial structure state for the main forest types in Maoershan mountain. J. Cent. South Univ. For. Technol. 2021, 41, 131–139. [Google Scholar]
- Zhang, G.; Hui, G.; Zhang, G.; Hu, Y.; Zhao, Z. A Novel Comprehensive Evaluation Method of Forest State Based on Unit Circle. Forests 2019, 10, 5. [Google Scholar] [CrossRef]
- Zhao, Z.; Hui, G.; Liu, W.; Hu, Y.; Zhang, G. A Novel Method for Calculating Stand Structural Diversity Based on the Relationship of Adjacent Trees. Forests 2022, 13, 343. [Google Scholar] [CrossRef]
- Guizhou Provincial Department of Natural Resources and Planning. Guizhou Province Individual Tree Carbon Sink Project Methodology (No. 201712–V1); Guizhou Provincial Department of Natural Resources and Planning: Guiyang, China, 2017. [Google Scholar]
- Huang, H. Everything Is Linkable, R Package Version 0.0.3. 2021. Available online: https://github.com/Hy4m/linkET (accessed on 1 September 2024).
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package, R Package Version 2.6-5. 2024. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 September 2024).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 1 September 2024).
- Zhang, C.; Deng, Q.; Liu, A.; Liu, C.; Xie, G. Effects of Stand Structure and Topography on Forest Vegetation Carbon Density in Jiangxi Province. Forests 2021, 12, 1483. [Google Scholar] [CrossRef]
- He, X.; Zhou, C.; Lei, X.; Li, H. Stand carbon stock growth model system for Larix olgensis plantation. J. Beijing For. Univ. 2021, 43, 1–10. [Google Scholar]
- Li, T.; Wu, X.; Wu, Y.; Li, M. Forest Carbon Density Estimation Using Tree Species Diversity and Stand Spatial Structure Indices. Forests 2023, 14, 1105. [Google Scholar] [CrossRef]
- Duan, M.; Wang, G.; Shi, J.; Zhou, H. Long-term Effects of Thinning on Carbon Storage in Pinus Tabulaeformis Plantations. J. Soil Water Conserv. 2018, 32, 190–196. [Google Scholar]
- Liu, X.; Wang, C.; Gao, J.; Yuan, J.; Huang, Y.; Wang, B.; Peng, Y. Approaches to carbon sequestration enhancement in China’s plantation ecosystem for carbon peaking and carbon neutrality goals. Acta Ecol. Sin. 2023, 43, 5662–5673. [Google Scholar]
- Li, X.; Ramos, A.; Wu, D.; Lie, Z.; Xu, W.; Tang, X.; Liu, J. Carbon sequestration and storage capacity of Chinese fir at different stand ages. Sci. Total Environ. 2023, 904, 166962. [Google Scholar] [CrossRef]
- Denis, V. The Role of Biodiversity in Ecosystem Resilience. IOP Conf. Ser. Earth Environ. Sci. 2022, 1072, 012012. [Google Scholar]
- Dymond, C.; Tedder, S.; Spittlehouse, D.; Raymer, B.; Hopkins, K.; McCallion, K.; Sandland, J. Diversifying managed forests to increase resilience. Can. J. For. Res. 2014, 44, 1196–1205. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, L.; Wu, L.; Liu, L.; Huang, Y.; Peng, T.; Qiu, J.; He, Z.; Cao, G. Carbon density and vertical spatial distribution characteristics of Cunninghamia lanceolata forest ecosystem with different stand density. Acta Ecol. Sin. 2022, 42, 710–719. [Google Scholar]
- Hu, H.; Luo, B.; Wei, S.; Wei, S.; Sun, L.; Luo, S.; Ma, H. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains. Chin. J. Plant Ecol. 2015, 39, 140–158. [Google Scholar]
- Lan, X.; Du, H.; Song, T.; Zeng, F.; Peng, W.; Liu, Y.; Fan, Z.; Zhang, J. Vegetation carbon storage in the main forest types in Guangxi and the related influencing factors. Acta Ecol. Sin. 2019, 39, 2043–2053. [Google Scholar]
- Chen, X.; Taylor, A.; Reich, P.; Hisano, M.; Chen, H.; Chang, S. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature 2023, 618, 94–101. [Google Scholar] [CrossRef]
- Zhao, F.; Ouyang, X. Assessing relative contributions of various influencing factors to soil organic carbon in aerially–seeded Pinus massoniana plantations. Acta Ecol. Sin. 2016, 36, 2637–2645. [Google Scholar]
- Güner, Ş.; Güner, D. Changes in carbon stocks of soil and forest floor in black pine plantations in Turkey. J. For. Res. 2020, 32, 339–347. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Sasmito, S.D.; Sillanpää, M.; MacKenzie, R.; Gaveau, D. Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment. Sci. Rep. 2021, 11, 12325. [Google Scholar] [CrossRef]
Indicators | Min | Max | Max−Min | Mean | SD | CV (%) |
---|---|---|---|---|---|---|
Stand density (treeshm−2) | 435 | 1965 | 1530 | 987.188 | 387.337 | 39.24 |
Average tree height (m) | 11.240 | 21.473 | 10.233 | 15.738 | 2.634 | 16.74 |
Average DBH (cm) | 11.843 | 27.939 | 16.096 | 18.905 | 4.313 | 22.81 |
Shrub height (m) | 0.094 | 1.347 | 1.253 | 0.528 | 0.277 | 52.53 |
Shrub cover (%) | 0.313 | 34.450 | 34.137 | 13.100 | 8.126 | 62.03 |
Herb height (m) | 0.069 | 1.167 | 1.098 | 0.408 | 0.214 | 52.36 |
Herb cover (%) | 0.242 | 38.521 | 38.279 | 17.317 | 8.854 | 51.13 |
Item | Indicators | Min | Max | Max−Min | Mean | SD | CV (%) |
---|---|---|---|---|---|---|---|
Stand state | DBH distribution (H) | 0.130 | 0.605 | 0.475 | 0.207 | 0.096 | 46.25 |
Tree height distribution (V) | 0.102 | 0.304 | 0.202 | 0.198 | 0.041 | 20.95 | |
Stand density (K) | 0.735 | 1.000 | 0.265 | 0.963 | 0.059 | 6.09 | |
Stand dominance (U) | 0.009 | 0.690 | 0.681 | 0.252 | 0.158 | 62.66 | |
Stand growth (B) | 0.522 | 0.740 | 0.218 | 0.610 | 0.046 | 7.53 | |
Stand health (Q) | 0.412 | 1.000 | 0.588 | 0.816 | 0.159 | 19.54 | |
Species composition (Z) | 0.037 | 0.732 | 0.695 | 0.298 | 0.171 | 57.54 | |
Species diversity (D) | 0.033 | 0.737 | 0.704 | 0.330 | 0.195 | 59.03 | |
Species evenness (P) | 0.053 | 0.351 | 0.298 | 0.189 | 0.080 | 42.26 | |
Carbon storage (t) | Tree | 1.297 | 8.705 | 7.408 | 5.385 | 1.647 | 30.58 |
Shrub | 0.010 | 0.058 | 0.048 | 0.033 | 0.014 | 41.25 | |
Herb | 0.006 | 0.070 | 0.064 | 0.032 | 0.018 | 57.74 | |
Litter | 0.120 | 0.629 | 0.509 | 0.290 | 0.093 | 31.96 | |
Soil (0–20 cm) | 2.291 | 6.251 | 3.960 | 3.840 | 0.954 | 24.85 | |
Soil (20–40 cm) | 1.378 | 5.282 | 3.904 | 2.203 | 0.694 | 31.51 | |
Soil (40–60 cm) | 0.736 | 3.788 | 3.052 | 1.679 | 0.615 | 36.63 | |
Soil (0–60 cm) | 4.677 | 14.760 | 10.083 | 7.723 | 2.024 | 26.21 | |
Total | 9.880 | 19.283 | 9.403 | 13.462 | 2.382 | 17.69 |
Stand Variables | CCA1 | CCA2 | R2 | p |
---|---|---|---|---|
DBH distribution (H) | −0.9851 | 0.1719 | 0.1898 | 0.020 * |
Tree height distribution (V) | −0.9421 | 0.3354 | 0.1265 | 0.054 |
Stand density (K) | 0.8329 | 0.5535 | 0.1041 | 0.072 |
Stand dominance (U) | 0.9944 | 0.1053 | 0.0560 | 0.269 |
Stand growth (B) | 0.9493 | −0.3143 | 0.1748 | 0.018 * |
Stand health (Q) | 0.9766 | 0.2152 | 0.0043 | 0.908 |
Species composition (Z) | −0.9234 | 0.3838 | 0.0499 | 0.322 |
Species diversity (D) | −0.8883 | 0.4592 | 0.0431 | 0.374 |
Species evenness (P) | −0.6341 | 0.7733 | 0.0179 | 0.667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Wen, W.; Chai, Z. Stand States Drive Disparities in the Carbon Storage Within a Masson Pine Forest Ecosystem. Forests 2025, 16, 499. https://doi.org/10.3390/f16030499
Hu J, Wen W, Chai Z. Stand States Drive Disparities in the Carbon Storage Within a Masson Pine Forest Ecosystem. Forests. 2025; 16(3):499. https://doi.org/10.3390/f16030499
Chicago/Turabian StyleHu, Jiamin, Weihua Wen, and Zongzheng Chai. 2025. "Stand States Drive Disparities in the Carbon Storage Within a Masson Pine Forest Ecosystem" Forests 16, no. 3: 499. https://doi.org/10.3390/f16030499
APA StyleHu, J., Wen, W., & Chai, Z. (2025). Stand States Drive Disparities in the Carbon Storage Within a Masson Pine Forest Ecosystem. Forests, 16(3), 499. https://doi.org/10.3390/f16030499